首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The obligate mutualistic basidiomycete fungus, Leucocoprinus gongylophorus, mediates nutrition of leaf‐cutting ants with carbons from vegetal matter. In addition, diazotrophic Enterobacteriales in the fungus garden and intestinal Rhizobiales supposedly mediate assimilation of atmospheric nitrogen, and Entomoplasmatales in the genus Mesoplasma, as well as other yet unidentified strains, supposedly mediate ant assimilation of other compounds from vegetal matter, such as citrate, fructose, and amino acids. Together, these nutritional partners would support the production of high yields of leafcutter biomass. In the present investigation, we propose that three phylogenetically distinct and culturable diazotrophs in the genera Ralstonia, Methylobacterium, and Pseudomonas integrate this symbiotic nutrition network, facilitating ant nutrition on nitrogen. Strains in these genera were often isolated and directly sequenced in 16S rRNA libraries from the ant abdomen, together with the nondiazotrophs Acinetobacter and Brachybacterium. These five isolates were underrepresented in libraries, suggesting that none of them is dominant in vivo. Libraries have been dominated by four uncultured Rhizobiales strains in the genera Liberibacter, Terasakiella, and Bartonella and, only in Acromyrmex ants, by the Entomoplasmatales in the genus Mesoplasma. Acromyrmex also presented small amounts of two other uncultured Entomoplasmatales strains, Entomoplasma and Spiroplasma. The absence of Entomoplasmatales in Atta workers implicates that the association with these bacteria is not mandatory for ant biomass production. Most of the strains that we detected in South American ants were genetically similar with strains previously described in association with leafcutters from Central and North America, indicating wide geographic dispersion, and suggesting fixed ecological services.  相似文献   

2.
Bacterial symbionts are important fitness determinants of insects. Some hosts have independently acquired taxonomically related microbes to meet similar challenges, but whether distantly related hosts that live in tight symbiosis can maintain similar microbial communities has not been investigated. Varying degrees of nest sharing between Megalomyrmex social parasites (Solenopsidini) and their fungus‐growing ant hosts (Attini) from the genera Cyphomyrmex, Trachymyrmex and Sericomyrmex allowed us to address this question, as both ant lineages rely on the same fungal diet, interact in varying intensities and are distantly related. We used tag‐encoded FLX 454 pyrosequencing and diagnostic PCR to map bacterial symbiont diversity across the Megalomyrmex phylogenetic tree, which also contains free‐living generalist predators. We show that social parasites and hosts share a subset of bacterial symbionts, primarily consisting of Entomoplasmatales, Bartonellaceae, Acinetobacter, Wolbachia and Pseudonocardia and that Entomoplasmatales and Bartonellaceae can co‐infect specifically associated combinations of hosts and social parasites with identical 16S rRNA genotypes. We reconstructed in more detail the population‐level infection dynamics for Entomoplasmatales and Bartonellaceae in Megalomyrmex symmetochus guest ants and their Sericomyrmex amabilis hosts. We further assessed the stability of the bacterial communities through a diet manipulation experiment and evaluated possible transmission modes in shared nests such as consumption of the same fungus garden food, eating of host brood by social parasites, trophallaxis and grooming interactions between the ants, or parallel acquisition from the same nest environment. Our results imply that cohabiting ant social parasites and hosts may obtain functional benefits from bacterial symbiont transfer even when they are not closely related.  相似文献   

3.
Symbiotic bacteria play important roles in the biology of their arthropod hosts. Yet the microbiota of many diverse and influential groups remain understudied, resulting in a paucity of information on the fidelities and histories of these associations. Motivated by prior findings from a smaller scale, 16S rRNA‐based study, we conducted a broad phylogenetic and geographic survey of microbial communities in the ecologically dominant New World army ants (Formicidae: Dorylinae). Amplicon sequencing of the 16S rRNA gene across 28 species spanning the five New World genera showed that the microbial communities of army ants consist of very few common and abundant bacterial species. The two most abundant microbes, referred to as Unclassified Firmicutes and Unclassified Entomoplasmatales, appear to be specialized army ant associates that dominate microbial communities in the gut lumen of three host genera, Eciton, Labidus and Nomamyrmex. Both are present in other army ant genera, including those from the Old World, suggesting that army ant symbioses date back to the Cretaceous. Extensive sequencing of bacterial protein‐coding genes revealed multiple strains of these symbionts coexisting within colonies, but seldom within the same individual ant. Bacterial strains formed multiple host species‐specific lineages on phylogenies, which often grouped strains from distant geographic locations. These patterns deviate from those seen in other social insects and raise intriguing questions about the influence of army ant colony swarm‐founding and within‐colony genetic diversity on strain coexistence, and the effects of hosting a diverse suite of symbiont strains on colony ecology.  相似文献   

4.
The partial nucleotide sequences of the rpoB and gyrB genes as well as the complete sequence of the 16S-23S rRNA intergenic transcribed spacer (ITS) were determined for all known Acholeplasma species. The same genes of Mesoplasma and Entomoplasma species were also sequenced and used to infer phylogenetic relationships among the species within the orders Entomoplasmatales and Acholeplasmatales. The comparison of the ITS, rpoB, and gyrB phylogenetic trees with the 16S rRNA phylogenetic tree revealed a similar branch topology suggesting that the ITS, rpoB, and gyrB could be useful complementary phylogenetic markers for investigation of evolutionary relationships among Acholeplasma species. Thus, the multilocus phylogenetic analysis of Acholeplasma multilocale sequence data (ATCC 49900 (T) = PN525 (NCTC 11723)) strongly indicated that this organism is most closely related to the genera Mesoplasma and Entomoplasma (family Entomoplasmataceae) and form the branch with Mesoplasma seiffertii, Mesoplasma syrphidae, and Mesoplasma photuris. The closest genetic relatedness of this species to the order Entomoplasmatales was additionally supported by the finding that A. multilocale uses UGA as the tryptophan codon in its gyrB and gyrA sequences. Use of the UGA codon for encoding tryptophan was previously reported as a unique genetic feature of Entomoplasmatales and Mycoplasmatales but not of Acholeplasmatales. These data, as well as previously published data on metabolic features of A. multilocale, leads to the proposal to reclassify A. multilocale as a member of the family Entomoplasmataceae.  相似文献   

5.
Nosocomial infections bring a high risk to the health of hospital patients and employees. Ants are common organisms in Brazilian hospitals, where they can act as dispersers of opportunistic microorganisms in places they forage. The occurrence of multi-resistant bacteria carried by ants was analyzed in two public hospitals (HA and HB) in southeastern Bahia, Brazil. In these two hospitals 132 workers belonging to three ant species were collected. The bacteria associated to these ants were identified and their susceptibility to antibiotics was evaluated. More than half (57.3%) of ants collected in HA were associated with some kind of bacteria, with 26.7% of them being opportunist bacteria, while 84,2% of the ants from HB presented associated bacteria growth, with 61.4% of them being opportunist bacteria. Twenty four species of bacteria were isolated. The Gram-positive bacilli of the genus Bacillus were the most frequent, followed by the Gram-positive cocci, Gram-negative bacilli (family Enterobacteriaceae) and Gram-negative non-fermenters bacilli. The profile of sensitivity of the bacterial isolates to drugs pointed out the existence of multi-resistant isolates carried by ants. For the first time, are reported cases of the same bacterial resistant isolates taken form homospecific ant workers that point out the importance of ants to bacteria dissemination and proliferation in a hospital. Our results suggest that the risk of contamination presented by these ants is similar to the one of any other mechanical vector of bacterial dissemination.  相似文献   

6.
Many ant species displaying synanthropic behavior that have successfully dispersed in urban areas can cause problems in hospitals by acting as bacterial vectors. In this study, we encountered bacteria on ants collected at the Universidade Federal de Uberlandia hospital, in the campus and at households nearby. The ants were identified as Tapinoma melanocephalum (Fabricius) and Camponotus vittatus (Forel) (Hymenoptera: Formicidae) and the bacterial strains found here belong to the group of the coagulase-positive staphylococcus, coagulase-negative staphylococcus and gram negative bacilli, including antimicrobial drug-resistant strains. An investigation of the bacteria found in the ants and in the environment revealed that some ants carried non-isolated bacteria from the same environment and with high levels of resistance, evidencing the transmission potential of these insects.  相似文献   

7.

Background  

Attine ants live in an intensely studied tripartite mutualism with the fungus Leucoagaricus gongylophorus, which provides food to the ants, and with antibiotic-producing actinomycete bacteria. One hypothesis suggests that bacteria from the genus Pseudonocardia are the sole, co-evolved mutualists of attine ants and are transmitted vertically by the queens. A recent study identified a Pseudonocardia-produced antifungal, named dentigerumycin, associated with the lower attine Apterostigma dentigerum consistent with the idea that co-evolved Pseudonocardia make novel antibiotics. An alternative possibility is that attine ants sample actinomycete bacteria from the soil, selecting and maintaining those species that make useful antibiotics. Consistent with this idea, a Streptomyces species associated with the higher attine Acromyrmex octospinosus was recently shown to produce the well-known antifungal candicidin. Candicidin production is widespread in environmental isolates of Streptomyces, so this could either be an environmental contaminant or evidence of recruitment of useful actinomycetes from the environment. It should be noted that the two possibilities for actinomycete acquisition are not necessarily mutually exclusive.  相似文献   

8.
We reassess the coevolution between actinomycete bacteria and fungus-gardening (attine) ants. Actinomycete bacteria are of special interest because they are metabolic mutualists of diverse organisms (e.g., in nitrogen-fixation or antibiotic production) and because Pseudonocardia actinomycetes are thought to serve disease-suppressing functions in attine gardens. Phylogenetic information from culture-dependent and culture-independent microbial surveys reveals (1) close affinities between free-living and ant-associated Pseudonocardia, and (2) essentially no topological correspondence between ant and Pseudonocardia phylogenies, indicating frequent bacterial acquisition from environmental sources. Identity of ant-associated Pseudonocardia and isolates from soil and plants implicates these environments as sources from which attine ants acquire Pseudonocardia. Close relatives of Atta leafcutter ants have abundant Pseudonocardia, but Pseudonocardia in Atta is rare and appears at the level of environmental contamination. In contrast, actinomycete bacteria in the genera Mycobacterium and Microbacterium can be readily isolated from gardens and starter-cultures of Atta. The accumulated phylogenetic evidence is inconsistent with prevailing views of specific coevolution between Pseudonocardia, attine ants, and garden diseases. Because of frequent acquisition, current models of Pseudonocardia-disease coevolution now need to be revised. The effectiveness of Pseudonocardia antibiotics may not derive from advantages in the coevolutionary arms race with specialized garden diseases, as currently believed, but from frequent recruitment of effective microbes from environmental sources. Indeed, the exposed integumental structures that support actinomycete growth on attine ants argue for a morphological design facilitating bacterial recruitment. We review the accumulated evidence that attine ants have undergone modifications in association with actinomycete bacteria, but we find insufficient support for the reverse, modifications of the bacteria resulting from the interaction with attine ants. The defining feature of coevolution--reciprocal modification--therefore remains to be established for the attine ant-actinomycete mutualism.  相似文献   

9.
The attine ant-microbe system is a quadripartite symbiosis, involving a complex set of mutualistic and parasitic associations. The symbiosis includes the fungus-growing ants (tribe Attini), the basidiomycetous fungi the ants cultivate for food, specialized microfungal parasites (in the genus Escovopsis) of the cultivar, and ant-associated mu tualistic filamentous bacteria that secrete antibiotics specifically targeted to suppress the growth of Escovopsis. In this study, we conduct the first phylogenetic analysis of the filamentous mutualistic bacteria (actinomycetes) associated with fungus-growing ants. The filamentous bacteria present on 3 genera of fungus-growing ants (Acromyrmex, Trachy myrmex, and Apterostigma) were isolated from 126 colonies. The isolated actinomycetes were grouped into 3 distinct morphological types. Each morphological type was specific to the ant genus from which it was isolated, suggesting some degree of host specificity. The phylogenetic position of the 3 morphotypes was estimated using 16S rDNA for representative strains. The 8 isolates of actinomycetes sequenced are in the family Pseudonocardiaceae (Actino mycetales) and belong to the genus Pseudonocardia. Transmission electron microscopy examination of the actino mycete associated with the cuticle of Acromyrmex sp. revealed bacterial cells with an outer electron-dense membrane, consistent with actinomycetes in the genus Pseudonocardia. Ant-associated Pseudonocardia isolates did not form a monophyletic group, suggesting multiple acquisitions of actinomycetes by fungus-growing ants over their evolutionary history.  相似文献   

10.
Ants dominate many terrestrial ecosystems, yet we know little about their nutritional physiology and ecology. While traditionally viewed as predators and scavengers, recent isotopic studies revealed that many dominant ant species are functional herbivores. As with other insects with nitrogen-poor diets, it is hypothesized that these ants rely on symbiotic bacteria for nutritional supplementation. In this study, we used cloning and 16S sequencing to further characterize the bacterial flora of several herbivorous ants, while also examining the beta diversity of bacterial communities within and between ant species from different trophic levels. Through estimating phylogenetic overlap between these communities, we tested the hypothesis that ecologically or phylogenetically similar groups of ants harbor similar microbial flora. Our findings reveal: (i) clear differences in bacterial communities harbored by predatory and herbivorous ants; (ii) notable similarities among communities from distantly related herbivorous ants and (iii) similar communities shared by different predatory army ant species. Focusing on one herbivorous ant tribe, the Cephalotini, we detected five major bacterial taxa that likely represent the core microbiota. Metabolic functions of bacterial relatives suggest that these microbes may play roles in fixing, recycling, or upgrading nitrogen. Overall, our findings reveal that similar microbial communities are harbored by ants from similar trophic niches and, to a greater extent, by related ants from the same colonies, species, genera, and tribes. These trends hint at coevolved histories between ants and microbes, suggesting new possibilities for roles of bacteria in the evolution of both herbivores and carnivores from the ant family Formicidae.  相似文献   

11.
Uncultivated bacteria that densely colonize the midgut glands (hepatopancreas) of the terrestrial isopod Porcellio scaber (Crustacea: Isopoda) were identified by cloning and sequencing of their 16S rRNA genes. Phylogenetic analysis revealed that these symbionts represent a novel lineage of the Mollicutes and are only distantly related (<82% sequence identity) to members of the Mycoplasmatales and Entomoplasmatales. Fluorescence in situ hybridization with a specific oligonucleotide probe confirmed that the amplified 16S rRNA gene sequences indeed originated from a homogeneous population of symbionts intimately associated with the epithelial surface of the hepatopancreas. The same probe also detected morphotypically identical symbionts in other crinochete isopods. Scanning and transmission electron microscopy revealed uniform spherical bacterial cells without a cell wall, sometimes interacting with the microvilli of the brush border by means of stalk-like cytoplasmic appendages, which also appeared to be involved in cell division through budding. Based on the isolated phylogenetic position and unique cytological properties, the provisional name "Candidatus Hepatoplasma crinochetorum" is proposed for this new taxon of Mollicutes colonizing the hepatopancreas of P. scaber.  相似文献   

12.
Although only discovered in 1999, the symbiotic filamentous actinobacteria present on the integument of certain species of leaf-cutting ants have been the subject of intense research. These bacteria have been shown to specifically suppress fungal garden parasites by secretion of antibiotics. However, more recently, a wider role for these bacteria has been suggested from research revealing their generalist anti-fungal activity. Here we show, for the first time, evidence for a role of these bacteria in the defence of young worker ants against a fungal entomopathogen. Experimental removal of the bacterial bio-film using an antibiotic resulted in a significant increase in susceptibility of worker ants to infection by the entomopathogenic fungus Metarhizium anisopliae. This is the first direct evidence for the advantage of maintaining a bacterial bio-film on the cuticle as a defensive strategy of the ants themselves and not exclusively for protection of the fungus garden.  相似文献   

13.
He H  Chen Y  Zhang Y  Wei C 《Environmental entomology》2011,40(6):1405-1409
Camponotus ants harbor the obligate intracellular endosymbiont Blochmannia in their midgut bacteriocytes, but little is known about intestinal bacteria living in the gut lumen. In this paper we reported the results of a survey of the intestinal microflora of Camponotus japonicus Mayr based on small-subunit rRNA genes (16S rRNAs) polymerase chain reaction (PCR)-restriction fragment-length polymorphism analysis of worker guts. From 107 clones, 11 different restriction fragment-length polymorphism profiles were identified, and sequences blasting analysis found these represent four types of bacteria. Most (91.6%) of the clones were "Candidatus Blochmannia", the obligate endosymbionts of Camponotus ants, and 6.5% of the clones were "Candidatus Serratia symbiotica", a secondary endosymbiont of aphids; the remaining 2% clones were Fructobacillus fructosus and uncultured Burkholderiales bacterium, respectively. These results show that the diversity of gut bacteria in C. japonicus was low. "Candidatus Serratia symbiotica" was identified from Camponotus ants for the first time, an interesting result because Blochmannia's closest bacterial relative is also in the genus Serratia. This discovery supports the scenario that consumption of aphid honeydew or tissue provides an initial step in the evolution of an advanced symbiosis, and suggests that Camponotus ant could acquire other secondary endosymbionts from Hemiptera host through their diet. In addition, Burkholderiales bacterium also was identified from the gut of C. japonicus for the first time, and whether it is a nitrogen-recycling endosymbiont in Camponotus ants needs to be investigated further.  相似文献   

14.
The fungus-growing ant-microbe mutualism is a classic example of organismal complexity generated through symbiotic association. The ants have an ancient obligate mutualism with fungi they cultivate for food. The success of the mutualism is threatened by specialized fungal parasites (Escovopsis) that consume the cultivated fungus. To defend their nutrient-rich garden against infection, the ants have a second mutualism with bacteria (Pseudonocardia), which produce antibiotics that inhibit the garden parasite Escovopsis. Here we reveal the presence of a fourth microbial symbiont associated with fungus-growing ants: black yeasts (Ascomycota; Phialophora). We show that black yeasts are commonly associated with fungus-growing ants, occurring throughout their geographical distribution. Black yeasts grow on the ants' cuticle, specifically localized to where the mutualistic bacteria are cultured. Molecular phylogenetic analyses reveal that the black yeasts form a derived monophyletic lineage associated with the phylogenetic diversity of fungus growers. The prevalence, distribution, localization and monophyly indicate that the black yeast is a fifth symbiont within the attine ant-microbe association, further exemplifying the complexity of symbiotic associations.  相似文献   

15.
Conflict within mutually beneficial associations is predicted to destabilize relationships, and theoretical and empirical work exploring this has provided significant insight into the dynamics of cooperative interactions. Within mutualistic associations, the expression and regulation of conflict is likely more complex than in intraspecific cooperative relationship, because of the potential presence of: i) multiple genotypes of microbial species associated with individual hosts, ii) multiple species of symbiotic lineages forming cooperative partner pairings, and iii) additional symbiont lineages. Here we explore complexity of conflict expression within the ancient and coevolved mutualistic association between attine ants, their fungal cultivar, and actinomycetous bacteria (Pseudonocardia). Specifically, we examine conflict between the ants and their Pseudonocardia symbionts maintained to derive antibiotics against parasitic microfungi (Escovopsis) infecting the ants' fungus garden. Symbiont assays pairing isolates of Pseudonocardia spp. associated with fungus-growing ants spanning the phylogenetic diversity of the mutualism revealed that antagonism between strains is common. In contrast, antagonism was substantially less common between more closely related bacteria associated with Acromyrmex leaf-cutting ants. In both experiments, the observed variation in antagonism across pairings was primarily due to the inhibitory capabilities and susceptibility of individual strains, but also the phylogenetic relationships between the ant host of the symbionts, as well as the pair-wise genetic distances between strains. The presence of antagonism throughout the phylogenetic diversity of Pseudonocardia symbionts indicates that these reactions likely have shaped the symbiosis from its origin. Antagonism is expected to prevent novel strains from invading colonies, enforcing single-strain rearing within individual ant colonies. While this may align ant-actinomycete interests in the bipartite association, the presence of single strains of Pseudonocardia within colonies may not be in the best interest of the ants, because increasing the diversity of bacteria, and thereby antibiotic diversity, would help the ant-fungus mutualism deal with the specialized parasites.  相似文献   

16.
Some Tetraponera ants (Formicidae, Pseudomyrmecinae) subsist almost entirely on amino acid deficient honeydew secretions of pseudococcids and harbour a dense aggregation of bacterial symbionts in a unique pouch-shaped organ at the junction of the midgut and the intestine. The organ is surrounded by a network of intruding tracheae and Malpighian tubules, suggesting that these bacteria are involved in the oxidative recycling of nitrogen-rich metabolic waste. We have examined the ultrastructure of these bacteria and have amplified, cloned and sequenced ribosomal RNA-encoding genes, showing that the ant pouch contains a series of close relatives of Flavobacteria and Rhizobium, Methylobacterium, Burkholderia and Pseudomonas nitrogen-fixing root-nodule bacteria. We argue that pouch bacteria have been repeatedly 'domesticated' by the ants as nitrogen-recycling endosymbionts. This ant-associated community of mutualists is, to our knowledge, the first finding of symbionts related to root-nodule bacteria in animals.  相似文献   

17.
Maternally transmitted bacteria have been important players in the evolution of insects and other arthropods, affecting their nutrition, defense, development, and reproduction. Wolbachia are the best studied among these and typically the most prevalent. While several other bacteria have independently evolved a heritable lifestyle, less is known about their host ranges. Moreover, most groups of insects have not had their heritable microflora systematically surveyed across a broad range of their taxonomic diversity. To help remedy these shortcomings we used diagnostic PCR to screen for five groups of heritable symbionts—Arsenophonus spp., Cardinium hertigii, Hamiltonella defensa, Spiroplasma spp., and Wolbachia spp.—across the ants and lepidopterans (focusing, in the latter case, on two butterfly families—the Lycaenidae and Nymphalidae). We did not detect Cardinium or Hamiltonella in any host. Wolbachia were the most widespread, while Spiroplasma (ants and lepidopterans) and Arsenophonus (ants only) were present at low levels. Co-infections with different Wolbachia strains appeared especially common in ants and less so in lepidopterans. While no additional facultative heritable symbionts were found among ants using universal bacterial primers, microbes related to heritable enteric bacteria were detected in several hosts. In summary, our findings show that Wolbachia are the dominant heritable symbionts of ants and at least some lepidopterans. However, a systematic review of symbiont frequencies across host taxa revealed that this is not always the case across other arthropods. Furthermore, comparisons of symbiont frequencies revealed that the prevalence of Wolbachia and other heritable symbionts varies substantially across lower-level arthropod taxa. We discuss the correlates, potential causes, and implications of these patterns, providing hypotheses on host attributes that may shape the distributions of these influential bacteria.  相似文献   

18.
【目的】颊下囊是蚂蚁口前腔中一个特殊的袋状结构,在蚂蚁取食过程中,固体食物和其它颗粒在进入食道前被过滤在颊下囊中,稍后被蚂蚁从口前腔排出,这种过滤机制保证了主要利用液体食物的蚂蚁整个消化道的畅通。本文旨在揭示蚂蚁颊下囊结构及其内含物中存在的细菌类群及其可能在蚂蚁的消化、清洁以及其它方面发挥的潜在作用。【方法】利用扫描电镜确定了日本弓背蚁颊下囊在蚂蚁头部的位置及其形状,然后采用传统的细菌分离培养与细菌16S r RNA基因序列分析相结合的方法进行了颊下囊内含物以及蚁巢内土壤样品细菌的分离培养研究。【结果】(1)颊下囊位于蚂蚁口腔的后侧,呈袋状结构,内部含有大量的固体颗粒物质;(2)3个蚁巢工蚁颊下囊内含物每克样品中可培养细菌的菌落总数(cfu/g)数量差异较大,并且显著大于同巢土壤样品的细菌cfu/g数量;(3)从3个蚁巢的工蚁颊下囊内含物中共分离到11属的细菌,分别隶属于厚壁菌门(Firmicutes)、放线菌门(Actinobacteria)和γ-变形菌纲(γ-Proteobacteria)三大类群,其中放线菌门细菌为优势类群;在属级水平上,巢1和巢2工蚁颊下囊内含物中的优势菌群为微杆菌属,分别占47.83%和49.73%,巢3优势菌群为不动杆菌属和微杆菌属,分别占37.27%和30%;3个蚁巢土壤样品优势菌均为芽孢杆菌属,分别占各自分离总菌落数的49.69%、56.22%和44.79%。(4)蚁巢土壤中所分离出的细菌均能在同巢工蚁的颊下囊内含物中分离得到,但同一蚁巢蚂蚁颊下囊内含物与其巢内土壤的细菌组成存在明显差异;不同蚁巢蚂蚁颊下囊内含物的细菌组成也存在明显差异。【结论】蚂蚁的颊下囊中存在丰富的细菌种类,在蚁巢土壤中分离到的细菌均能在颊下囊中发现,而在颊下囊中分离到的部分细菌并没有在相应的蚁巢土壤样品中分离到。  相似文献   

19.
The metapleural gland is an organ exclusive to ants. Its main role is to produce secretions that inhibit the proliferation of different types of pathogens. The aim of the present study was to examine the morphophysiological differences between the metapleural gland of 3 non-fungus-growing ants of the tribes Ectatommini, Myrmicini, and Blepharidattini and that of 5 fungus-growing ants from 2 basal and 3 derived attine genera. The metapleural gland of the non-fungus-growing ants and the basal attine ants has fewer secretory cells than that of the derived attine ants (leaf-cutting ants). In addition, the metapleural gland of the latter had more clusters of secretory cells and sieve plates, indicating a greater storage capacity and demand for secretion in these more advanced farming ants. The glands of the derived attine ants also produced higher levels of polysaccharides and acidic lipids than those of Myrmicini, Blepharidattini, and basal attines. Our results confirm morphophysiological differences between the metapleural glands of the derived attines and those of the basal attines and non-fungus-growing ants, suggesting that the metapleural glands of the derived attines (leaf-cutting ants) are more developed in morphology and physiology, with enhanced secretion production (acidic lipids and protein) to protect against the proliferation of unwanted fungi and bacteria in the fungal garden, it is possible that leaf-cutting ants may have evolved more developed metapleural glands in response to stronger pressure from parasites.  相似文献   

20.
Fungus-growing attine ants are under constant threat from fungal pathogens such as the specialized mycoparasite Escovopsis, which uses combined physical and chemical attack strategies to prey on the fungal gardens of the ants. In defence, some species assemble protective microbiomes on their exoskeletons that contain antimicrobial-producing Actinobacteria. Underlying this network of mutualistic and antagonistic interactions are an array of chemical signals. Escovopsis weberi produces the shearinine terpene-indole alkaloids, which affect ant behaviour, diketopiperazines to combat defensive bacteria, and other small molecules that inhibit the fungal cultivar. Pseudonocardia and Streptomyces mutualist bacteria produce depsipeptide and polyene macrolide antifungals active against Escovopsis spp. The ant nest metabolome is further complicated by competition between defensive bacteria, which produce antibacterials active against even closely related species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号