首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This contribution describes the preparation of strong anion-exchange membranes with higher protein binding capacities than the best commercial resins. Quaternary amine (Q-type) anion-exchange membranes were prepared by grafting polyelectrolyte nanolayers from the surfaces of macroporous membrane supports. A focus of this study was to better understand the role of polymer nanolayer architecture on protein binding. Membranes were prepared with different polymer chain graft densities using a newly developed surface-initiated polymerization protocol designed to provide uniform and variable chain spacing. Bovine serum albumin and immunoglobulin G were used to measure binding capacities of proteins with different size. Dynamic binding capacities of IgG were measured to evaluate the impact of polymer chain density on the accessibility of large size protein to binding sites within the polyelectrolyte nanolayer under flow conditions. The dynamic binding capacity of IgG increased nearly linearly with increasing polymer chain density, which suggests that the spacing between polymer chains is sufficient for IgG to access binding sites all along the grafted polymer chains. Furthermore, the high dynamic binding capacity of IgG (>130 mg/mL) was independent of linear flow velocity, which suggests that the mass transfer of IgG molecules to the binding sites occurs primarily via convection. Overall, this research provides clear evidence that the dynamic binding capacities of large biologics can be higher for well-designed macroporous membrane adsorbers than commercial membrane or resin ion-exchange products. Specifically, using controlled polymerization leads to anion-exchange membrane adsorbers with high binding capacities that are independent of flow rate, enabling high throughput. Results of this work should help to accelerate the broader implementation of membrane adsorbers in bioprocess purification steps.  相似文献   

2.
3.
Stimulation of various cell types with growth factors is associated with a rapid induction in the synthesis of a nuclear matrix protein, termed 'numatrin' which was shown to be identical to the nucleolar protein B23. The abundance of numatrin was shown to be correlated with entry and progression through the S-phase. Thus, experiments were undertaken to examine whether numatrin also has DNA binding activity. Using whole nuclear extract, we showed that numatrin binds to both double-stranded (DS) DNA and to single-stranded (SS) DNA cellulose columns. Purified numatrin, which was extracted either under native conditions (in oligomeric form) or under urea conditions (in monomeric form), demonstrated significant binding to either [3H]DS-DNA or [3H]DS-DNA as shown by nitrocellulose filter binding assay. However, numatrin binding to DS-DNA was qualitatively and quantitatively different from its binding to SS-DNA. Thus, the binding of numatrin was several fold higher to DS-DNA as compared to SS-DNA. The binding to DS-DNA was reduced by 77% in the presence of 0.5 M NaCl, while the binding to SS-DNA was not affected under this condition. Furthermore, treatment of the native numatrin under conditions which caused monomerization of the protein resulted in a significant enhancement of numatrin binding to SS-DNA but did not affect the binding to DS-DNA. Following heparin-Sepharose chromatography purification (under native conditions), numatrin at picomole amounts showed significant binding to both DS-DNA and SS-DNA. Finally, numatrin was found to copurify with the complex of DNA polymerase alpha primase together with other proteins required for SV-40 in vitro replication activity. These results demonstrate that numatrin has DNA binding activity, and imply a possible role for numatrin/B23 in DNA-associated processes.  相似文献   

4.
The terminal hairpin structures of the DNA of minute virus of mice (MVM) are essential for viral replication. Here we show that the hairpin 3' terminus of MVM replicative-form DNA binds specifically to empty MVM capsids. Binding of the same terminal DNA sequence in its linear double-stranded (extended) conformation was not observed. After heat denaturation and quick cooling of 3'-terminal extended-form fragments, not only the virion strand but also the complementary strand was found to bind to the capsid, presumably because each strand re-formed a similar hairpin structure. No binding affinity for the capsid was found to be associated with hairpin or extended 5' termini or with any other region of the viral DNA. Hydroxyl radical footprinting analyses revealed three protected nucleotide stretches forming a binding site at the branch point of the two 3'-terminal hairpin arms looping out from the DNA stem (T structure). Single base changes within this site did not affect the binding. In band shift experiments, specific binding to the T structure was demonstrated for VPI but not for VP2.  相似文献   

5.
We have characterized an immunosuppressive parvovirus related to the minute virus of mice (MVM). The parvovirus, MVM(i), grew efficiently on the murine lymphoma cell line EL-4 and not on the A-9 strain of L-cells which is a host for the prototype MVM. MVM(i) was immunosuppressive for allogeneic mixed leukocyte cultures, inhibiting the generation of cytolytic T lymphocytes. MVM had no effect on mixed leukocyte cultures. MVM and MVM(i) particles were similar in buoyant density, sedimentation rate, appearance in the electron microscope, and polypeptide composition. We present restriction enzyme maps of the DNAs of MVM and MVM(i) which show that they are closely related. Out of 109 restriction endonuclease cleavage sites (representing together about 10% of the nucleotide sequence), 86 sites were shared by MVM and MVM(i), whereas 22 sites were absent from one of the two viruses. MVM(i) DNA had an apparent deletion of about 60 nucleotides relative to MVM, located near the 5' terminus of viral DNA.  相似文献   

6.
Directed integration of minute virus of mice DNA into episomes.   总被引:1,自引:1,他引:0       下载免费PDF全文
J Corsini  J Tal    E Winocour 《Journal of virology》1997,71(12):9008-9015
Recent studies with adeno-associated virus (AAV) have shown that site-specific integration is directed by DNA sequence motifs that are present in both the viral replication origin and the chromosomal preintegration DNA and that specify binding and nicking sites for the viral regulatory Rep protein. This finding raised the question as to whether other parvovirus regulatory proteins might direct site-specific recombination with DNA targets that contain origin sequences functionally equivalent to those described for AAV. To investigate this question, active and inactive forms of the minute virus of mice (MVM) 3' replication origin, derived from a replicative-form dimer-bridge intermediate, were propagated in an Epstein-Barr virus-based shuttle vector which replicates as an episome in a cell-cycle-dependent manner in mammalian cells. Upon MVM infection of these cells, the infecting genome integrated into episomes containing the active-origin sequence reported to be efficiently nicked by the MVM regulatory protein NS1. In contrast, MVM did not integrate into episomes containing either the inactive form of the origin sequence reported to be inefficiently nicked by NS1 or the active form from which the NS1 consensus nick site had been deleted. The structure of the cloned MVM episomal recombinants displayed several features previously described for AAV episomal and chromosomal recombinants. The findings indicate that the rules which govern AAV site-specific recombination also apply to MVM and suggest that site-specific chromosomal insertions may be achievable with different autonomous parvovirus replicator proteins which recognize binding and nicking sites on the target DNA.  相似文献   

7.
The autonomous parvovirus Minute Virus of Mice (MVM) induces specific changes in the cytoskeleton filaments of infected permissive cells, causing in particular the degradation of actin fibers and the generation of "actin patches." This is attributed to a virus-induced imbalance between the polymerization factor N-WASP (Wiscott-Aldrich syndrome protein) and gelsolin, a multifunctional protein cleaving actin filaments. Here, the focus is on the involvement of gelsolin in parvovirus propagation and virus-induced actin processing. Gelsolin activity was knocked-down, and consequences thereof were determined for virus replication and egress and for actin network integrity. Though not required for virus replication or progeny particle assembly, gelsolin was found to control MVM (and related H1-PV) transport from the nucleus to the cell periphery and release into the culture medium. Gelsolin-dependent actin degradation and progeny virus release were both controlled by (NS1)/CKIIalpha, a recently identified complex between a cellular protein kinase and a MVM non-structural protein. Furthermore, the export of newly synthesized virions through the cytoplasm appeared to be mediated by (virus-modified) lysomal/late endosomal vesicles. By showing that MVM release, like entry, is guided by the cytoskeleton and mediated by vesicles, these results challenge the current view that egress of non-enveloped lytic viruses is a passive process.  相似文献   

8.
The effect of UV-irradiation on the conversion of the single-stranded DNA of the parvovirus Minute-Virus-of-Mice (MVM) to duplex Replicative Forms (RF) was studied after infection of mouse A9 fibroblasts. UV-irradiation of the virus prior to infection of unirradiated cells resulted in a dose-dependent, single-hit, inhibition of RF formation. Restriction fragment analysis indicated that this inhibition could be ascribed to the introduction of absolute blocks which prevent elongation of the newly synthesized complementary strand. Cell exposure to UV-light prior to infection with UV-irradiated MVM enhanced the fraction of input viral DNA which was converted to RF. This enhancement required de novo protein synthesis during the interval between cell irradiation and virus infection. These results suggest that DNA replication constitutes a target in the viral life cycle that leads to the UV-enhanced Reactivation of virus survival, however, they do not permit us to identify the step of RF formation which is enhanced in UV-pretreated cells.  相似文献   

9.
A method for the simultaneous preparation of microvillous and basal membrane vesicles from human placental syncytiotrophoblast is described. Mg2(+)-aggregated basal membranes are separated from microvillous membranes by low-speed centrifugation after initial homogenization and centrifugation steps. Microvillous membranes (MVM) are obtained from the low speed supernatant while basal membranes (BM) contained in the Mg2(+)-aggregated material are resuspended and further purified on a sucrose step gradient. MVM and BM prepared by this method were enriched 20-fold and 11-fold as determined by the membrane marker enzymes, alkaline phosphatase (MVM) and adenylate cyclase (BM). There was minimal cross-contamination of the two isolated plasma membrane fractions and the yields obtained were 26% (MVM) and 21% (BM) compared to the initial homogenate. The MVM and BM fractions were free from contamination by mitochondrial or lysosomal membranes and showed only minor contamination by microsomal membranes. The two membrane fractions were also tested for the presence of non-syncytial plasma membranes by electrophoretic immunoblotting. Contamination of both MVM and BM by fibroblast, endothelial, macrophage and cytotrophoblast plasma membranes amounted to less than 15% of the total membrane protein as determined by immunoblotting. Vesicle orientation, determined from the latency of specific concanavalin A binding, was 88 +/- 4% right-side out for MVM and 73 +/- 12% right-side out for BM. This simple preparative procedure produces a high yield of both MVM and BM from human placenta. The analytical data demonstrates that 'paired' MVM and BM fractions derived from the same placental tissue have a high purity in terms not only of contamination by intracellular membranes, but also in terms of contamination by non-syncytial plasma membranes.  相似文献   

10.
Biopharmaceutical products produced from cell cultures have a potential for viral contamination from cell sources or from adventitious introduction during production. The objective of this study was to assess viral clearance in the production of insect cell-derived recombinant human papillomavirus (HPV)-16 type L1 virus-like particles (VLPs). We selected Japanese encephalitis virus (JEV), bovine viral diarrhea virus (BVDV), and minute virus of mice (MVM) as relevant viruses to achieve the aim of this study. A downstream process for the production of purified HPV-16 L1 VLPs consisted of detergent lysis of harvested cells, sonication, sucrose cushion centrifugation, and cesium chloride (CsCl) equilibrium density centrifugation. The capacity of each purification/treatment step to clear viruses was expressed as reduction factor by measuring the difference in log virus infectivity of sample pools before and after each process. As a result, detergent treatment (0.5% v/v, Nonidet P-40/phosphate-buffered saline) was effective for inactivating enveloped viruses such as JEV and BVDV, but no significant reduction (< 1.0 log(10)) was observed in the non-enveloped MVM. The CsCl equilibrium density centrifugation was fairly effective for separating all three relevant adventitious viruses with different CsCl buoyant density from that of HPV-16 L1 VLPs (JEV, BVDV, and MVM = 4.30, 3.10, > or = 4.40 log(10) reductions). Given the study conditions we used, overall cumulative reduction factors for clearance of JEV, BVDV, and MVM were > or = 10.50, > or = 9.20, and > or = 6.40 log(10) in 150 ml of starting cell cultures, respectively.  相似文献   

11.
In this work, living/controlled radical polymerization (LRP) is compared with conventional free radical polymerization in the creation of highly and weakly cross-linked imprinted poly(methacrylic acid-co-ethylene glycol dimethacrylate) networks. It elucidates, for the first time, the effect of LRP on the chain level and begins to explain why the efficiency of the imprinting process is improved using LRP. Imprinted polymers produced via LRP exhibited significantly higher template affinity and capacity compared with polymers prepared using conventional methods. The use of LRP in the creation of highly cross-linked imprinted polymers resulted in a fourfold increase in binding capacity without a decrease in affinity; whereas weakly cross-linked gels demonstrated a nearly threefold increase in binding capacity at equivalent affinity when LRP was used. In addition, by adjusting the double bond conversion, we can choose to increase either the capacity or the affinity in highly cross-linked imprinted polymers, thus allowing the creation of imprinted polymers with tailorable binding parameters. Using free radical polymerization in the creation of polymer chains, as the template-monomer ratio increased, the average molecular weight of the polymer chains decreased despite a slight increase in the double bond conversion. Thus, the polymer chains formed were shorter but greater in number. Using LRP neutralized the effect of the template. The addition of chain transfer agent resulted in slow, uniform, simultaneous chain growth, resulting in the formation of longer more monodisperse chains. Reaction analysis revealed that propagation time was extended threefold in the formation of highly cross-linked polymers when LRP techniques were used. This delayed the transition to the diffusion-controlled stage of the reaction, which in turn led to the observed enhanced binding properties, decreased polydispersity in the chains, and a more homogeneous macromolecular architecture.  相似文献   

12.
P Tam  C R Astell 《Journal of virology》1994,68(5):2840-2848
Previous genetic analysis of the DNA replication of minute virus of mice (MVM) minigenomes suggested that specific elements, A (nucleotides [nt] 4489 to 4636) and B (nt 4636 to 4695), found inboard of the 5' palindrome are required for efficient MVM DNA replication (P. Tam and C. R. Astell, Virology 193:812-824, 1993). In this report, we show that two MVM RsaI restriction fragments (RsaI A [nt 4431 to 4579] and RsaI B [nt 4579 to 4662]) are able to activate DNA replication of an MVM minigenome containing deletions of both elements A and B. We also show that sequences inboard of the right palindrome are able to activate replication of minigenomes containing two left termini. In order to investigate the importance of the RsaI fragments, we demonstrate the presence of a number of sequence-specific DNA-protein interactions by electrophoretic mobility shift assays. After partial fractionation of A9 nuclear extracts, DNase I footprinting analysis was used to determine the binding sites for MVM replication factor (MRF) B5. MRF B5 protects two distinct regions (sites I and II) of the RsaI B probe from DNase I digestion. Competition f electrophoretic mobility shift assays with synthetic oligonucleotides corresponding to sites I and II suggest that MRF B5 is composed of two factors, MRF B3 and MRF B4, which bind DNA independently in a sequence-specific manner. It may be possible that these replication factors are proteins which are able to transactivate MVM DNA replication and hence are accessory replication factors.  相似文献   

13.
Membrane adsorbers may be a viable alternative to the packed‐bed chromatography for clearance of virus, host cell proteins, DNA, and other trace impurities. However, incorporation of membrane adsorbers into manufacturing processes has been slow due to the significant cost associated with obtaining regulatory approval for changes to a manufacturing process. This study has investigated clearance of minute virus of mice (MVM), an 18–22 nm parvovirus recognized by the FDA as a model viral impurity. Virus clearance was obtained using three commercially available anion exchange membrane adsorbers: Sartobind Q®, Mustang Q®, and ChromaSorb®. Unlike earlier studies that have focused on a single or few operating conditions, the aim here was to determine the level of virus clearance under a range of operating conditions that could be encountered in industry. The effects of varying pH, NaCl concentration, flow rate, and other competing anionic species present in the feed were determined. The removal capacity of the Sartobind Q and Mustang Q products, which contain quaternary ammonium based ligands, is sensitive to feed conductivity and pH. At conductivities above about 20 mS/cm, a significant decrease in capacity is observed. The capacity of the ChromaSorb product, which contains primary amine based ligands, is much less affected by ionic strength. However the capacity for binding MVM is significantly reduced in the presence of phosphate ions. These differences may be explained in terms of secondary hydrogen bonding interactions that could occur with primary amine based ligands. Biotechnol. Bioeng. 2013; 110: 491–499. © 2012 Wiley Periodicals, Inc.  相似文献   

14.
Infection by DNA viruses can elicit DNA damage responses (DDRs) in host cells. In some cases the DDR presents a block to viral replication that must be overcome, and in other cases the infecting agent exploits the DDR to facilitate replication. We find that low multiplicity infection with the autonomous parvovirus minute virus of mice (MVM) results in the activation of a DDR, characterized by the phosphorylation of H2AX, Nbs1, RPA32, Chk2 and p53. These proteins are recruited to MVM replication centers, where they co-localize with the main viral replication protein, NS1. The response is seen in both human and murine cell lines following infection with either the MVMp or MVMi strains. Replication of the virus is required for DNA damage signaling. Damage response proteins, including the ATM kinase, accumulate in viral-induced replication centers. Using mutant cell lines and specific kinase inhibitors, we show that ATM is the main transducer of the signaling events in the normal murine host. ATM inhibitors restrict MVM replication and ameliorate virus-induced cell cycle arrest, suggesting that DNA damage signaling facilitates virus replication, perhaps in part by promoting cell cycle arrest. Thus it appears that MVM exploits the cellular DNA damage response machinery early in infection to enhance its replication in host cells.  相似文献   

15.
16.
In this work, we report the transduction of a chloramphenicol acetyltransferase (CAT) reporter gene into a variety of normal and transformed human cells of various tissue origins. The vector used was MVM/P38cat, a recombinant of the prototype strain of the autonomous parvovirus minute virus of mice (MVMp). The CAT gene was inserted into the capsid-encoding region of the infectious molecular clone of MVMp genome, under the control of the MVM P38 promoter. When used to transfect permissive cells, the MVM/P38cat DNA was efficiently replicated and expressed the foreign CAT gene at high levels. By cotransfecting with a helper plasmid expressing the capsid proteins, it was possible to produce mixed virus stocks containing MVM/P38cat infectious particles and variable amounts of recombinant MVM. MVM/P38cat viral particles were successfully used to transfer the CAT gene and to express it in a variety of human cells. Both viral DNA replication and P38-driven CAT expression were achieved in fibroblasts, epithelial cells, T lymphocytes, and macrophages in a transformation-dependent way, but with an efficiency depending on the cell type. In transformed B lymphocytes, however, the vector was not replicated, nor did it express the CAT gene.  相似文献   

17.
Virus filtration (VF) is a key step in an overall viral clearance process since it has been demonstrated to effectively clear a wide range of mammalian viruses with a log reduction value (LRV) > 4. The potential to achieve higher LRV from virus retentive filters has historically been examined using bacteriophage surrogates, which commonly demonstrated a potential of > 9 LRV when using high titer spikes (e.g. 1010 PFU/mL). However, as the filter loading increases, one typically experiences significant decreases in performance and LRV. The 9 LRV value is markedly higher than the current expected range of 4‐5 LRV when utilizing mammalian retroviruses on virus removal filters (Miesegaes et al., Dev Biol (Basel) 2010;133:3‐101). Recent values have been reported in the literature (Stuckey et al., Biotech Progr 2014;30:79‐85) of LRV in excess of 6 for PPV and XMuLV although this result appears to be atypical. LRV for VF with therapeutic proteins could be limited by several factors including process limits (flux decay, load matrix), virus spike level and the analytical methods used for virus detection (i.e. the Limits of Quantitation), as well as the virus spike quality. Research was conducted using the Xenotropic‐Murine Leukemia Virus (XMuLV) for its direct relevance to the most commonly cited document, the International Conference of Harmonization (ICH) Q5A (International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use, Geneva, Switzerland, 1999) for viral safety evaluations. A unique aspect of this work is the independent evaluation of the impact of retrovirus quality and virus spike level on VF performance and LRV. The VF studies used XMuLV preparations purified by either ultracentrifugation (Ultra 1) or by chromatographic processes that yielded a more highly purified virus stock (Ultra 2). Two monoclonal antibodies (Mabs) with markedly different filtration characteristics and with similar levels of aggregate (<1.5%) were evaluated with the Ultra 1 and Ultra 2 virus preparations utilizing the Planova 20 N, a small virus removal filter. Impurities in the virus preparation ultimately limited filter loading as measured by determining the volumetric loading condition where 75% flux decay is observed versus initial conditions (V75). This observation occurred with both Mabs with the difference in virus purity more pronounced when very high spike levels were used (>5 vol/vol %). Significant differences were seen for the process performance over a number of lots of the less‐pure Ultra 1 virus preparations. Experiments utilizing a developmental lot of the chromatographic purified XMuLV (Ultra 2 Development lot) that had elevated levels of host cell residuals (vs. the final Ultra 2 preparations) suggest that these contaminant residuals can impact virus filter fouling, even if the virus prep is essentially monodisperse. Process studies utilizing an Ultra 2 virus with substantially less host cell residuals and highly monodispersed virus particles demonstrated superior performance and an LRV in excess of 7.7 log10. A model was constructed demonstrating the linear dependence of filtration flux versus filter loading which can be used to predict the V75 for a range of virus spike levels conditions using this highly purified virus. Fine tuning the virus spike level with this model can ultimately maximize the LRV for the virus filter step, essentially adding the LRV equivalent of another process step (i.e. protein A or CEX chromatography). © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 31:135–144, 2015  相似文献   

18.
T H Walton  P T Moen  Jr  E Fox    J W Bodnar 《Journal of virology》1989,63(9):3651-3660
Biochemical evidence is presented that both minute virus of mice (MVM) and adenovirus interact with the nucleolus during lytic growth and that MVM can also target specific changes involving nucleolar components in adenovirus-infected cells. These virus-nucleolus interactions were studied by analysis of intranuclear compartmentalization of both viral DNAs and host nucleolar proteins: (i) MVM in mouse cells (its normal host) replicates its DNA in the host nucleoli; (ii) specific nucleolar proteins as well as small nuclear ribonucleoprotein antigens are recompartmentalized to multiple intranuclear foci in adenovirus-infected HeLa cells; and (iii) when adenovirus helps MVM DNA replication in a nonpermissive human cell (HeLa), the MVM DNA is also recompartmentalized for synthesis. The data suggest mechanisms for disruption of nucleolar function common to oncogenic or oncolytic virus lytic growth and cell transformation.  相似文献   

19.
Minute virus of mice (MVM) shows an oncotropic behavior reflected by its ability to amplify its genome more efficiently in a number of transformed versus normal cells. In vivo and in vitro studies revealed that the major effect of cell transformation on MVM DNA replication occurs at the level of double-stranded replicative-form amplification. In particular, resolution of MVM DNA concatemers into monomers was found to be highly sensitive to neoplastic transformation.  相似文献   

20.
Two strains of minute virus of mice (MVM) show different host cell specificities. The prototype strain MVM(p) grows in fibroblasts, whereas the immunosuppressive variant MVM(i) grows in T lymphocytes. In this study, we have mapped on the viral genome a cell type-specific determinant: it is located between 69 and 85 map units in a region coding for the viral capsid proteins. The DNA of MVM(p) does not replicate in lymphocytes. MVM(i) cannot help MVM(p) grow in lymphocytes; thus the determinant acts in a cis fashion. We did not detect viral mRNA during a restrictive infection of lymphocytes with MVM(p). However, when the same cells were transfected with cloned DNA, both MVM(p) and MVM(i) DNAs were transcribed with the same efficiency from both promoters and the RNA was processed normally. Therefore, the specificity determinant is not a cell type-specific enhancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号