首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
PartiGene--constructing partial genomes   总被引:4,自引:0,他引:4  
Expressed sequence tags (ESTs) offer a low-cost approach to gene discovery and are being used by an increasing number of laboratories to obtain sequence information for a wide variety of organisms. The challenge lies in processing and organizing this data within a genomic context to facilitate large scale analyses. Here we present PartiGene, an integrated sequence analysis suite that uses freely available public domain software to (1) process raw trace chromatograms into sequence objects suitable for submission to dbEST; (2) place these sequences within a genomic context; (3) perform customizable first-pass annotation of the data; and (4) present the data as HTML tables and an SQL database resource. PartiGene has been used to create a number of non-model organism database resources including NEMBASE (http://www.nematodes.org) and LumbriBase (http://www.earthworms.org/). The packages are readily portable, freely available and can be run on simple Linux-based workstations. AVAILABILITY: PartiGene is available from http://www.nematodes.org/PartiGene and also forms part of the EST analysis software, associated with the Natural Environmental Research Council (UK) Bio-Linux project (http://envgen.nox.ac.uk/biolinux.html).  相似文献   

2.
ToxoDB: accessing the Toxoplasma gondii genome   总被引:1,自引:0,他引:1  
ToxoDB (http://ToxoDB.org) provides a genome resource for the protozoan parasite Toxoplasma gondii. Several sequencing projects devoted to T. gondii have been completed or are in progress: an EST project (http://genome.wustl.edu/est/index.php?toxoplasma=1), a BAC clone end-sequencing project (http://www.sanger.ac.uk/Projects/T_gondii/) and an 8X random shotgun genomic sequencing project (http://www.tigr.org/tdb/e2k1/tga1/). ToxoDB was designed to provide a central point of access for all available T. gondii data, and a variety of data mining tools useful for the analysis of unfinished, un-annotated draft sequence during the early phases of the genome project. In later stages, as more and different types of data become available (microarray, proteomic, SNP, QTL, etc.) the database will provide an integrated data analysis platform facilitating user-defined queries across the different data types.  相似文献   

3.
The Xylella fastidiosa comparative genomic database is a scientific resource with the aim to provide a user-friendly interface for accessing high-quality manually curated genomic annotation and comparative sequence analysis, as well as for identifying and mapping prophage-like elements, a marked feature of Xylella genomes. Here we describe a database and tools for exploring the biology of this important plant pathogen. The hallmarks of this database are the high quality genomic annotation, the functional and comparative genomic analysis and the identification and mapping of prophage-like elements. It is available from web site http://www.xylella.lncc.br.  相似文献   

4.
Rice is not only a major food staple for the world's population but it also is a model species for a major group of flowering plants, the monocotyledonous plants. Draft genomic sequence of two subspecies of rice, Oryza sativa spp. japonica and indica ssp. are publicly available. To provide the community with a resource to data-mine the rice genome, we have constructed an annotation resource for rice (http://www.tigr.org/tdb/e2k1/osa1/). In this resource, we have annotated the rice genome for gene content, identified motifs/domains within the predicted genes, constructed a rice repeat database, identified related sequences in other plant species, and identified syntenic sequences between rice and maize. All of the data is available through web-based interfaces, FTP downloads, and a Distributed Annotation System.  相似文献   

5.
WebACT--an online companion for the Artemis Comparison Tool   总被引:4,自引:0,他引:4  
SUMMARY: WebACT is an online resource which enables the rapid provision of simultaneous BLAST comparisons between up to five genomic sequences in a format amenable for visualization with the well-known Artemis Comparison Tool (ACT). Comparisons can be generated on-the-fly using sequences directly retrieved via EMBL database queries, or by entering or uploading user sequences. Furthermore, pre-computed comparisons are available between all publicly available, completed prokaryotic genomes and plasmids currently contained within the Genome Reviews database (372 sequences, representing 175 different species). The system is designed to minimize the volume of downloaded data and maximize performance. Genome sequences, annotation and pre-computed comparisons are stored in a relational database allowing flexible querying based on user-defined sequence regions, from whole genome to a defined region flanking a specified gene. Comparison and sequence files, whether computed online or retrieved from the database of pre-computed genome comparisons, can be viewed online using ACT and are available for download. AVAILABILITY: Freely accessible at http://www.webact.org. SUPPLEMENTARY INFORMATION: User guide and worked examples are available at http://www.webact.org/WebACT/docs.  相似文献   

6.
7.
SUMMARY: We present GenomeDiagram, a flexible, open-source Python module for the visualization of large-scale genomic, comparative genomic and other data with reference to a single chromosome or other biological sequence. GenomeDiagram may be used to generate publication-quality vector graphics, rastered images and in-line streamed graphics for webpages. The package integrates with datatypes from the BioPython project, and is available for Windows, Linux and Mac OS X systems. AVAILABILITY: GenomeDiagram is freely available as source code (under GNU Public License) at http://bioinf.scri.ac.uk/lp/programs.html, and requires Python 2.3 or higher, and recent versions of the ReportLab and BioPython packages. SUPPLEMENTARY INFORMATION: A user manual, example code and images are available at http://bioinf.scri.ac.uk/lp/programs.html.  相似文献   

8.

Background

Epigenome-wide association scans (EWAS) are an increasingly powerful and widely-used approach to assess the role of epigenetic variation in human complex traits. However, this rapidly emerging field lacks dedicated visualisation tools that can display features specific to epigenetic datasets.

Result

We developed coMET, an R package and online tool for visualisation of EWAS results in a genomic region of interest. coMET generates a regional plot of epigenetic-phenotype association results and the estimated DNA methylation correlation between CpG sites (co-methylation), with further options to visualise genomic annotations based on ENCODE data, gene tracks, reference CpG-sites, and user-defined features. The tool can be used to display phenotype association signals and correlation patterns of microarray or sequencing-based DNA methylation data, such as Illumina Infinium 450k, WGBS, or MeDIP-seq, as well as other types of genomic data, such as gene expression profiles. The software is available as a user-friendly online tool from http://epigen.kcl.ac.uk/cometand as an R Bioconductor package. Source code, examples, and full documentation are also available from GitHub.

Conclusion

Our new software allows visualisation of EWAS results with functional genomic annotations and with estimation of co-methylation patterns. coMET is available to a wide audience as an online tool and R package, and can be a valuable resource to interpret results in the fast growing field of epigenetics. The software is designed for epigenetic data, but can also be applied to genomic and functional genomic datasets in any species.  相似文献   

9.
SUMMARY: GeneCruiser is a web service allowing users to annotate their genomic data by mapping microarray feature identifiers to gene identifiers from databases, such as UniGene, while providing links to web resources, such as the UCSC Genome Browser. It relies on a regularly updated database that retrieves and indexes the mappings between microarray probes and genomic databases. Genes are identified using the Life Sciences Identifier standard. AVAILABILITY: GeneCruiser is freely available in the following forms: Web service and Web application, http://www.genecruiser.org; GenePattern, GeneCruiser access has been integrated into our microarray analysis platform, GenePattern. http://www.genepattern.org.  相似文献   

10.
The accelerating growth of the public microbial genomic data imposes substantial burden on the research community that uses such resources.Building databases for non-redundant reference sequences from massive microbial genomic data based on clustering analysis is essential.However,existing clustering algorithms perform poorly on long genomic sequences.In this article,we present Gclust,a parallel program for clustering complete or draft genomic sequences,where clustering is accelerated with a novel parallelization strategy and a fast sequence comparison algorithm using sparse suffix arrays(SSAs).Moreover,genome identity measures between two sequences are calculated based on their maximal exact matches(MEMs).In this paper,we demonstrate the high speed and clustering quality of Gclust by examining four genome sequence datasets.Gclust is freely available for non-commercial use at https://github.com/niu-lab/gclust.We also introduce a web server for clustering user-uploaded genomes at http://niulab.scgrid.cn/gclust.  相似文献   

11.
We present an interactive web application for visualizing genomic data of prokaryotic chromosomes. The tool (GeneWiz browser) allows users to carry out various analyses such as mapping alignments of homologous genes to other genomes, mapping of short sequencing reads to a reference chromosome, and calculating DNA properties such as curvature or stacking energy along the chromosome. The GeneWiz browser produces an interactive graphic that enables zooming from a global scale down to single nucleotides, without changing the size of the plot. Its ability to disproportionally zoom provides optimal readability and increased functionality compared to other browsers. The tool allows the user to select the display of various genomic features, color setting and data ranges. Custom numerical data can be added to the plot allowing, for example, visualization of gene expression and regulation data. Further, standard atlases are pre-generated for all prokaryotic genomes available in GenBank, providing a fast overview of all available genomes, including recently deposited genome sequences. The tool is available online from http://www.cbs.dtu.dk/services/gwBrowser. Supplemental material including interactive atlases is available online at http://www.cbs.dtu.dk/services/gwBrowser/suppl/.  相似文献   

12.
13.
MOTIVATION: Accurate gene structure annotation is a challenging computational problem in genomics. The best results are achieved with spliced alignment of full-length cDNAs or multiple expressed sequence tags (ESTs) with sufficient overlap to cover the entire gene. For most species, cDNA and EST collections are far from comprehensive. We sought to overcome this bottleneck by exploring the possibility of using combined EST resources from fairly diverged species that still share a common gene space. Previous spliced alignment tools were found inadequate for this task because they rely on very high sequence similarity between the ESTs and the genomic DNA. RESULTS: We have developed a computer program, GeneSeqer, which is capable of aligning thousands of ESTs with a long genomic sequence in a reasonable amount of time. The algorithm is uniquely designed to tolerate a high percentage of mismatches and insertions or deletions in the EST relative to the genomic template. This feature allows use of non-cognate ESTs for gene structure prediction, including ESTs derived from duplicated genes and homologous genes from related species. The increased gene prediction sensitivity results in part from novel splice site prediction models that are also available as a stand-alone splice site prediction tool. We assessed GeneSeqer performance relative to a standard Arabidopsis thaliana gene set and demonstrate its utility for plant genome annotation. In particular, we propose that this method provides a timely tool for the annotation of the rice genome, using abundant ESTs from other cereals and plants. AVAILABILITY: The source code is available for download at http://bioinformatics.iastate.edu/bioinformatics2go/gs/download.html. Web servers for Arabidopsis and other plant species are accessible at http://www.plantgdb.org/cgi-bin/AtGeneSeqer.cgi and http://www.plantgdb.org/cgi-bin/GeneSeqer.cgi, respectively. For non-plant species, use http://bioinformatics.iastate.edu/cgi-bin/gs.cgi. The splice site prediction tool (SplicePredictor) is distributed with the GeneSeqer code. A SplicePredictor web server is available at http://bioinformatics.iastate.edu/cgi-bin/sp.cgi  相似文献   

14.
Simple sequence repeats are predominantly found in most organisms. They play a major role in studies of genetic diversity, and are useful as diagnostic markers for many diseases. The simple sequence repeats database (SSRD) for the human genome was created for easy access to such repeats, for analysis, and to be used to understand their biological significance. The data includes the abundance and distribution of SSRs in the coding and non-coding regions of the genome, as well as their association with the UTRs of genes. The exact locations of repeats with respect to genomic regions (such as UTRs, exons, introns or intergenic regions) and their association with STS markers are also highlighted. The resource will facilitate repeat sequence analysis in the human genome and the understanding of the functional and evolutionary significance of simple sequence repeats. SSRD is available through two websites, http://www.ccmb.res.in/ssr and http://www.ingenovis.com/ssr.  相似文献   

15.
GeneDB (http://www.genedb.org) is a generic database designed to house annotated and curated sequencing data for small genomes, together with a comprehensive array of genomic and proteomic information, collated from publicly available sources. This first release is a prototype designed with input from the research community and is still under continual development. At present, data from Leishmania major and Trypanosoma brucei are integrated into GeneDB. This user-friendly database will add significantly to the valuable resources already available to the research community via the web.  相似文献   

16.
Non-circular plots of whole genomes are natural representations of genomic data aligned along all chromosomes.Currently,there is no specialized graphical user interface(GUI) designed to produce non-circular whole genome diagrams,and the use of existing tools requires considerable coding effort from users.Moreover,such tools also require improvement,including the addition of new functionalities.To address these issues,we developed a new R/Shiny application,named shiny Chromosome,as a GUI for the interactive creation of non-circular whole genome diagrams.shiny Chromosome can be easily installed on personal computers for own use as well as on local or public servers for community use.Publication-quality images can be readily generated and annotated from user input using diverse widgets.shiny Chromosome is deployed at http://150.109.59.144:3838/shiny Chromosome/,http://shiny Chromosome.ncpgr.cn,and https://yimingyu.shinyapps.io/shiny Chromosome for online use.The source code and manual of shiny Chromosome are freely available at https://github.com/venyao/shiny Chromosome.  相似文献   

17.
The Homeodomain Resource is a comprehensive collection of sequence, structure and genomic information on the homeodomain protein family. Available through the Resource are both full-length and domain-only sequence data, as well as X-ray and NMR structural data for proteins and protein-DNA complexes. Also available is information on human genetic diseases and disorders in which proteins from the homeodomain family play an important role; genomic information includes relevant gene symbols, cytogenetic map locations, and specific mutation data. Search engines are provided to allow users to easily query the component databases and assemble specialized data sets. The Homeodomain Resource is available through the World Wide Web at http://genome.nhgri.nih.gov/homeodomain  相似文献   

18.
The Forest ecosystem genomics Research: supporTing Transatlantic Cooperation project (FoResTTraC, http://www.foresttrac.eu/) sponsored a workshop in August 2010 to evaluate the potential for using a landscape genomics approach for studying plant adaptation to the environment and the potential of local populations for coping with changing climate. This paper summarizes our discussions and articulates a vision of how we believe forest trees offer an unparalleled opportunity to address fundamental biological questions, as well as how the application of landscape genomic methods complement to traditional forest genetic approaches that provide critical information needed for natural resource management. In this paper, we will cover four topics. First, we begin by defining landscape genomics and briefly reviewing the unique situation for tree species in the application of this approach toward understanding plant adaptation to the environment. Second, we review traditional approaches in forest genetics for studying local adaptation and identifying loci underlying locally adapted phenotypes. Third, we present existing and emerging methods available for landscape genomic analyses. Finally, we briefly touch on how these approaches can aid in understanding practical topics such as management of tree populations facing climate change.  相似文献   

19.
Mosaic variants resulting from postzygotic mutations are prevalent in the human genome and play important roles in human diseases. However, except for cancer-related variants, there is no collection of postzygotic mosaic variants in noncancer disease-related and healthy individuals. Here, we present MosaicBase, a comprehensive database that includes 6698 mosaic variants related to 266 noncancer diseases and 27,991 mosaic variants identified in 422 healthy individuals. Genomic and phenotypic information of each variant was manually extracted and curated from 383 publications. MosaicBase supports the query of variants with Online Mendelian Inheritance in Man (OMIM) entries, genomic coordinates, gene symbols, or Entrez IDs. We also provide an integrated genome browser for users to easily access mosaic variants and their related annotations for any genomic region. By analyzing the variants collected in MosaicBase, we find that mosaic variants that directly contribute to disease phenotype show features distinct from those of variants in individuals with mild or no phenotypes, in terms of their genomic distribution, mutation signatures, and fraction of mutant cells. MosaicBase will not only assist clinicians in genetic counseling and diagnosis but also provide a useful resource to understand the genomic baseline of postzygotic mutations in the general human population. MosaicBase is publicly available at http://mosaicbase.com/ or http://49.4.21.8:8000.  相似文献   

20.
SummaryDuring the last few decades, the study of microbial ecology has been enabled by molecular and genomic data. DNA sequencing has revealed the surprising extent of microbial diversity and how microbial processes run global ecosystems. However, significant gaps in our understanding of the microbial world remain, and one example is that microbial eukaryotes, or protists, are still largely neglected. To address this gap, we used gene expression data from 17 protist species to create protist.guru: an online database equipped with tools for identifying co-expressed genes, gene families, and co-expression clusters enriched for specific biological functions. Here, we show how our database can be used to reveal genes involved in essential pathways, such as the synthesis of secondary carotenoids in Haematococcus lacustris. We expect protist.guru to serve as a valuable resource for protistologists, as well as a catalyst for discoveries and new insights into the biological processes of microbial eukaryotes.AvailabilityThe database and co-expression networks are freely available from http://protist.guru/. The expression matrices and sample annotations are found in the supplementary data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号