首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Cardiac hypertrophy is characterized by thickening myocardium and decreasing in heart chamber volume in response to mechanical or pathological stress, but the underlying molecular mechanisms remain to be defined. This study investigated altered miRNA expression and autophagic activity in pathogenesis of cardiac hypertrophy. A rat model of myocardial hypertrophy was used and confirmed by heart morphology, induction of cardiomyocyte autophagy, altered expression of autophagy-related ATG9A, LC3 II/I and p62 proteins, and decrease in miR-34a expression. The in vitro data showed that in hypertrophic cardiomyocytes induced by Ang II, miR-34a expression was downregulated, whereas ATG9A expression was up-regulated. Moreover, miR-34a was able to bind to ATG9A 3′-UTR, but not to the mutated 3′-UTR and inhibited ATG9A protein expression and autophagic activity. The latter was evaluated by autophagy-related LC3 II/I and p62 levels, TEM, and flow cytometry in rat cardiomyocytes. In addition, ATG9A expression induced either by treatment of rat cardiomyocytes with Ang II or ATG9A cDNA transfection upregulated autophagic activity and cardiomyocyte hypertrophy in both morphology and expression of hypertrophy-related genes (i.e., ANP and β-MHC), whereas knockdown of ATG9A expression downregulated autophagic activity and cardiomyocyte hypertrophy. However, miR-34a antagonized Ang II-stimulated myocardial hypertrophy, whereas inhibition of miR-34a expression aggravated Ang II-stimulated myocardial hypertrophy (such as cardiomyocyte hypertrophy-related ANP and β-MHC expression and cardiomyocyte morphology). This study indicates that miR-34a plays a role in regulation of Ang II-induced cardiomyocyte hypertrophy by inhibition of ATG9A expression and autophagic activity.  相似文献   

2.
3.
Earlier, our study demonstrated that lysophosphatidic acid (LPA) receptor mediated cardiomyocyte hypertrophy. However, the subtype-specific functions for LPA1 and LPA3 receptors in LPA-induced hypertrophy have not been distinguished. Growing evidence indicates that microRNAs (miRNAs) are involved in the pathogenesis of cardiac hypertrophy by down-regulating target molecules. The present work therefore aimed at elucidating the functions mediated by different subtypes of LPA receptors and investigating the modulatory role of miRNAs during LPA induced hypertrophy. Experiments were done with cultured neonatal rat cardiomyocytes (NRCMs) exposed to LPA and we showed that knockdown of LPA1 by small interfering RNA (siRNA) enhanced LPA-induced cardiomyocyte hypertrophy, whereas LPA3 silencing repressed hypertrophy. miR-23a, a pro-hypertrophic miRNA, was up-regulated by LPA in cardiomyocytes and its down-regulation reduced LPA-induced cardiomyocyte hypertrophy. Importantly, luciferase reporter assay confirmed LPA1 to be a target of miR-23a, indicating that miR-23a is involved in mediating the LPA-induced cardiomyocyte hypertrophy by targeting LPA1. In addition, knockdown of LPA3, but not LPA1, eliminated miR-23a elevation induced by LPA. And PI3K inhibitor, LY294002, effectively prevented LPA-induced miR-23a expression in cardiomyocytes, suggesting that LPA might induce miR-23a elevation by activating LPA3 and PI3K/AKT pathway. These findings identified opposite subtype-specific functions for LPA1 and LPA3 in mediating cardiomyocyte hypertrophy and indicated LPA1 to be a target of miR-23a, which discloses a link between miR-23a and the LPA receptor signaling in cardiomyocyte hypertrophy.  相似文献   

4.
5.
6.
Dysregulated autophagy may lead to the development of disease. Role of autophagy and the diagnostic potential of microRNAs that regulate the autophagy in cardiac hypertrophy have not been evaluated. A rat model of cardiac hypertrophy was established using transverse abdominal aortic constriction (operation group). Cardiomyocyte autophagy was enhanced in rats from the operation group, compared with those in the sham operation group. Moreover, the operation group showed up-regulation of beclin-1 (an autophagy-related gene), and down-regulation of miR-30 in cardiac tissue. The effects of inhibition and over-expression of the beclin-1 gene on the expression of hypertrophy-related genes and on autophagy were assessed. Angiotensin II-induced myocardial hypertrophy was found to be mediated by over-expression of the beclin-1 gene. A dual luciferase reporter assay confirmed that beclin-1 was a target gene of miR-30a. miR-30a induced alterations in beclin-1 gene expression and autophagy in cardiomyocytes. Treatment of cardiomyocytes with miR-30a mimic attenuated the Angiotensin II-induced up-regulation of hypertrophy-related genes and decreased in the cardiomyocyte surface area. Conversely, treatment with miR-30a inhibitor enhanced the up-regulation of hypertrophy-related genes and increased the surface area of cardiomyocytes induced by Angiotensin II. In addition, circulating miR-30 was elevated in patients with left ventricular hypertrophy, and circulating miR-30 was positively associated with left ventricular wall thickness. Collectively, these above-mentioned results suggest that Angiotensin II induces down-regulation of miR-30 in cardiomyocytes, which in turn promotes myocardial hypertrophy through excessive autophagy. Circulating miR-30 may be an important marker for the diagnosis of left ventricular hypertrophy.  相似文献   

7.
Cardiac hypertrophy is a myocardial enlargement due to overload pressure, and the primary cause of heart failure. We investigated the function of miR-375-3p in cardiac hypertrophy and its regulating mechanisms. miR-375-3p was upregulated in hearts of the transverse aortic constriction rat model and angiotensin II (Ang II)-induced primary cardiomyocyte hypertrophy model; the opposite was observed for lactate dehydrogenase B (LDHB) protein expression. miR-375-3p knockdown reduced the surface area of primary cardiomyocytes increased by Ang II treatment and decreased the B-natriuretic peptide (BNP) and β-myosin heavy chain (β-MHC) messenger RNA (mRNA) and protein levels. miR-375-3p was also observed to directly target LDHB. LDHB knockdown increased the surface area of Ang II-treated primary cardiomyocytes and increased the BNP and β-MHC mRNA and protein levels. LDHB knockdown attenuated the effects of miR-375-3p on the surface area of primary cardiomyocytes and BNP and β-MHC levels. Therefore, miR-375-3p inhibitor suppresses Ang II-induced cardiomyocyte hypertrophy by promoting LDHB expression.  相似文献   

8.
Emerging data have shown that microRNAs (miRNAs) have important functions in the processes of cardiac hypertrophy and heart failure that occur during the postnatal period. Cardiac overexpression of miR-195 results in pathological cardiac growth and heart failure in transgenic mice. In the present study, we analyzed the roles of miR-195 in cardiomyocyte hypertrophy and found that miR-195 was greatly upregulated during isoprenaline-induced cardiomyocyte hypertrophy. By using mRNA microarray and molecular approach, we identified a novel putative target of miR-195 called high-mobility group A1 (HMGA1). Total mRNA microarray showed that HMGA1 was downregulated in primary cardiomyocytes that overexpressed miR-195. Using luciferase activity assay, we demonstrated that miR-195 interacts with the 3′-untranslated region of HMGA1 mRNA. Moreover, we showed that miR-195 in primary cardiomyocytes downregulates the expression of HMGA1 at the protein level. Taken together, our data demonstrated that miR-195 can negatively regulate a new target, HMGA1, which is involved in cardiomyocyte hypertrophy.  相似文献   

9.
Cardiac hypertrophy has been known as an independent predictor for cardiovascular morbidity and mortality. Molecular mechanisms underlying the development of heart failure remain elusive. Recently, microRNAs (miRs) have been established as important regulators in cardiac hypertrophy. Here, we reported miR-221 was up-regulated in both transverse aortic constricted mice and patients with hypertrophic cardiomyopathy (HCM). Forced expression of miR-221 by transfection of miR-221 mimics increased myocyte cell size and induced the re-expression of fetal genes, which were inhibited by the knockdown of endogenous miR-221 in cardiomyocytes. The TargetScan algorithm-based prediction identified that p27, a cardiac hypertrophic suppressor, is the putative target of miR-221, which was confirmed by luciferase assay and Western blotting. In conclusion, our results demonstrated that miR-221 regulated cardiomyocyte hypertrophy probably through down-regulation of p27, suggesting that miR-221 may be a new intervention target for cardiac hypertrophy.  相似文献   

10.
Cardiomyocyte hypertrophy is formed in response to pressure or volume overload, injury, or neurohormonal activation. The most important vascular hormone that contributes to the development of hypertrophy is angiotensin II (Ang II). Accumulating studies have suggested that reactive oxygen species (ROS) may play an important role in cardiac hypertrophy. Propofol is a general anesthetic that possesses antioxidant action. We therefore examined whether propofol inhibited Ang II-induced cardiomyocyte hypertrophy. Our results showed that both ROS formation and hypertrophic responses induced by Ang II in cardiomyocytes were partially blocked by propofol. Further studies showed that propofol inhibited the phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2) and mitogen-activated protein kinase/ERK kinase 1/2 (MEK1/2) induced by Ang II via a decrease in ROS production. In addition, propofol also markedly attenuated Ang II-stimulated nuclear factor-kappaB (NF-kappaB) activation via a decrease in ROS production. In conclusion, propofol prevents cardiomyocyte hypertrophy by interfering with the generation of ROS and involves the inhibition of the MEK/ERK signaling transduction pathway and NF-kappaB activation.  相似文献   

11.
12.
13.
14.
The gene ankyrin repeat domain 1 (Ankrd1) is an enigmatic gene and may exert pleiotropic function dependent on its expression level, subcellular localization and even types of pathological stress, but it remains unclear how these factors influence the fate of cardiomyocytes. Here we attempted to investigate the role of CARP on cardiomyocyte hypertrophy. In neonatal rat ventricular cardiomyocytes (NRVCs), angiotensin II (Ang II) increased the expression of both calpain 1 and CARP, and also induced cytosolic translocation of CARP, which was abrogated by a calpain inhibitor. In the presence of Ang-II in NRVCs, infection with a recombinant adenovirus containing rat Ankrd1 cDNA (Ad-Ankrd1) enhanced myocyte hypertrophy, the upregulation of atrial natriuretic peptide and β-myosin heavy chain genes and calcineurin proteins as well as nuclear translocation of nuclear factor of activated T cells. Cyclosporin A attenuated Ad-Ankrd1-enhanced cardiomyocyte hypertrophy. Intra-myocardial injection of Ad-Ankrd1 in mice with transverse aortic constriction (TAC) markedly increased the cytosolic CARP level, the heart weight/body weight ratio, while short hairpin RNA targeting Ankrd1 inhibited TAC-induced hypertrophy. The expression of calcineurin was also significantly increased in Ad-Ankrd1-infected TAC mice. Olmesartan (an Ang II receptor antagonist) prevented the upregulation of CARP in both Ang II-stimulated NRVCs and hearts with pressure overload. These findings indicate that overexpression of Ankrd1 exacerbates pathological cardiac remodeling through the enhancement of cytosolic translocation of CARP and upregulation of calcineurin.  相似文献   

15.
16.
MicroRNA (miRNA) is small non-coding RNA with approximate 22 nt in length. Recent studies indicate that miRNAs play significant roles in pathogen-host interactions. Brucella organisms are Gram-negative facultative intracellular bacteria that cause Brucellosis. Brucella strains infect macrophages and establish chronic infection by altering host life activities including apoptosis and autophagy. Here, we report a comprehensive analysis of miRNA expression profiles in mock- and Brucella-infected RAW264.7 cells using high-throughput sequencing approach. In total, 344 unique miRNAs were co-expressed in the two libraries, in which 57 miRNAs were differentially expressed. Eight differentially expressed miRNAs with high abundance were subjected to further analysis. The GO enrichment analysis suggests that the putative target genes of these differentially expressed miRNAs are involved in apoptosis, autophagy and immune response. In particular, a total of 25 target genes are involved in regulating apoptosis and autophagy, indicating that these miRNAs may play important regulatory roles in the Brucella-host interactions. Furthermore, the interactions of miR-1981 and its target genes, Bcl-2 and Bid, were validated by luciferase assay. The results show that miR-1981 mimic up-regulated the luciferase activity of psiCHECK-2 Bcl-2 3' UTR, but the luciferase activity of psiCHECK-2 Bid 3' UTR was not changed significantly. Taken together, these data provide valuable framework on Brucella induced miRNA expression in RAW264.7 cells, and suggest that Brucella may establish chronic infection by regulating miRNA expression profile.  相似文献   

17.
Pathological cardiomyocyte hypertrophy is associated with significantly increased risk of heart failure, one of the leading medical causes of mortality worldwide. MicroRNAs are known to be involved in pathological cardiac remodeling. However, whether miR-99a participates in the signaling cascade leading to cardiac hypertrophy is unknown. To evaluate the role of miR-99a in cardiac hypertrophy, we assessed the expression of miR-99a in hypertrophic cardiomyocytes induced by isoprenaline (ISO)/angiotensin-II (Ang II) and in mice model of cardiac hypertrophy induced by transverse aortic constriction (TAC). Expression of miR-99a was evaluated in these hypertrophic cells and hearts. We also found that miR-99a expression was highly correlated with cardiac function of mice with heart failure (8 weeks after TAC surgery). Overexpression of miR-99a attenuated cardiac hypertrophy in TAC mice and cellular hypertrophy in stimuli treated cardiomyocytes through down-regulation of expression of mammalian target of rapamycin (mTOR). These results indicate that miR-99a negatively regulates physiological hypertrophy through mTOR signaling pathway, which may provide a new therapeutic approach for pressure-overload heart failure.  相似文献   

18.
19.
Our studies and others recently demonstrate that polydatin, a resveratrol glucoside, has antioxidative and cardioprotective effects. This study aims to investigate the direct effects of polydatin on Ang II-induced cardiac hypertrophy to explore the potential role of polydatin in cardioprotection. Our results showed that in primary cultured cardiomyocytes, polydatin blocked Ang II-induced cardiac hypertrophy in a dose-dependent manner, which were associated with reduction in the cell surface area and [3H]leucine incorporation, as well as attenuation of the mRNA expressions of atrial natriuretic factor and β-myosin heavy chain. Furthermore, polydatin prevented rat cardiac hypertrophy induced by Ang II infusion, as assessed by heart weight-to-body weight ratio, cross-sectional area of cardiomyocyte, and gene expression of hypertrophic markers. Further investigation demonstrated that polydatin attenuated the Ang II-induced increase in the reactive oxygen species levels and NADPH oxidase activity in vivo and in vitro. Polydatin also blocked the Ang II-stimulated increases of Nox4 and Nox2 expression in cultured cardiomyocytes and the hearts of Ang II-infused rats. Our results indicate that polydatin has the potential to protect against Ang II-mediated cardiac hypertrophy through suppression of NADPH oxidase activity and superoxide production. These observations may shed new light on the understanding of the cardioprotective effect of polydatin.  相似文献   

20.
MKP—1在血管紧张素Ⅱ导致心肌肥大反应中的调控作用   总被引:2,自引:0,他引:2  
Liu PQ  Lu W  Wang TH  Pan JY 《生理学报》2000,52(5):365-370
本研究主要从丝裂原活化蛋白激酶磷酸酶-1(MKP-1)角度,研究丝裂原活化蛋白激酶(MAPK)信号途径在血管紧张素Ⅱ介导的新生大鼠心肌细胞肥大反应中的作用及调控机制。实验以心肌细胞蛋白合成速率、蛋白含量及细胞表面积作为心肌肥大反应的指标,以凝胶内MBP原位磷酸化测定MAPK活性,以免疫印迹法(Western boltting)分别测定MKP-1及磷酸化p44MAPK、p42MAPK蛋白表达。结果发  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号