首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Exposure to hypoxia causes structural changes in the endothelial cell layer that alter its permeability and its interaction with leukocytes and platelets. One of the well characterized cytoskeletal changes in response to stress involves the reorganization of the actin cytoskeleton and the formation of stress fibers. This report describes cytoskeletal changes in pulmonary microvascular endothelial cells in response to hypoxia and potential mechanisms involved in this process. The hypoxia-induced actin redistribution appears to be mediated by components downstream of MAPK p38, which is activated in pulmonary endothelial cells in response to hypoxia. Our results indicate that kinase MK2, which is a substrate of p38, becomes activated by hypoxia, leading to the phosphorylation of one of its substrates, HSP27. Because HSP27 phosphorylation is known to alter actin distribution in response to other stimuli, we postulate that it also causes the actin redistribution observed in hypoxia. This notion is supported by the observations that similar actin redistribution occurs in cells overexpressing constitutively active MK2 or phosphomimicking HSP27 mutant. Overexpressing dominant negative MK2 blocks the effects of hypoxia on the actin cytoskeleton. Taken together these results indicate that hypoxia stimulates the p38-MK2-HSP27 pathway leading to significant alteration in the actin cytoskeleton.  相似文献   

2.

Background

Classical mammalian mitogen-activated protein kinase (MAPK) pathways consist of a cascade of three successive phosphorylation events resulting in the phosphorylation of a variety of substrates, including another class of protein kinases referred to as MAPK-activating protein kinases (MAPKAPKs). The MAPKAPKs MK2, MK3 and MK5 are closely related, but MK2 and MK3 are the major downstream targets of the p38MAPK pathway, while MK5 can be activated by the atypical MAPK ERK3 and ERK4, protein kinase A (PKA), and maybe p38MAPK. MK2, MK3, and MK5 can phosphorylate the common substrate small heat shock protein 27 (HSP27), a modification that regulates the role of HSP27 in actin polymerization. Both stress and cAMP elevating stimuli can cause F-actin remodeling, but whereas the in vivo role of p38MAPK-MK2 in stress-triggered HSP27 phosphorylation and actin reorganization is well established, it is not known whether MK2 is involved in cAMP/PKA-induced F-actin rearrangements. On the other hand, MK5 can phosphorylate HSP27 and cause cytoskeletal changes in a cAMP/PKA-dependent manner, but its role as HSP27 kinase in stress-induced F-actin remodeling is disputed. Therefore, we wanted to investigate the implication of MK2 and MK5 in stress- and PKA-induced HSP27 phosphorylation.

Results

Using HEK293 cells, we show that MK2, MK3, and MK5 are expressed in these cells, but MK3 protein levels are very moderate. Stress- and cAMP-elevating stimuli, as well as ectopic expression of active MKK6 plus p38MAPK or the catalytic subunit of PKA trigger HSP27 phosphorylation, and specific inhibitors of p38MAPK and PKA prevent this phosphorylation. Depletion of MK2, but not MK3 and MK5 diminished stress-induced HSP27 phosphorylation, while only knockdown of MK5 reduced PKA-induced phosphoHSP27 levels. Stimulation of the p38MAPK, but not the PKA pathway, caused activation of MK2.

Conclusion

Our results suggest that in HEK293 cells MK2 is the HSP27 kinase engaged in stress-induced, but not cAMP-induced phosphorylation of HSP27, while MK5 seems to be the sole MK to mediate HSP27 phosphorylation in response to stimulation of the PKA pathway. Thus, despite the same substrate specificity towards HSP27, MK2 and MK5 are implicated in different signaling pathways causing actin reorganization.  相似文献   

3.
The signaling axis of p38 mitogen-activated protein kinase (p38 MAPK) and MAPK-activated protein kinase 2 (MK2) is the dominant pathway that leads to heat shock protein 27 (HSP27) phosphorylation. After activation of MK2 by p38 MAPK, HSP27 is phosphorylated and depolymerized by MK2, thereby increasing the cell migration and directly interfering with the apoptotic signaling cascades. Sec6 is one of the components of the exocyst complex that is an evolutionarily conserved 8-protein complex. Even though several studies have demonstrated that Sec6 is involved in various cellular physiological functions, the relationship between Sec6 and HSP27 or p38 MAPK during cell migration and apoptosis remains unclear. In the present study, we observed that Sec6 increased the phosphorylation of p38 MAPK through the activation of MAPK kinase 3/6 (MKK3/6). Moreover, Sec6 knockdown suppressed the phosphorylation of HSP27 at Ser78 and Ser82 sites via suppression of activated MK2. Furthermore, the reduction of phosphorylated HSP27 or p38 MAPK by Sec6 knockdown suppressed cell migration and promoted apoptosis after treatment with tumor necrosis factor-α and cycloheximide. The present study suggested that Sec6 is involved in the enhancement of cell migration and suppression of apoptosis through the activation of HSP27 or p38 MAPK phosphorylation.  相似文献   

4.
Mechanical ventilation, a fundamental therapy for acute lung injury, worsens pulmonary vascular permeability by exacting mechanical stress on various components of the respiratory system causing ventilator associated lung injury. We postulated that MK2 activation via p38 MAP kinase induced HSP25 phosphorylation, in response to mechanical stress, leading to actin stress fiber formation and endothelial barrier dysfunction. We sought to determine the role of p38 MAP kinase and its downstream effector MK2 on HSP25 phosphorylation and actin stress fiber formation in ventilator associated lung injury. Wild type and MK2−/− mice received mechanical ventilation with high (20 ml/kg) or low (7 ml/kg) tidal volumes up to 4 hrs, after which lungs were harvested for immunohistochemistry, immunoblotting and lung permeability assays. High tidal volume mechanical ventilation resulted in significant phosphorylation of p38 MAP kinase, MK2, HSP25, actin polymerization, and an increase in pulmonary vascular permeability in wild type mice as compared to spontaneous breathing or low tidal volume mechanical ventilation. However, pretreatment of wild type mice with specific p38 MAP kinase or MK2 inhibitors abrogated HSP25 phosphorylation and actin polymerization, and protected against increased lung permeability. Finally, MK2−/− mice were unable to phosphorylate HSP25 or increase actin polymerization from baseline, and were resistant to increases in lung permeability in response to HVT MV. Our results suggest that p38 MAP kinase and its downstream effector MK2 mediate lung permeability in ventilator associated lung injury by regulating HSP25 phosphorylation and actin cytoskeletal remodeling.  相似文献   

5.
6.
Akt activation requires phosphorylation of Thr(308) and Ser(473) by 3-phosphoinositide-dependent kinase-1 and 2 (PDK1 and PDK2), respectively. While PDK1 has been cloned and sequenced, PDK2 has yet to be identified. The present study shows that phosphatidylinositol 3-kinase-dependent p38 kinase activation regulates Akt phosphorylation and activity in human neutrophils. Inhibition of p38 kinase activity with SB203580 inhibited Akt Ser(473) phosphorylation following neutrophil stimulation with formyl-methionyl-leucyl-phenylalanine, FcgammaR cross-linking, or phosphatidylinositol 3,4,5-trisphosphate. Concentration inhibition studies showed that Ser(473) phosphorylation was inhibited by 0.3 microm SB203580, while inhibition of Thr(308) phosphorylation required 10 microm SB203580. Transient transfection of HEK293 cells with adenoviruses containing constitutively active MKK3 or MKK6 resulted in activation of both p38 kinase and Akt. Immunoprecipitation and glutathione S-transferase (GST) pull-down studies showed that Akt was associated with p38 kinase, MK2, and Hsp27 in neutrophils, and Hsp27 dissociated from the complex upon activation. Active recombinant MK2 phosphorylated recombinant Akt and Akt in anti-Akt, anti-MK2, anti-p38, and anti-Hsp27 immunoprecipitates, and this was inhibited by an MK2 inhibitory peptide. We conclude that Akt exists in a signaling complex containing p38 kinase, MK2, and Hsp27 and that p38-dependent MK2 activation functions as PDK2 in human neutrophils.  相似文献   

7.
8.
The p38 signaling pathway is activated in response to cell stress and induces production of proinflammatory cytokines. P38alpha is phosphorylated and activated in response to cell stress by MKK3 and MKK6 and in turn phosphorylates a number of substrates, including MAPKAP kinase 2 (MK2). We have determined the crystal structure of the unphosphorylated p38alpha-MK2 heterodimer. The C-terminal regulatory domain of MK2 binds in the docking groove of p38alpha, and the ATP-binding sites of both kinases are at the heterodimer interface. The conformation suggests an extra mechanism in addition to the regulation of the p38alpha and MK2 phosphorylation states that prevents phosphorylation of substrates in the absence of cell stress. Addition of constitutively active MKK6-DD results in rapid phosphorylation of the p38alpha-MK2 heterodimer.  相似文献   

9.
Rsk kinases play important roles in several cellular processes such as proliferation, metabolism, and migration. Until recently, Rsk activation was thought to be exclusively initiated by Erk1/2, but in dendritic cells (DC) Rsk is also activated by p38 mitogen-activated protein (MAP) kinase via its downstream substrates, MK2/3. How and why this noncanonical configuration of the MAP kinase pathway is adopted by these key immune cells are not known. We demonstrate that the Erk1/2-activated C-terminal kinase domain of Rsk is dispensable for p38-MK2/3 activation and show that compared with fibroblasts, a greater fraction of p38 and MK2/3 is located in the cytosol of DC prior to stimulation, suggesting a partial explanation for the operation of the noncanonical pathway of Rsk activation in these cells. p38/MK2/3-activated Rsk phosphorylated downstream targets and is physiologically important because in plasmacytoid DC (pDC) stimulated with Toll-like receptor 7 (TLR7) agonists, Erk1/2 activation is very weak relative to p38. As a result, Rsk activation is entirely p38 dependent. We show that this unusual configuration of MAP kinase signaling contributes substantially to production of type I interferons, a hallmark of pDC activation.  相似文献   

10.
The biochemical mechanism by which the human tumorous imaginal disc1(S) (hTid-1(S)) interferes with actin cytoskeleton organization in keratinocytes of human skin epidermis was investigated. We found that hTid-1, specifically hTid-1(S), interacts with MK5, a p38-regulated/activated protein kinase, and inhibits the protein kinase activity of MK5 that phosphorylates heat shock protein HSP27 in cultured HeLa cells. Thus, hTid-1(S) expression inhibits the phosphorylation of HSP27 known to play important roles in F-actin polymerization and actin cytoskeleton organization. The interplay between MK5/HSP27 signaling and hTid-1(S) expression was supported by the inhibition of HSP27 phosphorylation and MK5 activity in HeLa cells in response to hypoxia during which hTid-1(S) expression was down-regulated. We also found that overexpression of hTid-1(S) results in the inhibition of HSP27 phosphorylation, F-actin polymerization, and actin cytoskeleton organization in transduced HaCaT keratinocytes. This study further proposes that the loss of hTid-1(S) expression in the basal layer of skin epidermis correlates with the enhanced HSP27 phosphorylation, keratinocyte hyperproliferation, and excess actin cytoskeleton organization in lesional psoriatic skin.  相似文献   

11.
12.
Skeletal disorders and neural tube closure defects represent clinically significant human malformations. The signaling networks regulating normal skeletal patterning and neurulation are largely unknown. Targeted mutation of the active site lysine of MEK kinase 4 (MEKK4) produces a kinase-inactive MEKK4 protein (MEKK4(K1361R)). Embryos homozygous for this mutation die at birth as a result of skeletal malformations and neural tube defects. Hindbrains of exencephalic MEKK4(K1361R) embryos show a striking increase in neuroepithelial cell apoptosis and a dramatic loss of phosphorylation of MKK3 and -6, mitogen-activated protein kinase kinases (MKKs) regulated by MEKK4 in the p38 pathway. Phosphorylation of MAPK-activated protein kinase 2, a p38 substrate, is also inhibited, demonstrating a loss of p38 activity in MEKK4(K1361R) embryos. In contrast, the MEK1/2-extracellular signal-regulated kinase 1 (ERK1)/ERK2 and MKK4-Jun N-terminal protein kinase pathways were unaffected. The p38 pathway has been shown to regulate the phosphorylation and expression of the small heat shock protein HSP27. Compared to the wild type, MEKK4(K1361R) fibroblasts showed significantly reduced phosphorylation of p38 and HSP27, with a corresponding heat shock-induced instability of the actin cytoskeleton. Together, these data demonstrate MEKK4 regulation of p38 and that substrates downstream of p38 control cellular homeostasis. The findings are the first demonstration that MEKK4-regulated p38 activity is critical for neurulation.  相似文献   

13.
Protease-activated receptor 1 (PAR1) is a G protein–coupled receptor (GPCR) for thrombin and promotes inflammatory responses through multiple pathways including p38 mitogen-activated protein kinase signaling. The mechanisms that govern PAR1-induced p38 activation remain unclear. Here, we define an atypical ubiquitin-dependent pathway for p38 activation used by PAR1 that regulates endothelial barrier permeability. Activated PAR1 K63-linked ubiquitination is mediated by the NEDD4-2 E3 ubiquitin ligase and initiated recruitment of transforming growth factor-β–activated protein kinase-1 binding protein-2 (TAB2). The ubiquitin-binding domain of TAB2 was essential for recruitment to PAR1-containing endosomes. TAB2 associated with TAB1, which induced p38 activation independent of MKK3 and MKK6. The P2Y1 purinergic GPCR also stimulated p38 activation via NEDD4-2–mediated ubiquitination and TAB1–TAB2. TAB1–TAB2-dependent p38 activation was critical for PAR1-promoted endothelial barrier permeability in vitro, and p38 signaling was required for PAR1-induced vascular leakage in vivo. These studies define an atypical ubiquitin-mediated signaling pathway used by a subset of GPCRs that regulates endosomal p38 signaling and endothelial barrier disruption.  相似文献   

14.
AUF1 is an AU-rich element (ARE)-binding protein that recruits translation initiation factors, molecular chaperones, and mRNA degradation enzymes to the ARE for mRNA destruction. We recently found chaperone Hsp27 to be an AUF1-associated ARE-binding protein required for tumor necrosis factor alpha (TNF-α) mRNA degradation in monocytes. Hsp27 is a multifunctional protein that participates in ubiquitination of proteins for their degradation by proteasomes. A variety of extracellular stimuli promote Hsp27 phosphorylation on three serine residues--Ser(15), Ser(78), and Ser(82)-by a number of kinases, including the mitogen-activated protein (MAP) pathway kinases p38 and MK2. Activating either kinase stabilizes ARE mRNAs. Likewise, ectopic expression of phosphomimetic mutant forms of Hsp27 stabilizes reporter ARE mRNAs. Here, we continued to examine the contributions of Hsp27 to mRNA degradation. As AUF1 is ubiquitinated and degraded by proteasomes, we addressed the hypothesis that Hsp27 phosphorylation controls AUF1 levels to modulate ARE mRNA degradation. Indeed, selected phosphomimetic mutants of Hsp27 promote proteolysis of AUF1 in a proteasome-dependent fashion and render ARE mRNAs more stable. Our results suggest that the p38 MAP kinase (MAPK)-MK2-Hsp27 signaling axis may target AUF1 destruction by proteasomes, thereby promoting ARE mRNA stabilization.  相似文献   

15.
16.
17.
The anthrax toxin of the bacterium Bacillus anthracis consists of three distinct proteins, one of which is the anthrax lethal factor (LF). LF is a gluzincin Zn‐dependent, highly specific metalloprotease with a molecular mass of ~90 kDa that cleaves most isoforms of the family of mitogen‐activated protein kinase kinases (MEKs/MKKs) close to their amino termini, resulting in the inhibition of one or more signaling pathways. Previous studies on the crystal structures of uncomplexed LF and LF complexed with the substrate MEK2 or a MKK‐based synthetic peptide provided structure‐activity correlations and the basis for the rational design of efficient inhibitors. However, in the crystallographic structures, the substrate peptide was not properly oriented in the active site because of the absence of the catalytic zinc atom. In the current study, docking and molecular dynamics calculations were employed to examine the LF‐MEK/MKK interaction along the catalytic channel up to a distance of 20 Å from the zinc atom. This residue‐specific view of the enzyme‐substrate interaction provides valuable information about: (i) the substrate selectivity of LF and its inactivation of MEKs/MKKs (an issue highly important not only to anthrax infection but also to the pathogenesis of cancer), and (ii) the discovery of new, previously unexploited, hot‐spots of the LF catalytic channel that are important in the enzyme/substrate binding and interaction.  相似文献   

18.
19.
Lethal factor, the enzymatic moiety of anthrax lethal toxin (LeTx) is a protease that inactivates mitogen activated protein kinase kinases (MEK or MKK). In vitro and in vivo studies demonstrate LeTx targets endothelial cells. However, the effects of LeTx on endothelial cells are incompletely characterized. To gain insight into this process we used a developmental model of vascularization in the murine retina. We hypothesized that application of LeTx would disrupt normal retinal vascularization, specifically during the angiogenic phase of vascular development. By immunoblotting and immunofluorescence microscopy we observed that MAPK activation occurs in a spatially and temporally regulated manner during retinal vascular development. Intravitreal administration of LeTx caused an early delay (4 d post injection) in retinal vascular development that was marked by reduced penetration of vessels into distal regions of the retina as well as failure of sprouting vessels to form the deep and intermediate plexuses within the inner retina. In contrast, later stages (8 d post injection) were characterized by the formation of abnormal vascular tufts that co-stained with phosphorylated MAPK in the outer retinal region. We also observed a significant increase in the levels of secreted VEGF in the vitreous 4 d and 8 d after LeTx injection. In contrast, the levels of over 50 cytokines other cytokines, including bFGF, EGF, MCP-1, and MMP-9, remained unchanged. Finally, co-injection of VEGF-neutralizing antibodies significantly decreased LeTx-induced neovascular growth. Our studies not only reveal that MAPK signaling plays a key role in retinal angiogenesis but also that perturbation of MAPK signaling by LeTx can profoundly alter vascular morphogenesis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号