首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Turnover in phosphate and potassium limited chemostat cultures of Bacillus subtilis W23 results in the release of over 80% of the wall material present at the time of chasing equilibrium-labelled cultures. The rate at which turnover proceeds is faster in potassium limited cultures than in phosphate limited cultures but in both cases a fraction of the wall material appears to be conserved, or to undergo turnover at a lower rate. Previously we have shown that the polar wall is less active metabolically than the cylindrical wall and it is possible that the apparently conserved wall is that present in the pole.  相似文献   

2.
Cell wall turnover was studied in cultures of Bacillus subtilis in which growth was inhibited by nutrient starvation or by the addition of antibiotics. Concomitantly, the synthesis of wall, as measured by the incorporation of radioactively labeled N-acetylglucosamine, was followed in some of these cultures. In potassium- or phosphate-starved cultures, growth stopped, but wall turnover continued at a rate slightly lower than that in the control cultures. Lysis of cells did not occur. In glucose-starved cultures, continued wall turnover caused lysis of cells, since wall synthesis apparently was inhibited. The same phenomenon was observed after growth arrest by the addition of wall synthesis inhibitors such as fosfomycin, cycloserine, penicillin G, and vancomycin. Growth arrest by the addition of chloramphenicol allowed the continuation of wall synthesis; therefore, the observed turnover generally did not cause cell lysis.  相似文献   

3.
Cell wall polymers were measured both in the cells and in the cell-free medium of samples from steady-state chemostat cultures of Bacillus subtilis, growing at various rates under magnesium or phosphate limitation. The presence of both peptidoglycan and anionic wall polymers in the culture supernatant showed the occurrence of wall turnover in these cultures. Variable proportions of the total peptidoglycan present in the culture samples were found outside the cells in duplicate cultures, indicating that the rate of peptidoglycan turnover is variable in B. subtilis. Besides peptidoglycan, anionic wall polymers were detected in the culture supernatant: teichoic acid in magnesium-limited cultures and teichuronic acid in phosphate-limited cultures. In several samples, the ratio between the peptidoglycan and the anionic polymer concentrations was significantly lower in the extracellular fluid than in the walls. This divergency was attributed to the occurrence of direct secretion of anionic polymers after their synthesis.  相似文献   

4.
5.
It is well recognized that metabolic fluxes are the key variables that must be determined in order to understand metabolic regulation and patterns. However, owing to difficulties in measuring the flux values, evaluation of metabolic fluxes has not been an integral part of the most metabolic studies. Flux values for metabolites of glycolysis, tricarboxylic acid (TCA) cycle, and hexose monophosphate (HMP) pathway were obtained for batch and glucose-limited continuous cultures of Bacillus subtilis by combining the information from the stoichiometry of key biosynthetic reactions with the experimental data on concentrations of glucose and metabolic by-products, CO(2) evolution, and oxygen uptake rates. The results indicate that (1) the metabolic fluxes and energetic yield as well as the extent of flux mismatch in metabolic activity of glycolysis and the TCA cycle reactions can be accurately quantified; (2) the flux through the TCA cycle in continuous culture is much in excess of cell energetic and biosynthetic demands for precursors; (3) for the range of growth rates examined the TCA cycle flux increases almost in proportion to growth rate and is significantly repressed only at very high growth rates of batch cultures; and (4) for continuous cultures the isocitrate dehydrogenase catalyzed reaction of the TCA cycle is the major source of the reduced form of nicotinamide-adenine dinucleotide phosphate (NADPH) used in biosynthesis. (c) 1993 John Wiley & Sons, Inc.  相似文献   

6.
The rate of turnover of peptidoglycan in exponentially growing cultures of Bacillus subtilis was observed to be sensitive to extracellular protease. In protease-deficient mutants the rates of cell wall turnover were greater than that of wild-type strain 168, whereas hyperprotease-producing strains exhibited decreased rates of peptidoglycan turnover. The rate of peptidogylcan turnover in a protease-deficient strain was decreased when the mutant was grown in the presence of a hyperprotease-producing strain. The addition of phenylmethylsulfonyl fluoride, a serine protease inhibitor, to cultures of hyperprotease-producing strains increased their rates of cell wall turnover. Isolated cell walls of all protease mutants contained autolysin levels equal to or greater than that of wild-type strain 168. The presence of filaments, or cells with incomplete septa, was observed in hyperprotease-producing strains or when a protease-deficient strain was grown in the presence of subtilisin. The results suggest that the turnover of cell walls in B. subtilis may be regulated by extracellular proteases.  相似文献   

7.
The specific rates of limiting substrate utilization were investigated in adenine- or glucose-limited chemostat cultures of Bacillus subtilis KYA741, an adenine-requiring strain, at 37 degrees C. With the glucose-limited cultures, the specific rate of glucose consumption versus dilution rate gave a linear relationship from which the true growth yield and maintenance coefficient were determined to be 0.09 mg of bacteria per mg of glucose and 0.2 mg of glucose per mg of bacteria per h, respectively. With the adenine-limited cultures, adenine as the limiting substrate was not completely consumed at lower dilution rates (e.g., D less than 0.1), unlike in the glucose-limited cultures. When a linear relationship of specific rate of adenine consumption versus dilution rate was extrapolated to zero dilution rate, a negative value for the specific rate of adenine consumption, -0.01 mg of adenine per mg of bacteria per h, was obtained, giving a true growth yield for adenine of 5.2 mg of bacteria per mg of adenine. On the other hand, the maintenance coefficient of oxygen uptake gave a positive value of 8.1 x 10(-3) mmol/mg of bacteria per h. Based on previous results showing that adenine is resupplied by lysing cells, we developed kinetic models of adenine utilization and cell growth that gave a good estimation of the peculiar behavior of cell growth and adenine utilization in adenine-limited chemostat cultures.  相似文献   

8.
Bacillus subtilis var. niger was grown in a chemostat with various growth limitations and at various growth rates. The wall content and composition of the organism grown under these conditions were determined. The wall content, expressed as a percentage of the dry weight of organisms, varied with the growth rate. Analysis of wall samples showed that their composition also varied, particularly with respect to the phosphorus content. Wall samples extracted with trichloroacetic acid under carefully controlled conditions were found to contain various amounts of phosphorus, this being present as a glycerol phosphate polymer containing hexose (glucose and in some cases galactose), i.e. a teichoic aid. Teichoic acids were present in the walls of organisms grown under all conditions except when phosphorus limited growth. Then a different anionic polymer, composed of glucuronic acid and N-acetylgalactosamine (a teichuronic acid), was present. Under the specific growth conditions at pH7.0 and 35 degrees C in a chemostat, teichoic acid and teichuronic acid appeared to be mutually exclusive.  相似文献   

9.
The kinetics of cell wall turnover in Bacillus subtilis have been examined in detail. After pulse labeling of the peptidoglycan with N-acetylglucosamine, the newly formed peptidoglycan is stable for approximately three-quarters of a generation and is then degraded by a process that follows first-order kinetics. Deprivation of an auxotroph of amino acids required for protein synthesis results in a cessation of turnover. If a period of amino acid starvation occurs during the lag phase of turnover, then the initiation of turnover is delayed for a period of time equivalent to the starvation period. During amino acid starvation, new cell wall peptidoglycan is synthesized and added to preexisting cell wall. This peptidoglycan after resumption of growth is also subject to degradation (turnover). It is suggested that cell wall turnover is dependent on cell growth and elongation. Several possible control mechanisms for cell wall autolytic enzymes are discussed in light of these observations.  相似文献   

10.
Heterotrophic growth of the facultatively chemolithoautotrophic acidophile Thiobacillus acidophilus was studied in batch cultures and in carbon-limited chemostat cultures. The spectrum of carbon sources supporting heterotrophic growth in batch cultures was limited to a number of sugars and some other simple organic compounds. In addition to ammonium salts and urea, a number of amino acids could be used as nitrogen sources. Pyruvate served as a sole source of carbon and energy in chemostat cultures, but not in batch cultures. Apparently the low residual concentrations in the steady-state chemostat cultures prevented substrate inhibition that already was observed at 150 M pyruvate. Molar growth yields of T. acidophilus in heterotrophic chemostat cultures were low. The Y max and maintenance coefficient of T. acidophilus grown under glucose limitation were 69 g biomass · mol–1 and 0.10 mmol · g–1 · h–1, respectively. Neither the Y max nor the maintenance coefficient of glucose-limited chemostat cultures changed when the culture pH was increased from 3.0 to 4.3. This indicates that in T. acidophilus the maintenance of a large pH gradient is not a major energy-requiring process. Significant activities of ribulose-1,5-bisphosphate carboxylase were retained during heterotrophic growth on a variety of carbon sources, even under conditions of substrate excess. Also thiosulphate- and tetrathionate-oxidising activities were expressed under heterotrophic growth conditions.  相似文献   

11.
12.
1. Quantitative determination of the anionic polymers present in the walls of Bacillus subtilis var. niger organisms undergoing transition, in a chemostat culture, from either Mg(2+)-limitation to PO(4) (3-)-limitation or K(+)-limitation to PO(4) (3-)-limitation showed that teichuronic acid synthesis started immediately the culture became PO(4) (3-)-limited and proceeded at a rate substantially faster than the rate of biomass synthesis. 2. Simultaneously, the cell-wall teichoic acid content diminished at a rate greater than that due to dilution by newly synthesized wall material, and fragments of teichoic acid and mucopeptide accumulated in the culture extracellular fluid. 3. Equally rapid reverse changes occurred when a PO(4) (3-)-limited B. subtilis var. niger culture was returned to being Mg(2+)-limited. 4. It is concluded that in this organism both teichoic acid and teichuronic acid syntheses are expressions of a single genotype, and a mechanism for the control of synthesis of both polymers is suggested. 5. These results are discussed with reference to the constantly changing environmental conditions that obtain in a batch culture and the variation in bacterial cell-wall composition that is reported to occur throughout the growth cycle.  相似文献   

13.
The production of tylosin and related compounds by Streptomyces fradiae NRRL 2702 was studied in batch and chemostat cultures using a soluble synthetic medium. In batch culture, a trophophase–idiophase kinetic pattern was observed with tylosin, macrocin, and relomycin accumulating in the idiophase. When the organism was grown in chemostat culture, the specific rate of production of tylosin and related compounds (qtylosin) was found to be a function of the growth rate. The maximum value of (qtylosin) was observed when D = 0.017 hr?1. At this growth rate only tylosin and relomycin accumulated in the medium. By varying the concentration of glucose in the ingoing medium it was possible to study the effects of glucose on tylosin synthesis in chemostat cultures. At a growth rate of 0.017 hr?1, the maximum value of qtylosin was 0.71 mg tylosin/g dry weight (DW)/hr when the glucose uptake rate was 7 mg glucose/g DW-hr. This value of qtylosin was 40% greater than the maximum qtylosin observed in batch culture. When glycerol was substituted for glucose in the medium, it was possible in chemostat culutures to get values of qtylosin approximately 20% greater than those obtained with glucose at the same uptake rate. By varying the concentration of sodium glutamate in the ingoing medium it was possible to show that increasing the specific uptake rate of sodium glutamate increased the values of qtylosin obtained. Similar chemostat experiments where the inorganic phosphate concentration in the ingoing medium was varied showed that increased the uptake of phosphate decreased the values of qtylosin obtained. Also increasing the uptake rate of phosphate increased the relomycin-to-tylosin ratio. By taking into consideration the suppressing effects of glucose and the stimulating effects of sodium glutamate on tylosin synthesis, it was possible to formulate a medium that resulted in a value of qtylosin of 1.1 mg/g/hr being obtained at a growth rate of 0.03 hr?1. Batch fermentations with this medium did not follow a trophophase–idiophase kinetic pattern, but instead tylosin was actively synthesized during a period of rapid mycelial growth.  相似文献   

14.
Summary The relationships between penicillin-resistance and competence at different doubling-times have been studied in a chemostat. Both subinhibitory and lethal levels of drug have a differential effect on competent fraction and cell viability. Transformation frequency was rather increased in the presence of inhibitory doses of penicillin when partially affected cells were protected from lysis by using an isotonic medium; however, transformation frequency decreases when protoplasts were detected.The influence of the doubling-time in the ability of the recipient population to undergo transformation was confirmed. Our results, in accordance with that previously found, might suggest that competence in log phase and competence in the stationary phase could differ in some important aspects.  相似文献   

15.
Protein turnover in exponentially growing Escherichia coli was investigated in a chemostat where changes in medium composition and physical manipulation of cells were minimized. Growing cells were subjected to a sequential double-isotope labeling procedure. The soluble proteins were isolated by two-dimensional electrophoresis and the isotope ratios were calculated for each protein sampled. Differentially synthesized proteins previously reported were shown to be the result of changes in medium composition or physical manipulation. The previously reported turnover of certain proteins appears to be the result of change(s) in the medium. However, additional results support the conclusion that the turnover of other proteins can occur independent of such changes.  相似文献   

16.
17.
We have observed a connection between cell wall synthesis and the initiation of chromosome replication in Bacillus subtilis. Initiation of chromosome replication was prevented in synchronous cultures in the presence of the cell wall synthesis inhibitor vancomycin. When vancomycin was added to the cultures after initiation of chromosome replication, one round of replication was completed but no reinitiation occurred. Similar results were obtained when cell wall synthesis was inhibited by ristocetin, cycloserine, cloxacillin, or cephaloridine. When sucrose was added to the medium, initiation of deoxyribonucleic acid replication occurred in the presence of vancomycin, to an extent which allowed replication of no more than approximately one-half of the deoxyribonucleic acid of the culture. The same was found in cultures of spheroplasts of B. subtilis. However, initiation of chromosome replication in spheroplasts was completely insensitive to cloxacillin.  相似文献   

18.
Although the bacterial cell wall has been the subject of decades of investigation, recent studies continue to generate novel and controversial models of its synthesis and assembly. Here we compare and contrast the transcompartmental biosyntheses of peptidoglycan and teichoic acid in Bacillus subtilis. In addition, the current paradigms of B. subtilis wall assembly and structure are distinguished from emerging models of murein insertion and organization. We discuss evidence for the directed, cytoskeleton-dependent insertion of nascent peptidoglycan and the existence of a periplasmic compartment. Furthermore, we summarize the challenges these findings represent to the existing paradigm of murein insertion. Finally, motivated by these new developments, we discuss outstanding issues that remain to be addressed and suggest research directions that may contribute to a better understanding of cell wall assembly in B. subtilis.  相似文献   

19.
A prototrophic pyruvate-carboxylase-negative (Pyc-) mutant was constructed by deleting the PYC1 and PYC2 genes in a CEN.PK strain of Saccharomyces cerevisiae. Its maximum specific growth rate on ethanol was identical to that of the isogenic wild type but it was unable to grow in batch cultures in glucose-ammonia media. Consistent with earlier reports, growth on glucose could be restored by supplying aspartate as a sole nitrogen source. Ethanol could not replace aspartate as a source of oxaloacetate in batch cultures. To investigate whether alleviation of glucose repression allowed expression of alternative pathways for oxaloacetate synthesis, the Pyc- strain and an isogenic wild-type strain were grown in aerobic carbon-limited chemostat cultures at a dilution rate of 0.10 h-1 on mixtures of glucose and ethanol. In such mixed-substrate chemostat cultures of the Pyc- strain, steady-state growth could only be obtained when ethanol contributed 30% or more of the substrate carbon in the feed. Attempts to further decrease the ethanol content of the feed invariably resulted in washout. In Pyc- as well as in wild-type cultures, levels of isocitrate lyase, malate synthase and phospho-enol-pyruvate carboxykinase in cell extracts decreased with a decreasing ethanol content in the feed. Nevertheless, at the lowest ethanol fraction that supported growth of the Pyc- mutant, activities of the glyoxylate cycle enzymes in cell extracts were still sufficient to meet the requirement for C4-compounds in biomass synthesis. This suggests that factors other than glucose repression of alternative routes for oxaloacetate synthesis prevent growth of Pyc-mutants on glucose.  相似文献   

20.
Cell growth and enzyme (alpha-amylase) production characteristics of Bacillus subtilis TN106 containing the recombinant plasmid pAT5 are investigated in batch and continuous cultures using a defined medium with glucose as the limiting nutrient. The batch culture studies demonstrate that the recombinant plasmid, reported earlier(1) to be stably maintained in the host, suffers from segregational and structural instabilities. The structural instability of this strain occurred during culture storage and can be eliminated in bioreactor experiments by using a modified inoculum preparation procedure. Such elimination allows an unbiased investigation of segregational instability via continuous culture studies. Such studies conducted with this fast growing microorganism, in the absence of antibiotic selection pressure, indicate a very efficient glucose utilization (very low residual glucose concentrations) over a wide range of dilution rates (0.16 h(-1) - 0.94 h(-1)). The nearly time-invariant and low residual glucose concentrations at each such dilution rate enable convenient estimation of growth parameters of the host and recombinant cells and frequency of segregational instability from transients in the resulting mixed cultures. The specific alpha-amylase activity exhibits an inverse relationship to the specific growth rate of recombinant cells. The growth of recombinant cells is not affected by the presence of antibiotic (kanamycin). The growth advantage of host cells over recombinant cells diminishes with increasing dilution rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号