首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Oxidative stress has been implicated in the pathogenesis of variety of diseases. Since the endogenous antioxidant defense may be not adequate to counteract the enhanced generation of oxidants, a growing interest in research for exogenous nutrients has been observed. The present study was designed to assess in vitro the antioxidative properties of the glucose derivatives: calcium d-glucarate, d-gluconic acid lactone, and sodium d-gluconate (0.5–3 mM) in the protection of plasma proteins and lipids, against the damage caused by 0.1 mM peroxynitrite (ONOO). Exposure of plasma to ONOO resulted in carbonyl groups increase, 3-nitrotyrosine (3-NT) formation, reduction in thiol groups, and enhanced lipid peroxidation. d-Gluconic acid lactone and sodium d-gluconate effectively decreased 3-NT formation; the antinitrative action of calcium d-glucarate was less effective. In plasma samples incubated with ONOO and tested compounds, the level of carbonyl groups was decreased in comparison to plasma samples treated only with ONOO. The level of protein −SH groups and glutathione was significantly higher in the presence of glucose derivatives than in plasma samples treated with ONOO only. All the tested compounds had the inhibitory effect on the peroxynitrite-induced plasma lipids peroxidation. The results obtained from our work indicate that calcium d-glucarate, d-gluconic acid lactone, and sodium d-gluconate may partly protect plasma proteins and lipids against peroxynitrite-induced damages.  相似文献   

2.
The antioxidative activity of the extract from Conyza canadensis in plasma treated with peroxynitrite (ONOO) (0.1 mM) was studied. C. canadensis is known to possess a broad set of pharmacological effects because of content of various antioxidants, antiplatelet and anticoagulant compounds. The aim of our study was to assess if this extract protects plasma proteins against oxidative/nitrative damages induced by ONOO. The plasma components are continuously exposed to reactive oxygen/nitrogen species action. Peroxynitrite evokes oxidative stress and induces undesirable effects in biological systems and causes damage to biomolecules. The extract from Conyza (50–2500 mg/ml) caused a dose-dependent reduction of protein nitration by 90%. The oxidation of plasma proteins was diminished by about 75%. ONOO oxidized the plasma thiol groups and this process was inhibited by tested extract. The level of reduced protein thiols was increased thrice at the lowest concentration of extract (50 mg/ml). The highest concentration of extract decreased twice the level of protein thiols in reduced forms and increased the homocysteine level about 4.5 times. The obtained results demonstrated that the extract from Conyza possesses antioxidative properties in vitro, protects plasma proteins against toxicity induced by peroxynitrite and has modulating effects on thiol/disulfide redox status.  相似文献   

3.
The present in vitro study was designed to examine the antioxidative activity of red cabbage anthocyanins (ATH) in the protection of blood plasma proteins and lipids against damage induced by oxidative stress. Fresh leaves of red cabbage were extracted with a mixture of methanol/distilled water/0.01% HCl (MeOH/H2O/HCl, 50/50/1, v/v/w). Total ATH concentration [μM] was determined with cyanidin 3-glucoside as a standard. Phenolic profiles in the crude red cabbage extract were determined using the HPLC method. Plasma samples were exposed to 100 μM peroxynitrite (ONOO) or 2 mM hydrogen peroxide (H2O2) in the presence/absence of ATH extract (5–15 μM); oxidative alterations were then assessed. Pre-incubation of plasma with ATH extract partly reduced oxidative stress in plasma proteins and lipids. Dose-dependent reduction of both ONOO and H2O2-mediated plasma protein carbonylation was observed. ATH extract partly inhibited the nitrative action of ONOO, and significantly decreased plasma lipid peroxidation caused by ONOO or H2O2. Our results demonstrate that anthocyanins present in red cabbage have inhibitory effects on ONOO and H2O2-induced oxidative stress in blood plasma components. We suggest that red cabbage ATH, as dietary antioxidants, should be considered as potentially usable nutraceuticals in the prevention of oxidative stress-related diseases.  相似文献   

4.
Humulus lupulus (Cannabaceae) is well known throughout the world as a raw material in the brewing industry. The antioxidative action of hop cones is poorly understood, therefore the aim of our present study was to investigate in vitro changes in human plasma induced by peroxynitrite in the presence of the highly purified extract from hop cones (Humulus lupulus). The aim of our study was also to explain the effect of the extract from hop cones on coagulation activity of human plasma treated with peroxynitrite. The action of the extract from hop cones was compared with the properties of a well-characterized commercial monomeric polyphenol — resveratrol (3,4′,5-trihydroxystilbene). The tested plant extract, like resveratrol, significantly inhibited protein carbonylation and nitration in plasma treated with ONOO(0.1 mM). The extract from hop cones, like resveratrol, also caused a distinct reduction of plasma lipid peroxidation induced by ONOO. Moreover, the tested extract modulated the coagulation properties of plasma treated with peroxynitrite. It seems that antioxidative activities of the highly purified extract from hop cones may be responsible for its medicinal properties.  相似文献   

5.
Numerous plants (including clovers) have been widely used in folk medicine for the treatment of different disorders. This in vitro study was designed to examine the antioxidative effects of the clovamide-rich fraction, obtained from aerial parts of Trifolium pallidum, in the protection of blood platelets and plasma against the nitrative and oxidative damage, caused by peroxynitrite (ONOO). Carbonyl groups and 3-nitrotyrosine in blood platelet and plasma proteins were determined by ELISA tests. Thiol groups level was estimated by using 5,5′-dithio-bis(2-nitro-benzoic acid, DTNB). Plasma lipid peroxidation was measured spectrophotometrically as the production of thiobarbituric acid reactive substances. The results from our work indicate that clovamide-rich T. pallidum extract may reveal the protective properties in the prevention against oxidative stress. The presence of clovamide-rich T. pallidum extract (12.5–100 μg/ml) partly inhibited ONOO-mediated protein carbonylation and nitration. All the used concentrations of T. pallidum extract reduced lipid peroxidation in plasma. The antioxidative action of the tested extract in the protection of blood platelet lipids was less effective; the extract at the lowest final concentration (12.5 μg/ml) had no protective effect against lipid peroxidation. The present results indicate that the extract from T. pallidum is likely to be a source of compounds with the antioxidative properties, useful in the prevention against the oxidative stress-related diseases.  相似文献   

6.
The protective effects of resveratrol (3, 4', 5-trihydroxystilbene; present naturally in different plants) against the oxidative/nitrative damage of human plasma proteins induced by peroxynitrite (ONOO-) were studied and compared with those of deferoxamine (DFO; a natural siderophore isolated from Streptomyces pilosus), which is a typical and well-known antioxidant. We also studied the effect of ONOO- on plasma lipid peroxidation and the role of tested antioxidants in this process. ONOO- at the used concentrations (0.01-1 mM) showed toxicity to human plasma components. Exposure of plasma to ONOO- (0.1 mM) resulted in an increase of the level of carbonyl groups and nitrotyrosine residues in plasma proteins (approximately 4-fold and 76-fold, respectively) and in a distinct augmentation of lipid peroxidation (approximately 2-fold). In the presence of 0.1-mM resveratrol, a distinct decrease of carbonyl group formation and tyrosine nitration in plasma proteins caused by 0.1-mM ONOO- was observed (by approximately 70% and 65%, respectively). Addition of 0.1-mM DFO to plasma also distinctly reduced the level of carbonyl groups and nitrotyrosines caused by 0.1-mM ONOO- (by approximately 50% and 60%, respectively). Moreover, these antioxidants also inhibited plasma lipid peroxidation induced by ONOO- (0.1 mM). The obtained results indicate that in vitro resveratrol, like well-known antioxidant DFO, has inhibitory effects on ONOO- -mediated oxidation of proteins and lipids in human plasma.  相似文献   

7.
Oxidative stress is characterized by excessive production of various free radicals and reactive species among which, peroxynitrite is most frequently produced in several pathological conditions. Peroxynitrite is the product of the superoxide anion reaction with nitric oxide, which is reported to take place in the intravascular compartment. Several studies have reported that peroxynitrite targets red blood cells, platelets and plasma proteins, and induces various forms of oxidative damage. This in vitro study was designed to further characterize the types of oxidative damage induced in platelets and plasma proteins by peroxynitrite. This study also determined the ability of tempol to protect blood plasma and platelets against peroxynitrite-induced oxidative damage. The ability of various concentrations of tempol (25, 50, 75, and 100 µM) to antagonize peroxynitrite-induced oxidation was evaluated by measuring the levels of protein carbonyl groups and thiobarbituric-acid-reactive substances in experimental groups. Exposure of platelets and plasma to 100 µM peroxynitrite resulted in an increased levels of carbonyl groups and lipid peroxidation (P < 0.05). Tempol significantly inhibited carbonyl group formation in plasma and platelet proteins (P < 0.05). In addition, tempol significantly reduced the levels of lipid peroxidation in both plasma and platelet samples (P < 0.05). Thus, tempol has antioxidative properties against peroxynitrite-induced oxidative damage in blood plasma and platelets.  相似文献   

8.
The oxidative stress induced by acute exertion may interfere with blood platelet activation. The beneficial effect of l-carnitine (γ-trimethylamino-β-hydroxybutyric acid) on oxidative stress in blood platelets has not been fully investigated; however, different studies indicate that this compound modulates platelet functions. The aim of our study was to assess the effects of l-carnitine on platelet activation and oxidative/nitrative protein damage (determined by the levels of protein carbonyl groups, thiol groups, and 3-nitrotyrosine residues) in resting blood platelets or platelets treated with peroxynitrite (ONOO, a strong physiological oxidant) in vitro. We also investigated the effects of l-carnitine on the level of platelet glutathione and on the formation of superoxide anion radicals ( O2 - · ) \left( {{\hbox{O}}_2^{ - \bullet }} \right) , lipid peroxidation measured by thiobarbituric acid reactive substances (TBARS) in blood platelets stimulated by thrombin (a strong physiological agonist), and platelet aggregation induced by adenosine diphosphate (a strong physiological stimulator). We have observed that carnitine decreases platelet activation (measured by platelet aggregation, the generation of O2 - · {\hbox{O}}_2^{ - \bullet } , and TBARS production). Moreover, our results in vitro demonstrate that carnitine may protect against oxidation of thiol groups induced by ONOO. Thus, carnitine may have some protectory effects against oxidative changes induced in blood platelets.  相似文献   

9.
The potent oxidant peroxynitrite (ONOO) is formed after the combination of nitric oxide with superoxide and has been closely associated with the pathology of inflammatory disease. In particular, the generation of ONOO has been linked to central nervous system disorders including Alzheimer’s and Parkinson’s disease, multiple sclerosis and bacterial and viral meningitis. Specifically, ONOO has been implicated in the loss of blood–brain barrier (BBB) integrity during neuroinflammation, but the precise mechanisms through which the molecule acts to mediate neurovascular breakdown have not been established. The disruptive effects of ONOO could be mediated by either direct or indirect actions on the endothelial cells that comprise the major component of the BBB. The current study has comparatively assessed the direct toxic effects of ONOO on the brain endothelial cell line, b.End3 and C6 astrocytoma and NA neuroblastoma preparations. b.End3 cells were relatively resistant to ONOO-induced cell death compared with C6 and NA cultures. The indirect involvement of ONOO in neuroendothelial disruption was pharmacologically determined via adhesion molecule expression and immunocompetent cell attachment to b.End3 cells. ONOO-targeted drugs, including the selective free radical scavenger, uric acid, the decomposition catalyst 5,10,15,20-tetrakis (4-sulphonatophenyl) porphyrinatoiron (III) (FeTPPS) and the poly(ADP-ribose) polymerase inhibitor N-(6-oxo-5,6-dihydrophenanthridin-2-yl)-(N,N-dimethylamino) acetamide hydrochloride (PJ34) revealed that ONOO was only partly involved in E-selectin, ICAM-1 and VCAM-1 expression on b.End3 cells and also cytokine-induced T-lymphocyte attachment to the cell line. The results indicate that ONOO contributes to b.End3 cell disruption but is not exclusively responsible for the breakdown of neuroendothelial function.  相似文献   

10.
Reactive-nitrogen species, such as peroxynitrite (ONOO) and nitryl chloride (NO2Cl), react with the aromatic ring of tyrosine in soluble amino acids and in proteins to form 3-nitrotyrosine. The extent of nitration can be quantified by measuring 3-nitrotyrosine in biological matrices, such as blood, urine, and tissue. This article reviews and discusses current analytical methodologies for the quantitative determination of 3-nitrotyrosine in their soluble and protein-associated forms, with the special focus being on free 3-nitrotyrosine. Special emphasis is given to analytical approaches based on the tandem mass spectrometry methodology. Pitfalls and solutions to overcome current methodological problems are emphasized and requirements for quantitative analytical approaches are recommended. The reliability of current analytical methods and the suitability of 3-nitrotyrosine as a biomarker of nitrative stress are thoroughly examined.  相似文献   

11.
The action of two phenolic compounds isolated from the bark of Yucca schidigera: trans-3,3',5,5'-tetrahydroxy-4'-methoxystilbene and its analogue -- resveratrol (trans-3,4',5-trihydroxystilbene, present also in grapes and wine) on oxidative/nitrative stress induced by peroxynitrite (ONOO(-), which is strong physiological oxidant and inflammatory mediator) in human blood platelets was compared. The trans-3,3',5,5'-tetrahydroxy-4'-methoxystilbene, like resveratrol, significantly inhibited protein carbonylation and nitration (measured by enzyme-linked immunosorbent assay method) in the blood platelets treated with peroxynitrite (0.1 mM) and markedly reduced an oxidation of thiol groups of proteins (estimated with 5,5'-dithio-bis(2-nitro-benzoic acid)] or glutathione (measured by high performance liquid chromatography method) in these cells. The trans-3,3',5,5'-tetrahydroxy-4'-methoxystilbene, like resveratrol, also caused a distinct reduction of platelet lipid peroxidation induced by peroxynitrite. The obtained results indicate that in vitro trans-3,3',5,5'-tetrahydroxy-4'-methoxystilbene and resveratrol have very similar protective effects against peroxynitrite-induced oxidative/nitrative damage to the human platelet proteins and lipids. Moreover, trans-3,3',5,5'-tetrahydroxy-4'-methoxystilbene proved to be even more potent than resveratrol in antioxidative tests. We conclude that the novel tested phenolic compound -- trans-3,3',5,5'-tetrahydroxy-4'-methoxystilbene isolated from Y. schidigera bark possessing Generally Recognized As Safe label given by the Food and Drug Administration and allows their human dietary use -- seems to be a promising candidate for future evaluations of its antioxidative activity and may be a good candidate for scavenging peroxynitrite.  相似文献   

12.
Polymorphonuclear leukocyte (PMN) accumulation/activation has been implicated as a primary mechanism underlying MI/R injury. Recent studies have demonstrated that PMNs express inducible nitric oxide synthase (iNOS) and produce toxic reactive nitrogen species (RNS). However, the role of iNOS-derived reactive nitrogen species and resultant nitrative stress in PMN-induced cardiomyocyte apoptosis after MI/R remains unclear. Male adult rats were subjected to 30 min of myocardial ischemia followed by 5 h of reperfusion. Animals were randomized to receive one of the following treatments: MI/R+vehicle; MI/R+L-arginine; PMN depletion followed by MI/R+vehicle; PMN depletion followed by MI/R+L-arginine; MI/R+1400 W; MI/R+1400 W+L-arginine and MI/R+ FeTMPyP. Ischemia/reperfusion-induced and L-arginine-enhanced nitrative stress and cardiomyocyte apoptosis were determined. PMN depletion virtually abolished ischemia/reperfusion- induced PMN accumulation, attenuated ischemic/reperfusion-induced and L-arginine-enhanced nitrative stress, and reduced ischemic/reperfusion-induced and L-arginine-enhanced cardiomyocyte apoptosis (P values all <0.01). Pre-treatment with 1400 W, a highly selective iNOS inhibitor, had no effect on PMN accumulation in the ischemic/reperfused tissue. However, this treatment reduced ischemia/reperfusion-induced and L-arginine-enhanced nitrative stress and cardiomyocyte apoptosis to an extent that is comparable as that seen in PMN depletion group. Treatment with FeTMPyP, a peroxynitrite decomposition catalyst, had no effect on either PMN accumulation or total NO production. However, treatment with this ONOO decomposition catalyst also reduced ischemia/reperfusion-induced and L-arginine-enhanced nitrative stress and cardiomyocyte apoptosis (P values all <0.01). These results demonstrated that ischemic/reperfusion stimulated PMN accumulation may result in cardiomyocyte injury by an iNOS-derived nitric oxide initiated and peroxynitrite-mediated mechanism. Therapeutic interventions that block PMN accumulation, inhibit iNOS activity or scavenge peroxynitrite may reduce nitrative stress and attenuate tissue injury. Xiao-Liang Wang and Hui-Rong Liu contributed equally to this study.  相似文献   

13.
Objectives: Our previous study has shown that slow or “controlled” reperfusion for the ischemic heart reduces cardiomyocyte injury and myocardial infarction, while the mechanisms involved are largely unclear. In this study, we tested the hypothesis that enhancement of survival and prevention of apoptosis in hypoxic/reoxygenated cardiomyocytes by hypoxic postconditioning (HPC) are associated with the reduction in peroxynitrite (ONOO) formation induced by hypoxia/reoxygenation (H/R). Methods: Isolated adult rat cardiomyocytes were exposed to 2 h of hypoxia followed by 3 h of reoxygenation. After 2 h of hypoxia the cardiomyocytes were either abruptly reperfused with pre-oxygenized culture medium or postconditioned by two cycles of 5 min of brief reoxygenation and 5 min of re-hypoxia followed by 160 min of abrupt reoxygenation. Results: H/R resulted in severe injury in cardiomyocytes as evidenced by decreased cell viability, increased LDH leakage in the culture medium, increased apoptotic index (P values all less than 0.01 vs. normoxia control group) and DNA ladder formation, which could be significantly attenuated by HPC treatment applied before the abrupt reoxygenation (P < 0.05 vs. H/R group). In addition, H/R induced a significant increase in ONOO formation as determined by nitrotyrosine content in cardiomyocytes (P < 0.01 vs. normoxia control). Treatment with the potent ONOO scavenger uric acid (UA) at reoxygenation significantly decreased ONOO production and protected myocytes against H/R injury, whereas the same treatment with UA could not further enhance myocyte survival in HPC group (P > 0.05 vs. HPC alone). Statistical analysis showed that cell viability closely correlated inversely with myocyte ONOO formation (P < 0.01). Conclusion: These data demonstrate that hypoxic postconditioning protects myocytes against apoptosis following reoxygenation and enhances myocytes survival, which is partly attributable to the reduced ONOO formation following reoxygenation. H.-C. Wang and H.-F. Zhang contributed equally to this study.  相似文献   

14.
Iron overload is one of the most common iron-related toxicities, and liver is the major organ that is injured. Although oxidative stress is well accepted in the pathological mechanism of iron overload, nitrative modification in liver and the role of iron are relatively unknown. In this work, the nitrative and oxidative stress in liver was investigated in an iron-overload rat model. It was found that after 15 weeks of iron dextran administration, consistent with the increase of iron content in rat liver, both protein tyrosine nitration and protein oxidation were clearly elevated. By means of immunoprecipitation analysis, it was found that enolase nitration and oxidation status were significantly increased in iron-overload liver, whereas both α-enolase expression and activity were clearly decreased. The effects of different forms of iron on NaNO2–H2O2- and peroxynitrite (ONOO)-dependent enolase nitration and oxidation were further investigated in vitro to elucidate the possible role of iron in enolase dysfunction in vivo. Compared with EDTA–Fe(III), ferric citrate, and ferritin, heme (hemin and hemoglobin) showed higher efficiency in catalyzing protein nitration in both models. Besides the major contribution of free iron (Fe2+ and Fe3+) to catalyze protein oxidation, Fe2+ also directly acted as a competitive inhibitor and produced a significant decrease in enzyme activity. These results suggest that the existence of various forms of iron is an important contributing factor to the elevated nitrative/oxidative modifications and diminished activity of α-enolase in the development and progress of iron-overload-associated syndromes.  相似文献   

15.
Complex factors contribute to the appearance of Parkinson’s disease (PD), but with a constant mitochondrial involvement. There are two interdependent conditions in PD: brain mitochondrial dysfunction and brain mitochondrial oxidative damage. Mitochondrial dysfunction and reduced complex I activity are recognized in substantia nigra and in frontal cortex in PD patients. The molecular mechanism involved in the inactivation of complex I is likely accounted by the sum of ONOO mediated reactions, reactions with free radical intermediates of the lipid peroxidation process and amine-aldehyde adduction reactions. The inhibitory effects on complex I lead synergistically to denaturation of the protein structure and to further increases of O2 and ONOO production at the vicinity of complex I. An adaptive response in PD patients has been described with increases in mtNOS activity, mitochondrial mass and mitochondrial biogenesis. Mitochondrial dysfunction in the human frontal cortex is to be considered a factor contributing to impaired cognition in PD.  相似文献   

16.
Oxidative stress is probably one of the mechanisms involved in neuronal damage induced by ischemia-reperfusion, and the antioxidant activity of plasma may be an important factor providing protection from neurological damage caused by stroke-associated oxidative stress. The aim of this study was to investigate the status of oxidative stress, NO and ONOO levels in patients with atherothrombotic and lacunar acute ischemic stroke and iNOS, eNOS and nitrotyrosine expression in the same patients. Plasma ONOO levels were significantly higher in patients than in controls while NO decreases in patients in respect to controls. Densitometric analysis of bands indicated that iNOS and N-Tyr protein levels were significantly higher in patients in respect to controls. This study has highlighted a significant NO decrease in our patients compared with controls and this is most probably due to the increased expression of inducible NO synthase by the effect of thrombotic attack. In fact, the constitutive NO isoforms, which produce small amounts of NO, are beneficial, while activation of the inducible isoform of NO, which produces much more NO, causes injury, being its toxicity greatly enhanced by generation of peroxynitrite. The significant ONOO increase observed in our patients, compared to controls, is most probably due to reaction of NO with O2·−. These findings suggest that free radical production and oxidative stress in ischemic stroke might have a major role in the pathogenesis of ischemic brain injury. Peroxynitrite might be the main marker of brain damage and neurological impairment in acute ischemic stroke.  相似文献   

17.
Many selenoorganic compounds play an important role in biochemical processes and act as antioxidants, enzyme inhibitors, or drugs. The effects of five new synthesized selenoorganic compounds (2-(5-chloro-2-pyridyl)-7-azabenzisoselenazol-3(2H)-one; 2-phenyl-7-azabenzisoselenazol-3(2H)-one; 2-(pyridyl)-7-azabenzisoselenazol-3(2H)-one; 7-azabenzisoselenazol-3(2H)-one; bis(2-aminophenyl) diselenide) on oxidative changes in human blood platelets and in plasma were studied in vitro and compared with those of ebselen, a well known antioxidant. Our studies demonstrated that bis(2-aminophenyl) diselenide has distinctly protective effects against oxidative stress in blood platelets and in plasma. It might have greater biological relevance and stronger pharmacological effects than ebselen.  相似文献   

18.
Peroxynitrite, a potent physiological inorganic toxin, is known to play a critical role in cellular oxidative damage. The protective role of antioxidant enzymes against peroxynitrite-induced oxidative damage in U937 cells was investigated in control and cells pre-treated with diethyldithiocarbamic acid, aminotriazole, and oxlalomalate, specific inhibitors of superoxide dismutase, catalase, and NADP+-dependent isocitrate dehydrogenase, respectively. Upon exposure to 1 mM 3-morpholinosydnomine N-ethylcarbamide (SIN-1), a generator of peroxynitrite through the reaction between nitric oxide and superoxide anion, to U937 cells, the viability was lower and the protein oxidation, lipid peroxidation and oxidative DNA damage reflected by an increase in 8-hydroxy-2′-deoxyguanosine, were higher in the inhibitor-treated cells as compared to the control cells. We also observed the significant increase in the endogenous production of reactive oxygen species, as measured by the oxidation of 2′7′-dichlorodihydrofluorescin as well as the significant decrease in the intracellular GSH level in the inhibitor-treated U937 cells upon exposure to SIN-1. These results suggest that antioxidant enzymes play an important role in cellular defense against peroxynitrite-induced cell death.  相似文献   

19.
Whole body non-penetrating trauma causes myocardial infarction in humans and mechanical trauma (MT) results in cardiac dysfunction in animals. Our recent study demonstrated that incubation of cardiomyocytes with plasma isolated from MT animals causes significant cardiomyocyte apoptosis that can be blocked by neutralization of TNFα. The present study attempted to obtain direct in vivo evidence to support that overproduction of TNFα plays a causative role in trauma-induced cardiomyocyte apoptosis. Non-lethal MT caused significant TNFα overproduction (2.4-fold at 1.5 h after MT) and increased cardiomyocyte apoptosis (starting 3 h and peaking 12 h after MT). Pharmacological inhibition of TNFα with etanercept or TNFα gene deletion reduced post-trauma myocyte apoptosis (P < 0.01). Expression of iNOS and NADPH oxidase, overproduction of NO and , and excessive protein nitration in the MT heart were all significantly reduced in etanercept-treated or TNFα−/− mice, suggesting that oxidative/nitrative stress may contribute to TNFα-initiated myocyte apoptosis in MT hearts. Additional experiments demonstrated that inhibiting iNOS (1400W) or NADPH oxidase (apocynin), or scavenging peroxynitrite (FP15) significantly reduced myocyte apoptosis in MT animals (P < 0.01). Collectively, these data demonstrated that non-lethal mechanical trauma caused significant TNFα production that in turn stimulated myocardial apoptosis via oxidative/nitrative stress.  相似文献   

20.
Mimosine, a non-protein plant amino acid found in Mimosa pudica and certain species of Leucaena, was beneficial for the growth of seedlings of Vigna radiata germinated under selenium-deficient stressed condition (−Se stressed) despite the recognized toxicity of the allelochemical. Exposure of mimosine at 0.1 mM (Mim-0.1) promoted the growth of the seedlings and significantly enhanced mitochondrial functional efficiency. Growth-related parameters including root and shoot lengths and dry weight were increased by 44–58% in the Mim-0.1 group compared to that of the −Se-stressed group. Oxygen uptake by mitochondria of Mim-0.1 group, studied with different substrates, revealed enhanced State 3 respiratory rates with regulated State 4 rates, resulting in high respiratory control ratio (RCR) of 3.4 to 3.9 indicative of a high degree of oxidative coupling. Specific activities of mitochondrial electron transport enzymes, nicotinamide adenine dinucleotide (reduced form) (NADH)–cytochrome (cyt) c oxidoreductase, succinate dehydrogenase, and cyt c oxidase in the Mim-0.1 group were enhanced by 53% to threefold over those of the Se-stressed group. Marked decreases in the extent of mitochondrial lipid peroxidation ensued upon mimosine exposure, indicative of its antioxidant function. Mitochondrial 45Ca2+ uptake was notably augmented twofold in the Mim-0.1 group, compared to the Se-stressed group. Detailed kinetic analyses of Ca2+ uptake revealed positive cooperative interactions in both −Se-stressed group and Mim-0.1 groups with Hill coefficient (nH) values of 1.7 and 2, respectively. The present study establishes the beneficial effects of mimosine exposure at 0.1 mM on the growth and mitochondrial function of the seedlings grown under selenium-deficient stressed condition and a significant physiological role can be ascribed to mimosine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号