首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The resistance to freezing-thawing was studied with Cryptococcus laurentii cultivated at a near-zero plus temperatures in a minimal or a rich medium. At the transition into the stationary phase, the resistance of the cells to freezing increased 20 times in the culture grown in the minimal medium and 8 times in the culture grown in the rich medium. Free water localization in the cell cytoplasm was determined by electron microscopy. In yeast cells with the maximal cryotolerance, free water was found mainly between glycogen granules. The authors discuss the role of glycogen as of a possible factor making the cells resistant to low temperatures.  相似文献   

2.
1. Myxamoebae of the cellular slime mould Dictyostelium discoideum Ax-2 that are grown in axenic medium containing 86mm-glucose have seven times the glycogen content of the same myxamoebae grown in the same medium but lacking added carbohydrate. 2. During the transition from the exponential to the stationary phase of growth in axenic medium containing glucose myxamoebae preferentially synthesize glycogen and can have as much as three times the glycogen content during the stationary phase as they have during the exponential phase of growth. 3. The rate of glycogen degradation by myxamoebae is, under all conditions of growth, small compared with the rate of glycogen accumulation and the changes in glycogen content thus reflect altered rates of glycogen synthesis. 4. There is no correlation between the rate of glycogen synthesis by myxamoebae and the glycogen synthetase content of the myxamoebae. 5. The activity of glycogen synthetase of D. discoideum is inhibited by a physiological concentration of ATP and this inhibition is overcome by glucose 6-phosphate. Both effects are especially marked at physiological concentrations of UDP-glucose. 6. The rate of glycogen accumulation by myxamoebae growing exponentially in axenic media can be satisfactorily accounted for in terms of the known intracellular concentrations of glucose 6-phosphate, UDP-glucose and glycogen synthetase. The rate-limiting factors controlling glycogen synthesis by the myxamoebae are apparently the substrate (UDP-glucose) and effector (glucose 6-phosphate and ATP) concentrations rather than the amount of the enzyme.  相似文献   

3.
Carbon assimilation in carrot cells in liquid culture   总被引:1,自引:1,他引:0  
Assimilation of carbohydrates by carrot (Daucus carota L. cv Danvers) cells in liquid culture was studied to delineate the major metabolic pathways used in transformation of external carbohydrates to UDP-glucose. The cells grown on either sucrose or glucose for several years proved equally capable of utilizing each of these sugars. Sucrose was rapidly hydrolyzed extracellularly to glucose and fructose, and glucose was preferentially taken up. Uptake of fructose was slower and delayed until glucose was nearly depleted from the medium. Concentrations of cellular sugars, mainly glucose and sucrose, increased during late logarithmic phase of growth and decreased during the plateau phase. Continuous labeling of the cells with d-[14C]glucose resulted in rapid accumulation of radioactivity in glucose-6-phosphate and UDP-glucose. Because there was virtually no uptake of sucrose, UDP-glucose was likely derived from glucose-1-phosphate in a reaction catalyzed by UDP-glucose pyrophosphorylase and not directly from sucrose. Concentrations of major nucleotides and nucleotide sugars were maximal during the early logarithmic phase of growth and decreased several-fold in the stationary phase. A modified `energy charge' for adenylates calculated with the omission of AMP decreased steadily from 0.9 to 0.8 during the course of culture cycle. An analogous uracil nucleotide ratio was considerably lower (0.85) during early culture, decreased to about 0.7 for the entire logarithmic phase, and returned to initial values as cells entered stationary phase. The uracil nucleotide ratio may provide a useful index to assess the coupling between the energy available in phosphoanhydride bond in adenine nucleotides and the demand for sugar for polysaccharide synthesis through uridine diphosphate-sugar pools.  相似文献   

4.
The outer membrane (OM) of Fibrobacter succinogenes was isolated by a combination of salt, sucrose, and water washes from whole cells grown on either glucose or cellulose. The cytoplasmic membrane (CM) was isolated from OM-depleted cells after disruption with a French press. The OM and membrane vesicles isolated from the extracellular culture fluid of cellulose-grown cells had a higher density, much lower succinate dehydrogenase activity, and sodium dodecyl sulfate-polyacrylamide gel electrophoresis protein profiles different from those of the CM. The OM from both glucose- and cellulose-grown cells and the extracellular membrane vesicles from cellulose-grown cultures exhibited higher endoglucanase, xylanase, and acetylesterase activities than the CM and other cell fractions. Endoglucanase 2 was absent from the isolated OM fractions of glucose- and cellulose-grown cells and from the extracellular membrane vesicles of cellulose-grown cells but was present in the CM and intracellular glycogen granule fractions, while endoglucanase 3 was enriched in the OM. Cellobiosidase was located primarily in the periplasm as previously reported, while cellobiase was mainly present in the glycogen granule fraction of glucose-grown cells and in a nongranular glycogen and CM complex in cellulose-grown cells. The cellobiase was not eluted from glycogen granules by cellobiose, maltose, and maltotriose nor from either the granules or the cell membranes by nondenaturing detergents but was eluted from both glycogen granules and cell membranes by high concentrations of salts. The eluted cellobiase rebound almost quantitatively when diluted and mixed with purified glycogen granules but exhibited a low affinity for Avicel cellulose. Thus, we have documented a method for isolation of OM from F. succinogenes, identified the OM origin of the extracellular membrane vesicles, and located glycanases and cellobiase in membrane and glycogen fractions.  相似文献   

5.
Summary Glycogen synthetase (uridine diphosphate glucose-glycogen glucosyl transferase) was studied in different organs by a histoautoradiographic method and by usual staining methods. This activity was found to be present in muscles and liver of different animals. Human skin also showed some activity. Human liver and myocardium showed the highest activity.In the present study, it was found that the glucose-6-phosphate dependent form (D-form) of the glycogen synthetase predominates over the glucose-6-phosphate independent form (I-form) in all the organs except hamster liver where the I-form predominates.Addition of calcium chloride in the incubation medium, to prevent phosphorolytic breakdown of the newly synthesized glycogen, does not improve the reaction. No glucose is incorporated into glycogen from 14C-glucose-6-phosphate of the incubation medium for glycogen synthetase. Fixation in absolute alcohol at –20° is recommended for tissues where cytolysis is caused by the incubation medium.  相似文献   

6.
Johannes Lehmann 《Planta》1973,114(1):51-61
Summary Tests for enzymes of gluconeogenesis and of the synthesis and degradation of sucrose and polysaccharides have been carried out in the phloem exudate of Cucurbita pepo. All the enzymes which are necessary for the synthesis of sucrose and polysaccharides from metabolites of the citric acid cycle were found to be present in the exudate, except phosphoenolpyruvate carboxykinase. The polysaccharide synthetase was found to exhibit higher activity with glycogen (which is an unnatural polysaccharide in higher plants) than with starch. In addition, polysaccharide synthetase activity could be increased remarkably with 2 mM glucose-6-phosphate and glycogen as primer. Among the enzymes which catabolize sucrose and polysaccharides (phosphorylase, invertase, sucrose phosphorylase), only sucrose phosphorylase showed activity.  相似文献   

7.
研究了罗伦隐球酵母(cryptococcus laurentii)产生胞外多糖的适宜条件。培养基组成(g/L):葡萄糖80.00,酵母膏1.25,KH_2PO_3.00,MgSO_4·7H_2O0.05,CaCO_3 10.00,pH6.0。在30℃,旋转式摇床(200r/min)上培养6天。胞外多糖产量最高可达17.38g/L,对底物的转化率为21.725%。  相似文献   

8.
Uptake of glucose-6-phosphate by microsomes of hepatocyte in rats, human controls and patients with glycogen storage disease type Ia and Ib was studied. In rat the uptake of glucose-6-phosphate increased rapidly and reached to a plateau, but mannose-6-phosphate was not accumulated. These findings indicate that a glucose-6-phosphate specific transport system exists in the microsomal membrane. In human controls and patients with glycogen storage disease type Ia the uptake of glucose-6-phosphate was clearly observed. On the other hand, no accumulation of it was detected in a patient with glycogen storage disease type Ib. These data provide a direct evidence of the defect in the glucose-6-phosphate transport system of hepatic microsomal membrane in glycogen storage disease type Ib.  相似文献   

9.
Cell-free extracts from Saccharomyces cerevisiae catalyzed the incorporation of glucosyl residues from UDP-[U-14C]glucose into beta-1,3-glucans which contained a significant proportion of beta-1,6-glycosidic linkages. When GDP-[U-14C]glucose was used as substrate only trace amounts of glucose were incorporated. Activity of beta-glucan synthetase was distributed among membrane and cell wall fractions, specific activity being higher in this latter. Beta-glucan synthesized by membrane and cell wall fractions contained 0.6% and 2.5% of beta-1,6-glycosidic linkages respectively. A marked decrease in the activity of beta-glucan synthetase occurred as the cells aged. Significant activity of glycogen synthetase was detected only in cells which had reached the stationary phase of growth.  相似文献   

10.
Inositol biosynthesis was studied in soluble, cell extracts of a wild-type (Ino) strain of Saccharomyces cerevisiae. Two reactions were detected: (i) conversion of D-glucose-6-phosphate to a phosphorylated form of inositol, presumably inositol-1-phosphate (IP synthethase, EC5.5.1.4), and (ii) conversion of phosphorylated inositol to inositol (IP phosphatase, EC3.1.3.25). The in vitro rate of conversion of glucose-6-phosphate to inositol was proportional to incubaion time and enzyme concentration. The pH optimum was 7.0. The synthesis of inositol required oxidized nicotinamide adenine dinucleotide (NAD) and was stimulated byNH4C1 and MgC12. NADP substituted poorly for NAD, and NADH inhibitedthe reaction. Phosphorylated inositol accumulated in the absence of MgC12, suggesting that inositol-phosphate is an intermediate in the pathway and that Mg ions stimulate the dephosphorylation of inositol-phosphate. IP synthetase was inhibited approximately 20% in the presence of inositol in the reaction mixture at concentrations exceeding 1 mM. The enzyme was repressed approximately 50-fold when inositol was present in the growth medium at concentrations exceeding 50 muM. IP synthetase reached the fully repressed level approximately 10 h after the addition of inositol to logarithmic cultures grown in the absence of inositol. The specific activity of the enzyme increased with time in logarithmically growing cultures lacking inositol andapproached the fully depressed level as the cells entered stationary phase.  相似文献   

11.
An acidic polysaccharide (TAP) obtained from the fruiting bodies of Tremella aurantia significantly increased the activities of glucokinase, hexokinase, and glucose-6-phosphate dehydrogenase, and decreased the activity of glucose-6-phosphatase in normal and diabetic mouse liver after intraperitoneal administration, while the glycogen content in the liver was reduced. Furthermore, TAP lowered the plasma cholesterol level in normal and diabetic mice.  相似文献   

12.
The content of glycogen in the human endometrium is dependet on the activity of enzymes involved in processes of synthesis and dissociation of glicogen: glycogen-synthetase, phosphorilase and glycogen-6-phosphatase. The activation of "D" form of glycogensynthetase dependent on glucose-6-phosphate and the increase of the glycoogen quantity in the endometrium glands epithelium is observed in the period of growing gestagenic function of the ovaries. At the end of the secretory phase there occurs activation of the glycogen dissociation enzme-phosphorilase which goes in parallel with abrupt inhibition of the glycogensynthetase activity and disappearance or glycogen from the gland epithelium. The inhibition of glycogen synthetase is conditioned by a decreased level of intracellular glucose-6-phosphate which appears due to activation of glucose-6-phosphate in this period.  相似文献   

13.
SYNOPSIS. When Euglena gracilis were grown with 10mM succinate at pH 3.5 the extracellular pH averaged 3.62 and the cultures had produced 6 × 105 cells/ml when the stationary phase began. Oxygen consumption values reached a maximum of 30 μliters/106 cells/hr. Total protein and dry weights per cell remained constant during the logarithmic phase and began to decline when the late logarithmic phase was reached. Added succinate caused the cultures in stationary phase to commence logarithmic growth once more. Onset of the stationary phase in cultures grown at pH 3.5 was due to depletion of succinate. When cultures were grown at pH 6.9 the extracellular pH averaged 7.62 and the cultures produced 3 × 105 cells/ml when the stationary phase began. Oxygen consumption values reached a maximum of 20 μliters/106 cells/hr during the logarithmic phase. The decline in total protein and dry weights per cell began at the beginning of the logarithmic phase and continued into the stationary phase of growth. Cultures grown at pH 3.5 should produce a larger number of cells/ml than cultures grown at pH 6.9 if the cells are responding to the unionized moiety of succinate and not the ionized moiety. At pH 3.5 83% of the succinate is unionized, whereas at pH 6.9 0.20% of the succinate is unionized. The onset of the stationary phase in cultures grown at pH 3.5 and pH 6.9 is due to lack of an adequate amount of extracellular unionized succinate. Intracellular pH values were determined in cultures grown at pH 6.9 using the weak acid DMO (5.5-dimethyl-2,4-oxazolidinedione). As the extracellular pH increased from 6.90 to 7.62, the intracellular pH increased from 5.89 to 6.89. As the extracellular pH increased from 7.62 to 8.44, the intracellular pH increased from 6.89 to 7.50.  相似文献   

14.
Glycogen phosphorylase and synthase activities were detected in the sonic lysate of rumen ciliates of the genus Entodinium. The ciliate phosphorylase had the following properties. The pH optimum was narrow and centered at pH 5.9. The activity was maximum at 30°C; above 40°C a rapid inactivation occurred. The Km value for glucose-1-phosphate (G-1-P) and for glycogen was 15 mM and 0.069% (w/v), respectively. NaF and ethylenediamine tetraacetic acid had no stimulative effect on the enzyme activity, though adenosine 3′,5′-monophosphate and theophylline activated it. NaHSO3 inhibited the enzyme activity at a concentration of 1 mM. The inhibition of glucose was noncompetitive for G-1-P. Glycolytic intermediates and nucleotides had a minor effect on phosphorylase activity. Glycogen synthase existed in two forms, glucose-6-phosphate dependent and independent forms: the proportion of the latter form increased with the decrease of reserve polysaccharide levels in the ciliates. Correlations between glycolytic enzyme activities included phosphorylase and synthase activities and reserve polysaccharide contents in the ciliates were determined, and a possible regulatory mechanism of polysaccharide synthesis and degradation was discussed.  相似文献   

15.
Glucose may be converted to 6-phosphogluconate by alternate pathways in Pseudomonas aeruginosa. Glucose is phosphorylated to glucose-6-phosphate, which is oxidized to 6-phosphogluconate during anaerobic growth when nitrate is used as respiratory electron acceptor. Mutant cells lacking glucose-6-phosphate dehydrogenase are unable to catabolize glucose under these conditions. The mutant cells utilize glucose as effectively as do wild-type cells in the presence of oxygen; under these conditions, glucose is utilized via direct oxidation to gluconate, which is converted to 6-phosphogluconate. The membrane-associated glucose dehydrogenase activity was not formed during anaerobic growth with glucose. Gluconate, the product of the enzyme, appeared to be the inducer of the gluconate transport system, gluconokinase, and membrane-associated gluconate dehydrogenase. 6-Phosphogluconate is probably the physiological inducer of glucokinase, glucose-6-phosphate dehydrogenase, and the dehydratase and aldolase of the Entner-Doudoroff pathway. Nitrate-linked respiration is required for the anaerobic uptake of glucose and gluconate by independently regulated transport systems in cells grown under denitrifying conditions.  相似文献   

16.
Different values exist for glucose metabolism in white matter; it appears higher when measured as accumulation of 2-deoxyglucose than when measured as formation of glutamate from isotopically labeled glucose, possibly because the two methods reflect glycolytic and tricarboxylic acid (TCA) cycle activities, respectively. We compared glycolytic and TCA cycle activity in rat white structures (corpus callosum, fimbria, and optic nerve) to activities in parietal cortex, which has a tight glycolytic-oxidative coupling. White structures had an uptake of [(3)H]2-deoxyglucose in vivo and activities of hexokinase, glucose-6-phosphate isomerase, and lactate dehydrogenase that were 40-50% of values in parietal cortex. In contrast, formation of aspartate from [U-(14)C]glucose in awake rats (which reflects the passage of (14)C through the whole TCA cycle) and activities of pyruvate dehydrogenase, citrate synthase, alpha-ketoglutarate dehydrogenase, and fumarase in white structures were 10-23% of cortical values, optic nerve showing the lowest values. The data suggest a higher glycolytic than oxidative metabolism in white matter, possibly leading to surplus formation of pyruvate or lactate. Phosphoglucomutase activity, which interconverts glucose-6-phosphate and glucose-1-phosphate, was similar in white structures and parietal cortex ( approximately 3 nmol/mg tissue/min), in spite of the lower glucose uptake in the former, suggesting that a larger fraction of glucose is converted into glucose-1-phosphate in white than in gray matter. However, the white matter glycogen synthase level was only 20-40% of that in cortex, suggesting that not all glucose-1-phosphate is destined for glycogen formation.  相似文献   

17.
Glycogen Formation by the Ruminal Bacterium Prevotella ruminicola   总被引:1,自引:1,他引:0       下载免费PDF全文
Prevotella ruminicola is an important ruminal bacteria. In maltose-grown cells, nearly 60% of cell dry weight consisted of high-molecular-weight (>2 x 10(sup6)) glycogen. The ratio of glycogen to protein (grams per gram) was relatively low (1.3) during exponential growth, but when cell growth slowed during the transition to the stationary phase, the ratio increased to 1.8. As much as 40% of the maltose was converted to glycogen during cell growth. Glycogen accumulation in glucose-grown cells was threefold lower than that in maltose-grown cells. In continuous cultures provided with maltose, much less glycogen was synthesized at high (>0.2 per h) than at low dilution rates, where maltose was limiting (28 versus 60% of dry weight, respectively). These results indicated that glycogen synthesis was stimulated at low growth rates and was also influenced by the growth substrate. In permeabilized cells, glycogen was synthesized from [(sup14)C]glucose-1-phosphate but not radiolabelled glucose, indicating that glucose-1-phosphate is the initial precursor of glycogen formation. Glycogen accumulation may provide a survival mechanism for P. ruminicola during periods of carbon starvation and may have a role in controlling starch fermentation in the rumen.  相似文献   

18.
In vivo rates of glucose uptake and acid production by oral streptococci grown in glucose- or nitrogen-limited continuous culture and batch culture were compared with the glucose phosphorylation activities of harvested, decryptified cells. The strains examined contained significant phosphoenolpyruvate-phosphotransferase system (PTS) activity, measured by a glucose 6-phosphate (G6P) dehydrogenase-linked assay procedure, but this activity was insufficient to account for the in vivo glucose uptake rates. However, ATP was a superior phosphoryl donor to phosphoenolpyruvate, and unlike the PTS, phosphoryl transfer with ATP was insensitive to bacteriostatic concentrations of chlorhexidine, suggesting glucokinase-mediated G6P formation. Again, G6P formation from the PTS and glucokinase reactions was not commensurate with some of the glucose uptake rates observed, implying that other phosphorylation reactions must be occurring. Two novel reactions involving carbamyl phosphate and acetyl phosphate were identified in some of the strains. No G6P formation was detected with these potential phosphoryl donors, but in the presence of phosphoglucomutase, glucose 1-phosphate (G1P) formation was evident, which was insensitive to chlorhexidine. G1P is a precursor of glycogen, and good correlation was obtained between G1P formation activity and endogenous metabolism of washed cells measured either as a rate of acid production at a constant pH 7 or as a decrease in pH with time in the absence of titrant. A "league table" of abilities to synthesize G1P and produce acid from endogenous metabolism was compiled for oral streptococci grown in batch culture. This indicated that Streptococcus mutans Ingbritt and Streptococcus sanguis Challis were unable to form G1P or produce much acid endogenously, whereas increasing activities were obtained with Streptococcus salivarius, Streptococcus sanguis, and Streptococcus mitis. In particular, S. mitis had the highest G1P formation activities and was able to decrease the pH to less than 5 in 15 min by endogenous metabolism alone. The data are consistent with the intracellular accumulation of free glucose driven by proton motive force when PTS activities are low and the subsequent phosphorylation to either G6P for metabolism via glycolysis or G1P for glycogen biosynthesis. The accumulation of acetyl phosphate during glucose-limited growth and the availability of arginine for catabolism to carbamyl phosphate provide an explanation as to why some glucose-limited oral streptococci continue to synthesize glycogen under these conditions, which might prevail in plaque.  相似文献   

19.
SYNOPSIS. Protozoa of the order Euglenida contain a polysaccharide storage product, paramylon, composed of 1, 3-linked glucose molecules arranged into an extremely resistant granule. An enzyme was purified from the soluble phase of Euglena gracilis which would degrade this polysaccharide to single glucose residues, providing the integrity of the paramylon granule was 1st disrupted by dilute base. This enzyme, a β-1, 3 glucanase, had optimal activity at pH 5.0 and 60 C and bound tightly to base-disrupted paramylon substrate tho not to the intact granules. The specific activity of the enzyme was doubled when cell cultures reached stationary phase, the phase where net carbohydrate utilization began. An ATP-dependent hexokinase reaction was also present in Euglena homogenate. No phosphorylase activity has been found in Euglena. It is suggested, therefore, that Euglena do utilize their paramylon as a carbohydrate reserve and the mechanism of this utilization is by exo-hydrolytic cleavage to free glucose followed by phosphorylation and glycolysis.  相似文献   

20.
When potato sprouts or potato tuber slices were incubated with 0.1 m glucose 1-phosphate, a soluble amylopectin-like polysaccharide was excreted to the medium. This polysaccharide was found to be a very good primer for phosphorylase and a poor one for starch synthetase. Beside the formation of this extracellular polysaccharide, a more branched intracellular polysaccharide could be isolated. This polysaccharide was an excellent primer for starch synthetase. Fructose 6-phosphate, glucose 6-phosphate, fructose 1,6-diphosphate, glucose or sucrose could not substitute for glucose 1-phosphate. 2,4-Dinitrophenol or nitrogen did not affect the excretion of the polysaccharide. Some properties of these 2 polysaccharides are described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号