首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two cDNA clones for mitochondrial adenylate kinase were isolated from a cDNA library of bovine liver poly(A)+ RNA by using synthetic oligodeoxynucleotides as probes. The clone containing a 0.9-kilobase insert had the reading frame for a 241-residue protein (AK2A), while the other clone containing a 1.6-kilobase insert had the frame for a 234-residue protein (AK2B). Nucleotide sequences of these two clones were the same in the 5' portion up to the coding sequence for the 233rd residue, but different in the remaining 3' portions. The reported amino acid sequence of mitochondrial adenylate kinase from bovine heart corresponded to AK2A. Neither AK2A nor AK2B had a cleavable NH2-terminal presequence as that found in other imported mitochondrial proteins. RNA blot analysis of poly(A)+ RNAs from bovine liver and heart revealed three species of mRNA with approximate sizes of 0.9, 1.4, and 1.7 kilobases. The 1.7- and 1.4-kilobase species were specific for AK2B, whereas the 0.9-kilobase species was specific for AK2A. In the liver, the 1.7-kilobase mRNA was more abundant, whereas in the heart the 0.9-kilobase mRNA was predominant. The 1.4-kilobase mRNA was present only in the heart. The AK2A- and AK2B-coding sequences were expressed in Escherichia coli cells under the control of trc promoter. Both the products reverted the temperature-sensitive phenotype of the adenylate kinase mutant of E. coli.  相似文献   

2.
Mink lung epithelial cells were transfected with two cloned mouse mammary tumor virus (MMTV) DNAs, a 9-kilobase clone derived from an unintegrated exogenous viral genome and a 14-kilobase clone containing an integrated endogenous provirus along with cellular flanking sequences. Mink lung cells were chosen because they do not contain endogenous MMTV sequences. On the basis of our observation that simian virus 40 DNA efficiently transforms these cells, we isolated cell clones containing MMTV DNA by using transformation with simian virus 40 DNA as a selective marker in cotransfection experiments. Levels of the 9-kilobase MMTV mRNA representing the entire viral genome and of the spliced 4.4-kilobase mRNA which codes for the viral envelope proteins were glucocorticoid dependent in transformed cells. Expression of low levels of Pr77gag, the precursor of the group-specific viral core proteins, and of gPr73env, the precursor of the viral envelope proteins, was also hormone dependent. We conclude that these cloned MMTV DNAs contain all the information necessary for the synthesis of normal viral RNAs and proteins. These findings also provide further evidence that the DNA sequences involved in the hormone responsiveness of MMTV expression are contained within the viral genome.  相似文献   

3.
4.
5.
6.
7.
8.
The env gene of avian sarcoma-leukosis viruses codes for envelope glycoproteins that determine viral host range, antigenic specificity, and interference patterns. We used molecular hybridization to analyze the natural distribution and possible origins of the nucleotide sequences that encode env; our work exploited the availability of radioactive DNA (cDNA(gp)) complementary to most or all of env. env sequences were detectable in the DNAs of chickens which synthesized an env gene product (chick helper factor positive) encoded by an endogenous viral gene and also in the DNAs of chickens which synthesized little or no env gene product (chick helper factor negative). env sequences were not detectable in DNAs from Japanese quail, ring-necked pheasant, golden pheasant, duck, squab, salmon sperm, or calf thymus. The detection of sequences closely related to viral env only in chicken DNA contrasts sharply with the demonstration that the transforming gene (src) of avian sarcoma viruses has readily detectable homologues in the DNAs of all avian species tested [D. Stehelin, H. E. Varmus, J. M. Bishop, and P. K. Vogt, Nature (London) 260: 170-173, 1976] and in the DNAs of other vertebrates (D. Spector, personal communication). Thermal denaturation studies on duplexes formed between cDNA(gp) and chicken DNA and also between cDNA(gp) and RNAs of subgroup A to E viruses derived from chickens indicated that these duplexes were well matched. In contrast, cDNA(gp) did not form stable hybrids with RNAs of viruses which were isolated from ring-necked and golden pheasants. We conclude that substantial portions of nucleotide sequences within the env genes of viruses of subgroups A to E are closely related and that these genes probably have a common, perhaps cellular, evolutionary origin.  相似文献   

9.
10.
As retinoic acid (RA) and dibutyryl cAMP (cAMP) treatment induces differentiation of mouse teratocarcinoma F9 cells into parietal endoderm cells in vitro, we initiated studies on the molecular mechanisms underlying early mammalian cell differentiation in this system. We constructed cDNA libraries on the poly(A)+RNAs extracted from the undifferentiated F9 cells, and screened for cDNA sequences expressed abundantly in F9 cells, but not in terminally differentiated mouse parietal endoderm PYS-2 cells. Six different cDNA clones were isolated and characterized. The levels of RNAs hybridizable to these clones were at most 5 to 24% in the PYS-2 cells when compared with those in the undifferentiated F9 cells. The six clones were classified into two groups on the basis of their responses to the RA and cAMP treatment. In F9 cells, the levels of RNAs hybridizable to the first group, which contained four clones, were decreased within 72 h after the addition of RA and cAMP, while those of the second group, which contained the remaining two clones, did not decrease significantly. One of the first group clones, named pF9-1, corresponded to the mouse "early transposon-like elements" and another, named pF9-4, hybridized to multi-size RNAs extracted from the undifferentiated F9 cells. The mouse genomic DNA sequences hybridizable to pF9-4 were repeated approximately 5,000 times, and comprise a new gene family, the expression of which is developmentally regulated in mouse F9 cells.  相似文献   

11.
12.
13.
The viral RNAs of three nonconditional mutants of avian myelocytomatosis virus MC29 were analyzed. These mutants, which were originally isolated from the quail producer line Q10 and were designated 10A, 10C, and 10H, have lost most of the ability to transform hematopoietic cells in vitro and to induce tumors in vivo, but they still transform cultured fibroblasts with the same efficiency as wild-type (wt) MC29. Electrophoretic analyses showed that the mutant genomic RNAs were smaller than the 5.7-kilobase genome of wt MC29; the genomes of mutants 10A, 10C, and 10H were about 5.5, 5.3, and 5.1 kilobases long, respectively. Analyses of the transformation-specific sequences of these mutant RNAs by a combination of T(1) oligonucleotide fingerprinting and hybridization with cDNA from the transformation-specific sequences myc of wt MC29 or competition hybridization including wt MC29 RNA revealed that deletions of myc-specific sequences had occurred. The deletions in all three mutants overlapped, since they all had lost one particular myc-specific oligonucleotide. In agreement with the size of the genomic RNAs, mutants 10C and 10H had lost two additional myc oligonucleotides, and mutant 10A contained a modified myc oligonucleotide. The locations of the deletions were deduced from comparisons with previously established oligonucleotide maps of several members of the MC29 subgroup of acute leukemia viruses and by hybridization of wt and mutant RNAs to molecularly cloned subgenomic fragments of wt MC29 proviral DNA, representing the 5' and 3' domains of the myc sequence. We found that the deleted sequences represented overlapping internal segments of the myc sequence and that the borders of myc with the partial complements of the virion genes gag and env appeared to be conserved in mutant and wt MC29 RNAs. The correlation between the altered transforming potential for hematopoietic cells and the partial deletion of myc in the mutant RNAs provided direct genetic evidence for the involvement of myc in oncogenesis. However, the unaffected efficiency of these mutants in fibroblast transformation suggested that the deleted sequences are not essential for the fibroblast-transforming potential of the onc gene of MC29.  相似文献   

14.
The lysosomal beta-hexosaminidases (N-acetyl-beta-glucosaminidase, EC 3.2.1.30) occur as two major isozymes, hexosaminidase A (alpha beta a beta b) and hexosaminidase B (2(beta a beta b)). To facilitate the investigations of the biosynthesis and structure of the enzymes and the nature of mutation in Tay-Sachs disease, we have isolated cDNA clones coding for the alpha-subunit. The polypeptide chains of hexosaminidase A (30 mg) were digested with trypsin, and peptides were isolated by reverse phase high pressure liquid chromatography and their amino acid sequences determined. One of alpha-chain peptides contained a string of seven amino acids from which two sets of oligonucleotides were specified. They were used to screen the SV40-transformed human fibroblast cDNA library of Okayama and Berg. Three cDNA clones, designated pHexA, identified from among 5 X 10(5) clones screened, contained the deduced amino-acid sequences of five alpha-chain peptides. Genomic DNA homologous to pHexA cDNA mapped to human chromosome 15 in somatic cell hybrids, as expected for the pre-alpha-polypeptide. Two of the clones contained identical polyadenylation sites, while the third was polyadenylated about 450 base pairs downstream. The two types of clones were found to correspond to a major 2.0-kilobase pair and a minor 2.3-kilobase pair mRNA species. Blot hybridizations of mRNA and DNA from Tay-Sachs variant fibroblasts revealed absence or reduction of levels of both mRNA species among infantile and juvenile variants, but no observable DNA alterations. Alignment of the pre-alpha- and pre-beta-polypeptides revealed 55% nucleotide and 57% amino acid homology. These data suggest a common origin of the HEXA and HEXB genes and account for the similar substrate specificities of the alpha-dimer subunit, hexosaminidase S, and hexosaminidase B.  相似文献   

15.
16.
cDNA clones for rat acyl-CoA oxidase were isolated. The 3.8-kilobase mRNA sequence of the enzyme was completely covered by two overlapping clones. The composite cDNA sequence consisted of 3741 bases and contained a 1983-base open reading frame which encodes a polypeptide of 661 amino acid residues. Two species of acyl-CoA oxidase cDNA were identified. They differed in their coding nucleotide sequences, only within a small region. They contained the same number of nucleotides and can be translated in a common reading frame. They are 55% and 50% homologous in the above region at the nucleotide and the amino acid levels, respectively. Both types of cDNA were isolated from a library constructed from mRNA of a single rat, thereby suggesting the occurrence of two species of acyl-CoA oxidase in each rat. The amino terminus of the enzyme was determined to be N-acetylmethionine, which corresponds to the initiator methionine, thus confirming the absence of a terminal presequence. We reported previously that a purified preparation of the enzyme contained three polypeptide components, A, B, and C, and suggested that components B and C are produced by a proteolytic cleavage of component A (Osumi, T., Hashimoto, T., and Ui, N. (1980) J. Biochem. (Tokyo) 87, 1735-1746). We located components B and C on the amino- and the carboxyl-terminal sides of component A. Possible functional significances of several stretches of amino acids of the enzyme are discussed, based on the sequence comparison data between rat and yeast acyl-CoA oxidases.  相似文献   

17.
We have identified the oncogene and the putative transforming protein of the Parodi-Irgens feline sarcoma virus (PI-FeSV). The PI-FeSV is defective and needs a helper virus for its replication. The v-onc sequences in the PI-FeSV were found to be related to the v-sis sequences of the simian sarcoma virus (SSV). PI-FeSV nonproducer cells express two viral RNAs, a 6.8-and a 3.3-kilobase RNA. The 6.8-kilobase RNA contains gag, sis, and env sequences but lacks the pol gene. The 3.3-kilobase RNA, on the other hand, contains only env sequences. We have detected one feline leukemia virus-related protein product in these cells, namely, a 76-kilodalton protein which contains determinants of the feline leukemia virus gag proteins p15 and p30. The v-sis sequences in the PI-FeSV have been located near the 5' end of the viral genome. Taken together, these results imply that the p76 protein contains both feline leukemia virus gag and sis sequences and probably is the transforming protein of this virus. In contrast, in SSV the sis sequences are located towards the 3' end of the viral genome, and the sis protein is thought to be expressed via a subgenomic RNA. PI-FeSV and SSV therefore use different schemes to express their onc-related sequences. The v-sis sequences in the PI-FeSV contain restriction sites which reflect the different origin of the v-sis sequences in the PI-FeSV and SSV. The homologous oncogenes of the PI-FeSV and SSV thus were transduced by two different retroviruses, feline leukemia virus and the simian sarcoma-associated virus, apparently from the genomes of different species.  相似文献   

18.
Recombinant bacteriophage lambda clones from a cat genomic library derived from placental DNA of a specific pathogen-free cat were screened to identify endogenous feline leukemia virus (FeLV) sequences. Restriction endonuclease mapping of four different clones indicates that there are a number of similarities among them, notably the presence of a 6.0- to 6.4-kilobase pair (kbp) EcoRI hybridizing fragment containing portions of sequences homologous to the gag, pol, env, and long terminal repeat-like elements of the infectious FeLV. The endogenous FeLV sequences isolated are approximately 4 kbp in length and are significantly shorter than the cloned infectious FeLV isolates, which are 8.5 to 8.7 kbp in length. The endogenous elements have 3.3- to 3.6-kbp deletions in the gag-pol region and approximately 0.7- to 1.0-kbp deletions in the env region. These deletions would render them incapable of encoding an infectious virus and may therefore be related to the non-inducibility of FeLV from uninfected cat cells and the subgenomic expression of these endogenous sequences in placental tissue. It appears that there is conservation in the ordering of restriction sites previously reported in the proviruses of the infectious FeLVs in sequences corresponding to the pol and env boundary as well as the region spanning the env gene of the endogenous clones, whereas a greater divergence occurs among restriction sites mapped to the gag and part of the pol regions of the infectious FeLV. Such deleted, FeLV-related subsets of DNA sequences could have originated either by germ-line integration of a complete ecotropic virus followed by deletion, or by integration of a preexisting, defective, deleted variant of the infectious virus.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号