首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Xylanase A, one of several extracellular xylanases produced by Schizophyllum commune strain Delmar when grown in submerged culture with spruce sawdust as carbon source, was purified 43-fold in 25% yield with respect to total xylanase activity. Although some polysaccharide was strongly bound to the purified enzyme, the complex could be dissociated by sodium dodecyl sulfate and appeared homogeneous on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The molecular weight of the protein, calculated from the electrophoretic mobility, was 33,000. The molecular activity of the purified xylanase A, determined with soluble larch xylan as substrate, was 1.4 X 10(5) min-1, with xylobiose and xylose as the major products. The enzyme had a pH optimum of 5.0 and a temperature optimum of 55 degrees C in 10-min assays. The acid hydrolysate of xylanase A was rich in aspartic acid and aromatic amino acids. The sequence of 27 residues at the amino terminus showed no homology with known sequences of other proteins.  相似文献   

2.
An enzyme that has both beta-1,4-glucanase and chitosanase activities was found in the culture medium of the soil bacterium Lysobacter sp. IB-9374, a high lysyl endopeptidase-producing strain. The enzyme was purified to homogeneity from the culture filtrate using five purification steps and designated Cel8A. The purified Cel8A had a molecular mass of 41 kDa, as estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. A pH optimum of 5.0 was found for the beta-1,4-glucanase activity, and pH optima of 5.0 and 7.0 were found for the chitosanase activity. Nucleotide sequencing of the Cel8A gene yielded a deduced amino acid sequence that comprises a 33-amino acid, N-terminal signal peptide and a mature enzyme consisting of a 381-residue polypeptide with a predicted molecular mass of 41,241 Da. The amino acid sequence of the Cel8A, which contains the catalytic module of glycosyl hydrolase family 8, is homologous to beta-1,3-1,4-D-glucanase from Bacillus circulans WL-12 and endoglucanase N-257 from B. circulans KSM-N257.  相似文献   

3.
The gene encoding xylanase G2 (xynG2) was isolated from a genomic library of Aspergillus oryzae KBN616, used for making shoyu koji. The structural part of xynG2 was found to be 767 bp. The nucleotide sequence of cDNA amplified by RT-PCR showed that the open reading frame of xynG2 was interrupted by a single intron which was 71 bp in size and encoded 232 amino acids. Direct N-terminal amino acid sequencing showed that the precursor of XynG2 had a signal peptide of 44 amino acids. The predicted amino acid sequence of XynG2 has strong similarity to other family 11 xylanases from fungi. The xynG2 gene was successfully overexpressed in A. oryzae and the overpexpressed XynG2 was purified. The molecular weight of XynG2 estimated on sodium dodecyl sulfate-polyacrylamide gel electrophoresis was 21,000. This was almost the same as the molecular weight of 20,047 calculated from the deduced amino acid sequence. The purified XynG2 showed an optimum activity at pH 6.0 and 58 degrees C. It had a Km of 5.1 mg/ml and a Vmax of 123 micromol/min/mg when birch wood xylan was used as a substrate.  相似文献   

4.
An extracellular xylanase was purified to homogeneity by sequential chromatography of Fomitopsis pinicola culture supernatants on a DEAE-sepharose column, a gel filtration column, and then on a MonoQ column with fast protein liquid chromatography. The relative molecular weight of F. pinicola xylanase was determined to be 58 kDa by sodium dodecylsulfate polyacrylamide gel electrophoresis and by size exclusion chromatography, indicating that the enzyme is a monomer. The hydrolytic activity of the xylanase had a pH optimum of 4.5 and a temperature optimum of 70 degreesC. The enzyme showed t(1/2) value of 33 h at 70 degrees C and catalytic efficiency (k(cat) = 77.4 s?1, k(cat)/K(m) = 22.7 mg/ml/s) for oatspelt xylan. Its internal amino acid sequences showed a significant homology with hydrolases from glycoside hydrolase (GH) family 10, indicating that the F. pinicola xylanase is a member of GH family 10.  相似文献   

5.
The gene encoding xylanase F3 (xynF3) was isolated from a genomic library of Aspergillus oryzae KBN616, used for making shoyu koji. The structural part of xynF3 was found to be 1468 bp. The nucleotide sequence of cDNA amplified by RT-PCR showed that the open reading frame of xynF3 was interrupted by ten short introns and encoded 323 amino acids. Direct N-terminal amino acid sequencing showed that the precursor of XynF3 had a signal peptide of 22 amino acids. The predicted amino acid sequence of XynF3 has strong similarity to other family 10 xylanases from fungi. The xynF3 gene was successfully overexpressed in A. oryzae and the XynF3 was purified. The molecular mass of XynF3 estimated on sodium dodecyl sulfate-polyacrylamide gel electrophoresis was 32,000. This was almost the same as the molecular mass of 32,437 calculated from the deduced amino acid sequence. The purified XynF3 showed an optimum activity at pH 5.0 and 58 degrees C. It had a Km of 6.5 mg/ml and a Vmax of 435 micromol x min(-1) x mg(-1) when birch wood xylan was used as a substrate. Expression of the xynF3 gene was analyzed using an Escherichia coli beta-glucuronidase gene as a reporter. The result indicated that xynF3 is expressed in the medium containing wheat bran as a carbon source.  相似文献   

6.
7.
Twelve species of Streptomyces that formerly belonged to the genus Chainia were screened for the production of xylanase and cellulase. One species, Streptomyces roseiscleroticus (Chainia rosea) NRRL B-11019, produced up to 16.2 IU of xylanase per ml in 48 h. A xylanase from S. roseiscleroticus was purified and characterized. The enzyme was a debranching beta-(1-4)-endoxylanase showing high activity on xylan but essentially no activity against acid-swollen (Walseth) cellulose. It had a very low apparent molecular weight of 5,500 by native gel filtration, but its denatured molecular weight was 22,600 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. It had an isoelectric point of 9.5. The pH and temperature optima for hydrolysis of arabinoxylan were 6.5 to 7.0 and 60 degrees C, respectively, and more than 75% of the optimum enzyme activity was retained at pH 8.0. The xylanase had a K(m) of 7.9 mg/ml and an apparent V(max) of 305 mumol . min . mg of protein. The hydrolysis rate was linear for xylan concentrations of less than 4 mg/ml, but significant inhibition was observed at xylan concentrations of more than 10 mg/ml. The predominant products of arabinoxylan hydrolysis included arabinose, xylobiose, and xylotriose.  相似文献   

8.
Bacillus stearothermophilus T-6 produces an extracellular xylanase that was shown to optimally bleach pulp at pH 9 and 65 degrees C. The enzyme was purified and concentrated in a single adsorption step onto a cation exchanger and is made of a single polypeptide with an apparent M(r) of 43,000 (determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis). Xylanase T-6 is an endoxylanase that completely degrades xylan to xylose and xylobiose. The pIs of the purified protein were 9 and 7 under native and denaturing conditions, respectively. The optimum activity was at pH 6.5; however, 60% of the activity was still retained at pH 10. At 65 degrees C and pH 7, the enzyme was stable for more than 10 h; at 65 degrees C and pH 9, the half-life of the enzyme was approximately 6 h. Kinetic experiments at 55 degrees C gave Vmax and Km values of 288 U/mg and 1.63 mg/ml, respectively. The enzyme had no apparent requirement for cofactors, and its activity was strongly inhibited by Zn2+, Cd2+, and Hg2+. Xylan completely protected the protein from inactivation by N-bromosuccinimide. The N-terminal sequence of the first 45 amino acids of the enzyme showed high homology with the N-terminal region of xylanase A from the alkalophilic Bacillus sp. strain C-125.  相似文献   

9.
Chitinase (EC 3.2.1.14) was isolated from the culture supernatant of a marine bacterium, Alteromonas sp. strain O-7. The enzyme (Chi-A) was purified by anion-exchange chromatography (DEAE-Toyopearl 650 M) and gel filtration (Sephadex G-100). The purified enzyme showed a single band on sodium dodecyl sulfate polyacrylamide gel electrophoresis. The molecular size and pI of Chi-A were 70 kDa and 3.9, respectively. The optimum pH and temperature of Chi-A were 8.0 and 50 degrees C, respectively. Chi-A was stable in the range of pH 5-10 up to 40 degrees C. Among the main cations, such as Na+, K+, Mg2+, and Ca2+, contained in seawater, Mg2+ stimulated Chi-A activity. N-Bromosuccinimide and 2-hydroxy-5-nitrobenzyl bromide inhibited Chi-A activity. The amino-terminal 27 amino acid residues of Chi-A were sequenced. This enzyme showed sequence homology with chitinases from terrestrial bacteria such as Serratia marcescens QMB1466 and Bacillus circulans WL-12.  相似文献   

10.
The gene encoding xylanase G2 (xynG2) was isolated from a genomic library of Aspergillus oryzae KBN616, used for making shoyu koji. The structural part of xynG2 was found to be 767 bp. The nucleotide sequence of cDNA amplified by RT-PCR showed that the open reading frame of xynG2 was interrupted by a single intron which was 71 bp in size and encoded 232 amino acids. Direct N-terminal amino acid sequencing showed that the precursor of XynG2 had a signal peptide of 44 amino acids. The predicted amino acid sequence of XynG2 has strong similarity to other family 11 xylanases from fungi. The xynG2 gene was successfully overexpressed in A. oryzae and the overpexpressed XynG2 was purified. The molecular weight of XynG2 estimated on sodium dodecyl sulfate-polyacrylamide gel electrophoresis was 21,000. This was almost the same as the molecular weight of 20,047 calculated from the deduced amino acid sequence. The purified XynG2 showed an optimum activity at pH 6.0 and 58°C. It had a Km of 5.1 mg/ml and a Vmax of 123 μmol/min/mg when birch wood xylan was used as a substrate.  相似文献   

11.
An enzyme that has both β-1,4-glucanase and chitosanase activities was found in the culture medium of the soil bacterium Lysobacter sp. IB-9374, a high lysyl endopeptidase-producing strain. The enzyme was purified to homogeneity from the culture filtrate using five purification steps and designated Cel8A. The purified Cel8A had a molecular mass of 41 kDa, as estimated by sodium dodecyl sulfate–polyacrylamide gel electrophoresis. A pH optimum of 5.0 was found for the β-1,4-glucanase activity, and pH optima of 5.0 and 7.0 were found for the chitosanase activity. Nucleotide sequencing of the Cel8A gene yielded a deduced amino acid sequence that comprises a 33-amino acid, N-terminal signal peptide and a mature enzyme consisting of a 381-residue polypeptide with a predicted molecular mass of 41,241 Da. The amino acid sequence of the Cel8A, which contains the catalytic module of glycosyl hydrolase family 8, is homologous to β-1,3-1,4-D-glucanase from Bacillus circulans WL-12 and endoglucanase N-257 from B. circulans KSM-N257.  相似文献   

12.
The gene encoding L-rhamnose isomerase (L-RhI) from Pseudomonas stutzeri was cloned into Escherichia coli and sequenced. A sequence analysis of the DNA responsible for the L-RhI gene revealed an open reading frame of 1,290 bp coding for a protein of 430 amino acid residues with a predicted molecular mass of 46,946 Da. A comparison of the deduced amino acid sequence with sequences in relevant databases indicated that no significant homology has previously been identified. An amino acid sequence alignment, however, suggested that the residues involved in the active site of L-RhI from E. coli are conserved in that from P. stutzeri. The L-RhI gene was then overexpressed in E. coli cells under the control of the T5 promoter. The recombinant clone, E. coli JM109, produced significant levels of L-RhI activity, with a specific activity of 140 U/mg and a volumetric yield of 20,000 U of soluble enzyme per liter of medium. This reflected a 20-fold increase in the volumetric yield compared to the value for the intrinsic yield. The recombinant L-RhI protein was purified to apparent homogeneity on the basis of three-step chromatography. The purified recombinant enzyme showed a single band with an estimated molecular weight of 42,000 in a sodium dodecyl sulfate-polyacrylamide gel. The overall enzymatic properties of the purified recombinant L-RhI protein were the same as those of the authentic one, as the optimal activity was measured at 60 degrees C within a broad pH range from 5.0 to 11.0, with an optimum at pH 9.0.  相似文献   

13.
A repressible alkaline phosphatase has been isolated from the extreme bacterial thermophile, Thermus aquaticus. The enzyme can be derepressed more than 1,000-fold by starving the cells for phosphate. In derepressed cells, nearly 6% of the total protein in a cell-free enzyme preparation is alkaline phosphatase. The enzyme was purified to homogeneity as judged by disc acrylamide electrophoresis and sodium dodecyl sulfate electrophoresis. By sucrose gradient centrifugation it was established that the enzyme has an approximate molecular weight of 143,000 and consists of three subunits, each with a molecular weight of 51,000. Tris buffer stimulates the activity of the enzyme, which has a pH optimum of 9.2. The enzyme has a broad temperature range with an optimum of 75-80 degrees. The enzyme catalyzes the hydrolysis of a wide variety of phosphorylated compounds as do many of the mesophilic alkaline phosphatases. The Michaelis constant(Km) for the enzyme is 8.0 X 10(-4) M. Amino acid analysis of the protein revealed little in the amino acid composition to separate it from other mesophilic enzymes which have been previously studied.  相似文献   

14.
Cellulomonas flavigena CDBB-531 was found to secrete a bifunctional cellulase/xylanase with a molecular mass of 49 kDa and pI 4.3. This enzyme was active on Remazol brilliant blue-carboxymethylcellulose (RBB-CMC) and Remazol brilliant blue-xylan (RBB-X). Based on thin-layer chromatographic analysis of the degradation products, the cellulase activity produced glucose, cellobiose, cellotriose, and cellotetraose from CMC as the substrate. When xylan from birchwood was used, end products were xylose, arabinose, and xylobiose. The bifunctional enzyme showed a pH optimum of 6 for cellulase activity and 9 for xylanase activity, which pointed out that this enzyme had separate sites for each activity. In both cases, the apparent optimum temperature was 50 degrees C. The predicted amino acid sequence of purified protein showed similarity with the catalytic domain of several glycosyl hydrolases of family 10.  相似文献   

15.
The membrane-bound enzyme 2′,3′-cyclic nucleotide 3′-phosphohydrolase has been purified from acetone powders of bovine white matter and spinal cord. Affinity chromatography on AMP-Sepharose has been used as the final step in the chromatographic purifications. The yield was about 3 mg of purified enzyme per 100 g of tissue in each instance. The enzymes from the two sources were indistinguishable by chromatography, gel electrophoresis, and amino acid analysis; the enzyme from spinal cord, however, has shown a specific activity of 225 units/mg compared to 342 units/mg for the enzyme from white matter. Both proteins had a molecular weight of 100,000 by gel filtration and 50,000 by sodium dodecyl sulfate-gel electrophoresis under reducing conditions. The properties of the enzyme, including amino acid composition determined on the purified soluble protein and on the protein purified by sodium dodecyl sulfate-gel electrophoresis, were those of a basic hydrophobic protein.  相似文献   

16.
A gene encoding a new thermostable D-stereospecific alanine amidase from the thermophile Brevibacillus borstelensis BCS-1 was cloned and sequenced. The molecular mass of the purified enzyme was estimated to be 199 kDa after gel filtration chromatography and about 30 kDa on sodium dodecyl sulfate-polyacrylamide gel electrophoresis, indicating that the enzyme could be composed of a hexamer with identical subunits. The purified enzyme exhibited strong amidase activity towards D-amino acid-containing aromatic, aliphatic, and branched amino acid amides yet exhibited no enzyme activity towards L-amino acid amides, D-amino acid-containing peptides, and NH(2)-terminally protected amino acid amides. The optimum temperature and pH for the enzyme activity were 85 degrees C and 9.0, respectively. The enzyme remained stable within a broad pH range from 7.0 to 10.0. The enzyme was inhibited by dithiothreitol, 2-mercaptoethanol, and EDTA yet was strongly activated by Co(2+) and Mn(2+). The k(cat)/K(m) for D-alaninamide was measured as 544.4 +/- 5.5 mM(-1) min(-1) at 50 degrees C with 1 mM Co(2+).  相似文献   

17.
An enzyme capable of dehalogenating vicinal haloalcohols to their corresponding epoxides was purified from the 3-chloro-1,2-propanediol-utilizing bacterium Arthrobacter sp. strain AD2. The inducible haloalcohol dehalogenase converted 1,3-dichloro-2-propanol, 3-chloro-1,2-propanediol, 1-chloro-2-propanol, and their brominated analogs, 2-bromoethanol, as well as chloroacetone and 1,3-dichloroacetone. The enzyme possessed no activity for epichlorohydrin (3-chloro-1,2-epoxypropane) or 2,3-dichloro-1-propanol. The dehalogenase had a broad pH optimum at about 8.5 and a temperature optimum of 50 degrees C. The enzyme followed Michaelis-Menten kinetics, and the Km values for 1,3-dichloro-2-propanol and 3-chloro-1,2-propanediol were 8.5 and 48 mM, respectively. Chloroacetic acid was a competitive inhibitor, with a Ki of 0.50 mM. A subunit molecular mass of 29 kDa was determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. With gel filtration, a molecular mass of 69 kDa was found, indicating that the native protein is a dimer. The amino acid composition and N-terminal amino acid sequence are given.  相似文献   

18.
Alkaline phosphatase [orthophosphoric monoester phosphohydrolase, EC 3.1.3.1] was purified from the mucosa of rat small intestine by butanol extraction, ethanol fractionation, gel filtration, with controlled-pore glass-10 and DEAE-cellulose column chromatography. On the gel filtration, the enzyme activity was separated into three peaks; A in the void volume, B and C at lower molecular weight positions. Enzyme A was purified to homogeneity. The activity of enzymes A, B, and C was detected even on sodium dodecyl sulfate-polyacrylamide gel electrophoresis at the position of the protein of enzyme A, which had a molecular weight of 110,000 daltons. Enzymatic properties such as pH optimum, Km value for the substrate, heat inactivation and inhibition by amino acids were the same in all three enzymes. Based on these findings, together with the elution positions on gel filtration, enzyme A was regarded as an aggregate, and enzymes B and C as dimer and monomer molecules, respectively.  相似文献   

19.
Crystallization and properties of human liver ornithine aminotransferase   总被引:3,自引:0,他引:3  
Ornithine aminotransferase [EC 2.6.1.13] was purified and crystallized from human liver by a procedure involving heat treatment, chromatographies on DEAE-cellulose, Octyl-Sepharose CL-4B and Sephadex G-200, and crystallization. The purified enzyme appeared to be homogeneous on polyacrylamide gel electrophoresis with and without sodium dodecyl sulfate. The molecular weight of the enzyme was estimated as 44,000 by sodium dodecyl sulfate electrophoresis and as 177,000 by sucrose density gradient centrifugation, indicating that the enzyme is tetrameric. Various properties of the enzyme from human liver are similar to those of the enzyme from rat liver, including its molecular weight, pH optimum, Km values for ornithine, alpha-ketoglutarate and pyridoxal phosphate and specificity for amino acceptor from ornithine. The amino acid compositions of the two enzymes also have certain similarities, but the enzymes differ in electrophoretic mobility and antigenicity: the human enzyme moved more slowly to the anode, and on immunodiffusion analysis, the single precipitin lines formed between anti-human enzyme serum or anti-rat liver enzyme and the enzyme from human liver or lymphoblastoid cells and the rat liver enzyme fused with spur formation.  相似文献   

20.
Streptomyces flavogriseus, a mesophilic actinomycete, produces high levels of extracellular enzymes capable of hydrolyzing cellulose and xylan. One such enzyme, an exoglucanase, has been purified to molecular homogeneity by a sequence involving DEAE Bio-Gel A chromatography, gel permeation chromatography on Bio-Gel P-60, preparative isoelectric focusing, and concanavalin A affinity chromatography. This purification sequence disclosed the presence of several distinct endoglucanase and xylanase fractions. Homogeneity of the purified enzyme was demonstrated by analytical isoelectric focusing and sodium dodecyl sulphate--polyacrylamide gel electrophoresis. The purified enzyme had a molecular weight of approximately 45 000 and an isoelectric point of 4.15. The enzyme demonstrated negligible activity with carboxymethylcellulose as the substrate. It was able to extensively hydrolyse acid-swollen cellulose; the main product of enzyme action was cellobiose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号