首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract: Synaptoneurosomal and synaptosomal fractions from the brain cortex of adult (4-month-old) and aged (27-month-old) rats were used for studies on the uptake and subsequent release of [14C]arachidonic acid ([14C]AA) from brain lipids. The incorporation of AA and the pattern of its uptake into lipids of the aged brain cortex synapto-neurosomes and synaptosomes were not significantly different when compared with those in the adult brain cortex fractions. Serotonin (5-HT), at 10 μM to 1 μM in the presence of pargyline and the agonist of the 5-HT1A receptor, buspirone, stimulated AA uptake into membrane lipids, mainly into phosphatidylinositol, by about 40% exclusively in adult brain synaptoneurosomes. Aging significantly diminished the effect of 5-HT on AA uptake. Synaptoneurosomal and synaptosomal fractions prelabeled with [14C]AA were used subsequently for investigation of voltage-dependent, muscarinic and 5-HT receptor-mediated AA release. Aging diminished markedly carbachol-stimulated Ca2+-dependent AA liberation from membrane lipids of synaptoneurosomes and synaptosomes. Moreover, aging decreased voltage-dependent and 5-HT2 receptor-mediated AA release. These results show that aging affects receptor-dependent AA uptake and pre-and postsynaptic receptor-mediated AA release. These modulations of AA incorporation and release in aged brain may be of patho-physiological significance, in view of the importance of these processes for signal transmission in the brain. The changes of receptor-dependent processes of deacylation and reacylation may be responsible for alteration in the function of neuronal cells and may affect learning and memory ability and brain plasticity during aging.  相似文献   

2.
Hepatitis C virus(HCV)is a leading cause of liver disease worldwide.Although several HCV protease/polymerase inhibitors were recently approved by U.S.FDA,the combination of antivirals targeting multiple processes of HCV lifecycle would optimize anti-HCV therapy and against potential drug-resistanee.Viral entry is an essential target step for antiviral development,but FDA-approved HCV entry inhibitor remains exclusive.Here we identify serotonin 2A receptor(5-HT2aR)is a HCV entry factor amendable to therapeutic intervention by a chemical biology strategy.The silencing of 5-HT2aR and clinically available 5-HT2aR antagonist suppress cell culture-derived HCV(HCVcc)in different liver cells and primary human hepatocytes at late endocytosis process.The mechanism is related to regulate the correct plasma membrane localization of claudin 1(CLDN1).Moreover,phenoxybenzamine(PBZ),an FDAapproved 5-HT2aR antagonist,inhibits all major HCV genotypes in vitro and displays synergy in combination with clinical used anti-HCV drugs.The impact of PBZ on HCV genotype 2a is documented in immune-competent humanized transgenic mice.Our results not only expand the understanding of HCV entry,but also present a promising target for the invention of HCV entry inhibitor.  相似文献   

3.
Polyclonal antibodies were raised by the repeated injection of rabbits with synthetic peptides corresponding to selective portions (peptide 1: aminoacid residues 12–23, and peptide 2: aminoacid residues 243–268) of the aminoacid sequence of the rat 5-HT1A receptor. Both antisera allowed the immunoprecipitation of 5-HT1A receptors but not of other 5-HT receptor types and adrenergic receptors solubilized from rat hippocampal membranes. Immunoblots demonstrated that a single protein of 63 kDa, corresponding to the molecular weight of the rat 5-HT1A receptor binding subunit, was recognized by each antiserum. Immunoautoradiographic labelling of rat brain sections with the anti-peptide 2-antiserum exhibited the same regional distribution as 5-HT1A sites labelled by selective radioligands such as [3H]8-OH-DPAT and [125I]BH-8-MeO-N-PAT. However regional differences apparently existed between the respective intensity of labelling by the agonist radioligands and the antiserum, which might be explained by variations in the degree of coupling of 5-HT1A receptor binding subunits with G proteins from one brain area to another.  相似文献   

4.
In the last few years, molecular biology has led to the cloning and characterization of several 5-HT receptors (serotonin receptors) in vertebrates and in invertebrates. These studies have allowed identification not only of 5-HT receptors already described but also of novel subtypes. The molecular cloning of 13 different mammalian receptor subtypes revealed an unexpected heterogeneity among 5-HT receptors. Except for the 5-HT3 receptors which are ligand-gated ion channel receptors, all the other 5-HT receptors belong to the large family of receptors interacting with G proteins. Based on their amino acid sequence homology and coupling to second messengers these receptors can be divided into distinct families: the 5-HT1 family contains receptors that are negatively coupled to adenylate cyclase; the 5-HT1 family includes receptors that stimulate phospholipase C; the adenylyl cyclase stimulatory receptors are a heterogeneous group including the 5-HT4 receptor which has not yet been cloned, the Drosophila 5-HTdrol receptor and two mammalian receptors tentatively named 5-HT6 and 5-HT7 receptors. The 5-HT5A and 5-HT5B receptors might constitute a new family of 5-HT receptors whose effectors are unknown. This review focusses on the molecular characteristics of the cloned 5-HT receptors such as their structure, their effector systems and their distribution within the central nervous system. The existence of a large number of receptors with distinct signalling properties and expression patterns might enable a single substance like 5-HT to generate simultaneously a large panel of effects in many brain structures. The availability of the genes encoding these receptors has already allowed a partial characterization of their structure-function relationship and will probably allow in the future a dissection of the contribution of each of these receptor subtypes to physiology and behaviour.  相似文献   

5.
Acetaminophen is one of the most widely used analgesic drugs. Although the mechanism of analgesic action of acetaminophen is still not known, the involvement of the central serotonin (5-hydroxytryptamine: 5-HT) system is one possibility. In the present study, we examined the antinociceptive effect of acute and chronic intraperitoneally (i.p.) administered acetaminophen by tail flick latency measurements in the rat. A significantly increased tail flick latency was observed in acute and 15-day acetaminophen-treated rats, but not in 30-day acetaminophen-treated rats, at a dose of 400 mg/kg/day. To investigate the plasticity of receptors at postsynaptic membrane, we conducted a series of experiments by radioligand binding method on frontal cortex and brainstem membrane. The technique involved radioligand binding with [phenyl-4-3H]spiperone and ketanserin for studying 5-HT2A receptor characteristics. A significant decrease in the maximum number of 5-HT2A binding sites (Bmax) was demonstrated in all treatment groups with acetaminophen 300 and 400 mg/kg on frontal cortex membrane, whereas the value of the dissociation equilibrium constant (Kd) remained unchanged. The down-regulation of 5-HT2A binding sites in frontal cortex was of a lesser magnitude after 30 days of treatment and the tail flick latency was as in the control animals. These results suggest that down-regulation of 5-HT2A receptor in response to 5-HT release is a major step in the mechanism underlying analgesia produced by this agent. On the contrary, chronic use of acetaminophen may result in 5-HT depletion, which in turn produces re-adaptation of postsynaptic 5-HT2A receptors. These data provide further evidence for a central 5-HT-dependent antinociceptive effect of acetaminophen.  相似文献   

6.
Total 5-HT binding sites and 5-HT1A receptor density was measured in brain regions of rats treated with imipramine (5 mg/kg body wt), desipramine (10 mg/kg body wt) and clomipramine (10 mg/kg body wt), for 40 days, using [3H]5-HT and [3H]8-OH-DPAT, respectively. It was observed that chronic exposure to tricyclic antidepressants (TCAs) results in significant downregulation of total [3H]5-HT binding sites in cortex (42–76%) and hippocampus (35–67%). The 5-HT1A receptor density was, however, decreased significantly (32–60%) only in cortex with all the three drugs. Interestingly, in hippocampus imipramine treatment increased the 5-HT1A receptor density (14%). The affinity of [3H]8-OH-DPAT was increased only with imipramine treatment both in cortex and hippocampus. The affinity of [3H]5-HT to 5-HT binding sites in cortex was increased with imipramine treatment and decreased with desipramine and clomipramine treatment. 5-HT sensitive adenylyl cyclase (AC) activity was significantly increased in cortex with imipramine (72%) and clomipramine (17%) treatment, whereas in hippocampus only imipramine treatment significantly increased AC activity (50%). In conclusion, chronic treatment with TCAs results in downregulation of cortical 5-HT1A receptors along with concomitant increase in 5-HT stimulated AC activity suggesting the involvement of cortical 5-HT1A receptors in the mechanism of action of TCAs.  相似文献   

7.
Novel 5-HT1 autoreceptor ligands based on the N-4-aryl-piperazinyl-N′-ethyl-5,6,7,8-tetrahydropyrido[4′, 3′:4,5]thieno[2,3-d]pyrimidin-4(3H)-one core are described. Aiming at antidepressants with a novel mode of action our objective was to identify potent antagonists showing balanced affinities and high selectivity for the 5-HT1A and 5-HT1B receptors. Strategies for the development of dual 5-HT1A and 5-HT1B antagonists based on 1 and 2 as leads and the corresponding results are discussed. Isoquinoline analogue 33 displayed high affinity and an antagonistic mode of action for the 5-HT1A and the 5-HT1B receptors and was characterized further with respect to selectivity, electrically stimulated [3H]5-HT release and in vivo efficacy.  相似文献   

8.
The first effects of 3,4-methylen-dioxy-metamphetamine (MDMA, “ecstasy”), on serotonin 1A (5-HT1A) receptors in rat hippocampus were determined by means of [3H]-8-hydroxy-dipropylamino-tetralin ([3H]-8-OH-DPAT) and 5′guanosine-(γ-[35S]-thio)triphosphate ([35S]-GTPγS) binding as well as inhibition of forskolin (FK)-stimulated adenylyl cyclase (AC) activity. The study was completed by [35S]-GTPγS functional autoradiography experiments carried out in frontal sections of rat brain, including the hippocampal region. Results showed that MDMA was either able to displace [3H]-8-OH-DPAT binding (Ki  500 nM) or to reduce the number of specific sites (Bmax) without affecting Kd. The drug also failed to change the [35S]-GTPγS binding or to inhibit AC velocity, underlying its behavior as a non-competitive 5-HT1A receptor antagonist. Further, MDMA (1 or 100 μM), partially antagonized either [35S]-GTPγS binding stimulation of the agonists 5CT and 8-OH-DPAT or the AC inhibition induced by 5CT and DP-5CT. However, in contrast to binding studies, in AC assays the amphetamine displayed an effect also on EC50, always being less potent than the reference antagonist WAY100,635. In functional autoradiography, MDMA behaved either as a partial 5-HT1A antagonist in limbic areas or, added alone, as an agonist, increasing the coupling signal presumably through 5-HT release from synapses. Interestingly, the selective 5-HT re-uptake inhibitor (SSRI) fluoxetine had no effect on MDMA [35S]-GTPγS binding activation. This latter finding indicates that the amphetamine can release 5-HT via alternative mechanisms to 5-HT transporter binding, probably via membrane synaptic receptors or vesicular transporters. The release of other transmitters is not excluded. Therefore, our results encourage at extending the study of MDMA biochemical profiles, in the attempt to elucidate those amphetamine-induced pathways with a potential for neurotoxicity or psycho-stimulant activity.  相似文献   

9.
The regional distribution of the mRNA encoding the 5-HT1A serotonin receptor (whose selective agonists are potential anxiolytic and antidepressant drugs) was investigated in rat brain sections by in situ hybridization histochemistry using two sets of [32P]labelled nucleoprobes, a riboprobe of 156 bases and oligoprobes of 30 bases corresponding to highly selective portions within the third intracellular loop and the N terminus domain of the amino acid sequence. These probes allowed the visualization of the 5-HT1A mRNA mainly in the limbic regions: dentate gyrus and area CA1 of the hippocampus, amygdala, entorhinal cortex, lateral septum and the dorsal raphe nucleus. These structures were also those which could be labelled by the specific 5-HT1A radioligand [125I]BH-8-MeO-N-PAT and antibodies raised against a synthetic 26 amino acid peptide whose sequence was taken from the most selective portion of the rat 5-HT1A receptor protein. These data suggest that the 5-HT1A receptors are not transported to a long distance from their site of synthesis, as it has been already reported for the somato-dendritic 5-HT1A autoreceptors in the dorsal raphe nucleus. Combined autoradiographic quantification of the 5-HT1A binding sites (labelled by a selective radioligand such as [125I]BH-8-MeO-N-PAT, the 5-HT1A receptor binding subunit (by radioimmunohistochemistry) and the 5-HT1A mRNA on adjacent brain sections should be a relevant approach for assessing the molecular mechanisms responsible for the functional alterations of these receptors under various pathological and pharmacological conditions.  相似文献   

10.
Serotonin 5-HT1A receptors have been reported to be negatively coupled to muscarinic receptor-stimulated phosphoinositide turnover in the rat hippocampus. In the present study, we have investigated further the pharmacological specificity of this negative control and attempted to elucidate the mechanism whereby 5-HT1A receptor activation inhibits the carbachol-stimulated phosphoinositide response in immature or adult rat hippocampal slices. Various 5-HT1A receptor agonists were found to inhibit carbachol (10 microM)-stimulated formation of total inositol phosphates in immature rat hippocampal slices with the following rank order of potency (IC50 values in nM): 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) (11) greater than ipsapirone (20) greater than gepirone (120) greater than RU 24969 (140) greater than buspirone (560) greater than 1-(m-trifluoromethylphenyl)piperazine (1,500) greater than methysergide (5,644); selective 5-HT1B, 5-HT2, and 5-HT3 receptor agonists were inactive. The potency of the 5-HT1A receptor agonists investigated as inhibitors of the carbachol response was well correlated (r = 0.92) with their potency as inhibitors of the forskolin-stimulated adenylate cyclase in guinea pig hippocampal membranes. 8-OH-DPAT (10 microM) fully inhibited the carbachol-stimulated formation of inositol di-, tris-, and tetrakisphosphate but only partially antagonized (-40%) inositol monophosphate production. The effect of 8-OH-DPAT on carbachol-stimulated phosphoinositide turnover was not prevented by addition of tetrodotoxin (1 microM), by prior destruction of serotonergic afferents, by experimental manipulations causing an increase in cyclic AMP levels (addition of 10 microM forskolin), or by changes in membrane potential (increase in K+ concentration or addition of tetraethylammonium). Prior intrahippocampal injection of pertussis toxin also failed to alter the ability of 8-OH-DPAT to inhibit the carbachol response. Carbachol-stimulated phosphoinositide turnover in immature rat hippocampal slices was inhibited by the protein kinase C activators phorbol 12-myristate 13-acetate (10 microM) and arachidonic acid (100 microM). Moreover, the inhibitory effect of 8-OH-DPAT on the carbachol response was blocked by 10 microM quinacrine (a phospholipase A2 inhibitor) but not by BW 755C (100 microM), a cyclooxygenase and lipoxygenase inhibitor. These results collectively suggest that 5-HT1A receptor activation inhibits carbachol-stimulated phosphoinositide turnover by stimulating a phospholipase A2 coupled to 5-HT1A receptors, leading to arachidonic acid release. Arachidonic acid could in turn activate a gamma-protein kinase C with as a consequence an inhibition of carbachol-stimulated phosphoinositide turnover. This inhibition may be the consequence of a phospholipase C phosphorylation and/or a direct effect on the muscarinic receptor.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
[3H]Lysergic acid diethylamide (LSD) in the presence of 40 nM ketanserin labeled the 5-HT1A receptor subtype in rat hippocampal membranes. In the presence of guanosine triphosphate (GTP), the Bmax and affinity of [3H]LSD binding to the 5-HT1A binding site were significantly decreased. [3H]LSD in the presence of 40 nM WB4101 labeled the 5-HT2 receptor subtype in homogenates of rat frontal cortex. In contrast to the effect on [3H]LSD binding to the 5-HT1A binding site, GTP produced no significant effect on either the Bmax or the KD of [3H]LSD binding to the 5-HT2 binding site. Competition of 5-HT for [3H]LSD binding to the 5-HT2 binding site was best described by a computer-derived model assuming two binding sites. In the presence of GTP, the 5-HT competition curve was shifted significantly to the right with an approx. 3-fold increase in the IC50. These binding characteristics are consistent with [3H]LSD acting as an antagonist at the 5-HT2 receptor which has multiple affinity states for agonists and is coupled to a guanine nucleotide regulatory subunit. Thus, [3H]LSD has binding characteristics consistent with it acting as an agonist at the 5-HT1A receptor subtype but as an antagonist at the 5-HT2 receptor subtype in rat brain.  相似文献   

12.
Previous studies have shown that functional 5-HT1A receptors are present in the cerebellum only for the early postnatal period in rats. In order to investigate further the possible physiological significance of such a transient expression of 5-HT1A receptors during maturation of the cerebellum, anatomical studies were performed for identifying which cell type(s) are endowed with these receptors in 8-day-old rats. Autoradiography (using [125I]BH-8-MeO-N-PAT) with dry films and emulsion-coated coverslips, and radioimmunohistochemistry (using specific polyclonal anti-5-HT1A receptor antibodies) of vermis sections revealed that 5-HT1A receptors were mainly concentrated in the molecular layer of the anterior part of the lobule X and the posterior part of the lobule IXB. X-Irradiation on the 5th postnatal day yielded an agranular cerebellum whose density of 5-HT1A sites was higher than that in age-paired control animals. These data indicate that 5-HT1A receptors are not located on granule cells, but probably on glial cells in the molecular layer of the immature cerebellum. This location further supports the possible implication of glial 5-HT1A receptors in some trophic action of 5-HT during CNS maturation.  相似文献   

13.
Expression of serotonin receptor mRNAs in blood vessels   总被引:17,自引:0,他引:17  
Using RT-PCR we distinguished mRNAs for all known G-protein coupled serotonin receptors expressed in various rat and porcine blood vessels. Nearly all vessels expressed 5HT1 β, 5-HT2A, 5-HT2B, 5-HT4, and 5-Ht7 receptor mRNA to different extents. New splice variants of the porcine 5-HT4 receptor were observed. Similar PCR assays were performed with endothelial and smooth muscle cells from human pulmonary artery, aorta, and with endothelial cells from human coronary artery and umbilical vein. All endothelial cells expressed 5-HT1 β, 5-HT2b, and 5-HT4 receptor mRNA, whereas in smooth muscle cells 5-HT1 β, 5-HT2A, 5-HT7, and in some experiments 5-HT2B receptor mRNA were found. A model for the regulation of vascular tone by different 5-HT receptors is proposed.  相似文献   

14.
Many of the components involved in the synthesis and release of serotonin (5-HT) display a circadian variation in their activity. Autoreceptors located on nerve terminals were recently suggested to underlie some of these circadian variations. The aim of this study was to examine whether terminal 5-HT1D autoreceptors in the cerebral cortex of the guinea pig exhibit a circadian variation in their responsiveness. The responsiveness of these autoreceptors was assessed by the ability of exogenously applied 5-HT to inhibit the potassium-evoked release of [3H]5-HT from slices of guinea pig cortex. Identical experiments were conducted at four different, equally spaced time points during the light:dark cycle of the guinea pig. The results presented here demonstrate that terminal 5-HT1D autoreceptors do not exhibit a circadian variation in their responsiveness. Therefore, terminal 5-HT1D autoreceptors bear similarity to terminal 5-HT1B autoreceptors identified in rat brain in being devoid of a significant rhythm in their responsiveness.  相似文献   

15.
On the basis of systematic studies on the structure–activity relationships in arylpiperazine group of serotonin ligands, 12 new derivatives containing quinazolidin-4(3H)-one (1–4), 2-phenyl-2,3-dihydrophthalazine-1,4-dione (5–8) or 1-phenyl-1,2-dihydropyridazine-3,6-dione (9–12) fragments were synthesized. The majority of the tested compounds (2, 4, 7, 8 and 10–12) showed a high affinity for 5-HT1A receptors (Ki=11–54 nM) and two (1, 2) were found active at 5-HT2A sites (16 and 68 nM, respectively). All the new 5-HT1A ligands tested in vivo revealed an antagonistic activity at postsynaptic 5-HT1A receptors, and three of them behaved as agonists at presynaptic ones. Additionally, both the meta-chlorophenylpiperazine derivatives containing quinazolidin-4-one fragment showed features of 5-HT2A receptor antagonists. The dual 5-HT1A/5-HT2A receptor ligand (2) was further tested for its potential psychotropic activity. It showed a distinct anxiolytic-like activity in a conflict drinking test in rats and the observed effect was more potent in terms of the active dose, than that produced by diazepam (used as a reference drug).  相似文献   

16.
In this review, we describe six lines of evidence that reveal a modulatory role for serotonin (5-HT) in the regulation of the response of suprachiasmatic nucleus (SCN) neurons to retinal illumination in the Syrian hamster. Electrical stimulation of the median raphe nucleus, sufficient to elicit the release of 5-HT in the SCN, inhibits light-induced phase shifts of the hamster circadian activity rhythm. Two 5-HT receptors capable of mediating the effects of 5-HT on photic responses, the 5-HT7 receptor and the 5-HT1B receptor, are present in the hamster SCN. Light-induced phase shifts are attenuated by systemic and local administration of two 5-HT receptor agonists, 8-OH-DPAT, and TFMPP, and these agents attenuate photic phase shifts by acting on pharmacologically distinct receptors. Furthermore, both compounds also attenuate light-induced Fos expression and photic suppression of pineal melatonin content, indicating that serotonergic modulation of photic signal transduction in the SCN is not limited to the regulation of circadian phase. Finally, both 8-OH-DPAT and TFMPP inhibit RHT neurotransmission in the hypothalamic slice preparation. Further, TFMPP fails to attenuate responses to exogenous glutamate on retinorecipient SCN neurons, consistent with a presynaptic site of action for the drug. Based on these data, we propose that 5-HT modulates RHT neurotransmission in the SCN through at least two distinct mechanisms: (1) via activation of 5-HT7 receptors probably located on retinorecipient neurons; and (2) via activation of presynaptic 5-HT1B receptors leading to reduced release of glutamate from RHT terminals in the SCN.  相似文献   

17.
Hypothalamic paraventricular nucleus (PVN) has an important role in the regulation of water and sodium intake. Several researches described the presence of 5-HT1 receptors in the central nervous system. 5-HT1A was one of the prime receptors identified and it is found in the somatodendritic and post-synaptic forms. Therefore, the aim of this study was to investigate the participation of serotonergic 5-HT1A receptors in the PVN on the sodium intake induced by sodium depletion followed by 24 h of deprivation (injection of the diuretic furosemide plus 24  h of sodium-deficient diet). Rats (280–320 g) were submitted to the implant of cannulas bilaterally in the PVN. 5-HT injections (10 and 20 μg/0.2 μl) in the PVN reduced NaCl 1.8% intake. 8-OH-DPAT injections (2.5 and 5.0 μg/0.2 μl) in the PVN also reduced NaCl 1.8% intake. pMPPF bilateral injections (5-HT1A antagonist) previously to 8-OH-DPAT injections have completely blocked the inhibitory effect over NaCl 1.8% intake. 5-HT1A antagonists partially reduced the inhibitory effect of 5-HT on NaCl 1.8% intake induced by sodium depletion. In contrast, the intake of palatable solution (2% sucrose) under body fluid-replete conditions was not changed after bilateral PVN 8-OH-DPTA injections. The results show that 5-HT1A serotonergic mechanisms in the PVN modulate sodium intake induced by sodium loss. The finding that sucrose intake was not affected by PVN 5-HT1A activation suggests that the effects of the 5-HT1A treatments on the intake of NaCl are not due to mechanisms producing a nonspecific decrease of all ingestive behaviors.  相似文献   

18.
High affinity, specific [3H]5-hydroxytryptamine (5-HT) binding to spinal cord synaptosomes was examined to identify the 5-HT receptor subtypes present. Computer nonlinear regression analysis of competition studies employing 8-OH-DPAT indicated that this 5-HT1A selective agonist demonstrated high affinity competition (Ki = 1.3 nM) for 24.6 ± 0.7% of the total [3H]5-HT binding sites. Competition studies employing the 5-HT1B selective agonist RU24969, in the presence of 100 nM 8-OH-DPAT, indicated that RU24969 demonstrated high affinity (Ki = 1.1 nM) competitive inhibition for 26.2 ± 1.4% of all [3H]5-HT binding sites. Neither 5-HT1C, 5-HT1D, 5-HT2 nor 5-HT3 selective compounds demonstrated any high affinity competition for the residual 49% of specific [3H]5-HT binding. Therefore, three major classes of [3H]5-HT binding sites could be demonstrated in spinal cord synaptosomes: 5-HT1A, 5-HT1B and a novel [3H]5-HT binding site which respectively represented 25, 26 and 49% of spinal cord synaptosomal [3H]5-HT binding. Further studies focusing on the function of the latter binding site are needed to determine if the presently identified novel binding site is the major 5-HT1 receptor subtype present in spinal cord.  相似文献   

19.
Although the density and distribution of 5-HT2A(5-hydroxytryptamine-2A) receptors is well established for rat brain, the 5-HT2A receptor distribution and density in guinea pig brain has not been extensively studied. In the present in vitro study, we have utilized 125I-lysergic acid diethylamide ([125I]LSD) to quantify and compare 5-HT2A receptor density in coronal sections of rat and guinea pig brain. Spiperone (1 μM) and sulpiride (1 μM) were used to displace [125I]LSD binding from 5-HT2A and D2 binding sites, respectively. Ligand binding was quantified by computer-aided image analysis densitometry (MCID). Similar to the rat, areas of highest specific 5-HT2A receptor binding (fmol/mg protein) in guinea pig brain included the claustrum and Layer 4 of the cerebral cortex. Significant binding was also found in remaining neocortical layers, islands of Calleja, caudate putamen, olfactory bulb, nucleus accumbens, and choroid plexus. While the rat brain exhibited a high level of specific binding in the tenia tecta and mammillary nuclei, little binding was observed in these regions in the guinea pig. In both rat and guinea pig, low specific binding was found in amygdaloid, thalamic, or cerebellar areas. These studies indicate a general similarity between 5-HT2A binding site distribution and relative density in guinea pig and rat brain but point to a few brain regions where significant differences exist.  相似文献   

20.
The neurotransmitter 5-hydroxytryptamine (5-HT), commonly known as serotonin, is stored at peripheral sites in mast cells and released from this peripheral source upon IgE cross-linking. In this study, we investigated the expression of serotoninergic receptors (5-HTR), the signaling pathway, and biological activity of 5-HT on human dendritic cells (DC), showing that immature and mature DC expressed mRNA for different serotoninergic receptors. Thereby, the mRNA of 5-HTR(1B), 5-HTR(1E), 5-HTR(2A), 5-HTR(2B), one splicing variant of the 5-HTR(3), 5-HTR(4), and 5-HTR(7) receptors were detected. Immature DC preferentially expressed mRNA for the heptahelical 5-HTR(1B), 5-HTR(1E), and 5-HTR(2B) receptors, while mature DC mostly expressed 5-HTR(4) and 5-HTR(7). The mRNA expression level of the ligand-gated cation channel 5-HTR(3) and the heptahelical 5-HTR(2A) did not significantly change during maturation. Isotype-selective receptor agonists allowed us to show that 5-HT stimulated 5-HTR(3)-dependent Ca(2+) influx in immature and mature DC. Moreover, we revealed that 5-HTR(1) and 5-HTR(2) receptor stimulation induced intracellular Ca(2+) mobilization via G(i/o) proteins in immature, but not mature, DC. Activation of 5-HTR(4) and 5-HTR(7) induced cAMP elevation in mature DC. Functional studies indicated that activation of 5-HTR(4) and 5-HTR(7) enhanced the release of the cytokines IL-1beta and IL-8, while reducing the secretion of IL-12 and TNF-alpha in mature DC. In summary, our study shows that 5-HT stimulated, in a maturation-dependent manner, different signaling pathways in DC. These data point to a role for 5-HT in regulating the immune response at peripheral sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号