首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We studied the effect of interleukin-1 alpha (IL-1) on corticotropin-releasing hormone (CRH) secretion by explanted rat hypothalami in vitro. We also assessed possible mediation of arachidonic acid metabolites on IL-1-stimulated CRH secretion, by preincubating hypothalami with the cyclooxygenase inhibitor indomethacin (INDO, 1 microM), the lipoxygenase and cyclooxygenase inhibitor eicosatetraynoic acid (ETYA, 10 microM), or the lipoxygenase inhibitor nordihydroguaiaretic acid (NDGA, up to 30 microM). In additional experiments, prostaglandins (PG) E2 and F2 alpha were added to the cultures treated with INDO or ETYA. Finally, we investigated the effect of dexamethasone (DEX) on IL-1-stimulated CRH secretion. IL-1 stimulated immunoreactive CRH (iCRH) secretion by explanted hypothalami in a concentration-dependent fashion. Both INDO and ETYA inhibited IL-1-(10nM)-stimulated iCRH secretion, whereas NDGA did not have any effect. The addition of PGF2 alpha (10 nM) restored the secretion of iCRH inhibited by INDO. DEX treatment significantly inhibited IL-1-stimulated iCRH release. Our results suggest that the stimulatory effect of IL-1 on the hypothalamic CRH neuron is mediated by the cyclooxygenase metabolites of arachidonic acid, and, among others, by PGF2 alpha.  相似文献   

2.
Experimental evidence suggests that serotonin (5HT) is excitatory to the hypothalamic-pituitary-adrenal axis and that this effect involves activation of both hypothalamic corticotropin-releasing hormone (CRH) and pituitary ACTH secretion. The present study was undertaken to examine the mechanism by which 5HT stimulates the central component of the HPA axis. To accomplish this we employed an in vitro rat hypothalamic organ culture system in which CRH secretion from single explanted hypothalami was measured by specific radioimmunoassay (IR-rCRH). All experiments were performed after an overnight (15-18 hr) preincubation. Serotonin stimulated IR-rCRH secretion in a dose-dependent fashion. The response was bell-shaped and the peak effect was observed at the concentration of 10(-9) M. The stimulatory effect of 10(-9) M 5HT was antagonized by the 5HT1 and 5HT2 receptor metergoline and by the selective 5HT2 receptor antagonists ketanserin and ritanserin. The muscarinic antagonist atropine, the nicotinic antagonist hexamethonium and the alpha-adrenergic receptor antagonist phentolamine, on the other hand, did not inhibit 5HT-induced IR-rCRH secretion. The specific 5HT2 receptor agonist 1-(2,5-dimethoxy-4-iodo-phenyl)-2-aminopropane (DOI) stimulated IR-rCRH secretion in a dose-dependent fashion. The response was bell-shaped with peak of effect reached at the concentration of 10(-9) M. We also tested the ability of the 5HT agonist meta-chlorophenylpiperazine (m-CPP) and of the selective 5HT1A receptor agonist 8-hydroxy-2-(di-n-propylamino) tetralin (8-OH-DPAT) to cause CRH secretion. Although both m-CPP and 8-OH-DPAT stimulated IR-rCRH secretion in a dose-dependent fashion, several differences were observed when their effect was compared to that of 5HT. These included a different shape of the dose-response curve, a lower maximal stimulatory effect and a different maximal stimulatory concentration. These findings suggest that serotonin stimulates CRH secretion by explanted rat hypothalami and that this effect appears to be mediated mainly through a 5HT2 receptor mechanism.  相似文献   

3.
Rat brain striatum slices were incubated with [3H]choline, perfused with a physiological buffer, and stimulated by perfusion with a K+-enriched buffer for 2 min. The tritium overflow evoked by K+ was decreased by 5-hydroxytryptamine (serotonin, 5-HT) (maximal inhibition 10(-6) M). This effect of 5-HT was mimicked by several agonists (5-methoxytryptamine, N,N-dimethyl-tryptamine, bufotenin) and blocked by serotonergic antagonists (methiothepin, methysergide, cinanserin) but not by haloperidol; methiothepin and methysergide alone slightly increased the K+-evoked overflow of tritium (3H). Inhibition of the tritium release by 5-HT was not suppressed in the presence of tetrodotoxin (TTX) (10(-6) M). These results suggest that 5-HT tonically inhibits acetylcholine (ACh) release from striatal cholinergic neurons by acting on a presynaptic receptor localized on cholinergic terminals.  相似文献   

4.
The effects of vasoactive intestinal polypeptide (VIP) and nitric oxide (NO) on the motor activity of the rat proximal colon were examined in an ex vivo model of vascularly perfused rat proximal colon. VIP reduced motor activity and this inhibitory effect was not altered by either atropine, hexamethonium, tetrodotoxin (TTX) nor TTX plus acetylcholine (ACh), but was completely antagonized by NO synthase inhibitor N(G)-nitro-L-arginine (L-NA) and by VIP receptor antagonist, VIP(10-28). These results suggest that VIP may exert a direct inhibitory effect on the motor activity of the rat proximal colon via a VIP receptor located on the smooth muscle and this effect is mediated by NO but not by cholinergic pathways. Atropine and hexamethonium reduced but ACh stimulated motor activity and the effect of ACh was not changed by TTX, suggesting that the cholinergic pathway may exert a direct stimulatory effect on motor activity. Single injection of TTX, VIP(10-28) or L-NA induced a marked increase in motor activity, suggesting that the motor activity of rat proximal colon is tonically suppressed by VIP and NO generating pathways, and elimination of inhibitory neurotransmission by TTX may induce an abnormal increase of the motor activity. The interaction between VIP and NO in regulation of motor activity was further examined by a measurement of NO release from vascularly perfused rat proximal colon. Results showed that NO release was significantly increased during infusion of VIP and this response was reversed by L-NA. These results suggest that VIP generating neurons may inhibit colonic motility by stimulating endogenous NO production in either smooth muscle cells or nerve terminals.  相似文献   

5.
A number of compounds showing general anesthetic action in the rotifer Brachionus calyciflorus were investigated in the presence of acetylcholine. Non-ionizing anesthetics, including tricaine, showed no interaction with acetylcholine. However, highly ionized compounds like the local anesthetics procaine and lidocaine, the muscarinic blocker and local anesthetic atropine, and the beta-adrenergic blocker propranolol showed a synergistic effect with acetylcholine. ACh increased the general anesthetic effect of these compounds in a statistically highly significant dose-dependent fashion. To account for the mechanism of this unusual and novel effect it is proposed that these compounds interact with the anesthetic binding site of the rotifer cholinoceptor ionophore in the open state. It is also proposed that non-ionizing compounds have a general membrane effect only. In addition to anesthesia, atropine and propranolol cause foot paralysis in B. calyciflorus. This other novel effect is also enhanced by acetylcholine as well as decamethonium, a neuromuscular blocker.  相似文献   

6.
In the ewe, two types of seasonal fluctuations in secretion of tonic luteinizing hormone (LH) have been described: a steroid-dependent change whereby estradiol gains the capacity to suppress LH pulse frequency in anestrus, and a steroid-independent decrease in pulse frequency in ovariectomized animals during anestrus. We have proposed that the former reflects activation, in anestrus, of estradiol-sensitive catecholaminergic neurons that inhibit gonadotropin-releasing hormone (GnRH). Three results reported here support this hypothesis: dopaminergic (pimozide) and alpha-adrenergic (phenoxybenzamine) antagonists increased LH in intact anestrous ewes without altering pituitary responses to GnRH; other dopaminergic (fluphenazine) and alpha-adrenergic (dibenamine) antagonists also increased LH in anestrus; agonists for dopaminergic (apomorphine) and alpha-adrenergic (clonidine) receptors suppressed LH secretion in both seasons, suggesting that the appropriate receptors are present in breeding-season ewes. In contrast, catecholamines do not appear to mediate the steroid-independent suppression of pulse frequency; neither pimozide nor phenoxybenzamine increased LH pulse frequency in ovariectomized ewes during anestrus. When antagonists for 6 other neurotransmitter receptors (muscarinic and nicotinic cholinergic, GABAnergic, serotonergic, opioid, and beta-adrenergic) were tested in anestrus, only cyproheptadine, the serotonergic antagonist, increased pulse frequency in ovariectomized ewes. Cyproheptadine had no effect on frequency during the breeding season. On the basis of these results, we propose that the steroid-dependent and -independent actions of anestrous photoperiod occur via catecholaminergic and serotonergic neurons, respectively.  相似文献   

7.
Suspecting that paracrine inhibition might influence neuronal regulation of the endocrine L cells, we studied the role of somatostatin (SS) in the regulation of the secretion of the proglucagon-derived hormones glucagon-like peptide-1 and -2 (GLP-1 and GLP-2). This was examined using the isolated perfused porcine ileum stimulated with acetylcholine (ACh, 10(-6) M), neuromedin C (NC, 10(-8) M), and electrical nerve stimulation (NS) with or without alpha-adrenergic blockade (phentolamine 10(-5) M), and perfusion with a high-affinity monoclonal antibody against SS. ACh and NC significantly increased GLP secretion, whereas NS had little effect. SS immunoneutralization increased GLP secretion eight- to ninefold but had little influence on the GLP responses to ACh, NC, and NS. Basal SS secretion (mainly SS28) was unaffected by NS alone. Phentolamine + NS and NC abstract strongly stimulated release mainly of SS14, whereas ACh had little effect. Infused intravascularly, SS14 weakly and SS28 strongly inhibited GLP secretion. We conclude that GLP secretion is tonically inhibited by a local release of SS28 from epithelial paracrine cells, whereas SS14, supposedly derived from enteric neurons, only weakly influences GLP secretion.  相似文献   

8.
The effect of adenosine in insulin secretion and adenylate cyclase activity of rat islets of Langerhans was investigated. Adenosine inhibited insulin secretion stimulated by glucose, glucagon, prostaglandin E2, tolbutamine and theophylline. Adenosine decreased basal adenylate cyclase activity of the islets as well as that stimulated by glucagon prostaglandin E2 and GTP, although fluoride-stimulated activity was not affected. Neither insulin secretion nor adenylate cyclase activity of the islets was affected by adenine, AMP or ADP. The inhibitory effect of adenosine on adenylate cyclase activity was not altered by either phenoxybenzamine (alpha-adrenergic blocker) or propranolol (beta-adrenergic blocker), suggesting that the effect is not mediated through the adrenergic receptors of the islet cells. These results suggest that the intracellular concentration of adenosine in the beta-cell may play a role in regulating insulin secretion and that this effect may be mediated via alterations in the activity of adenylate cyclase in the beta-cell.  相似文献   

9.
In human cerebral cortex slices noradrenaline, isoproterenol (a beta-adrenergic agonist), dopamine, apomorphine (a dopaminergic agonist), and serotonin stimulated cyclic AMP formation: noradrenaline greater than or equal to isoproterenol greater than dopamine = apomorphine = serotonin. Clonidine (and alpha-adrenergic agonist) was ineffective in stimulating cyclic AMP formation in temporal cortex slices. The stimulatory effect of noradrenaline and isoproterenol was blocked by propranolol (a beta-adrenergic blocker) but not by phentolamine (an alpha-adrenergic blocker). Pimozide (a selective dopaminergic antagonist) inhibited the increase of cyclic AMP formation induced by dopamine or apomorphine but not that induced by noradrenaline, isoproterenol, or serotonin. Neither propranolol or phentolamine had any effect on dopamine- or serotonin-stimulated cyclic AMP formation. Chlorpromazine blocked the increase of cyclic AMP formation induced by noradrenaline, dopamine or serotonin, while cyproheptadine, a putative central serotonergic antagonist, was ineffective. These observations suggest that there may be at least two monoamine-sensitive adenylate cyclases in human cerebral cortex which have the characteristics of a beta-adrenergic and a dopaminergic receptor, respectively, and also possibly a serotonergic receptor.  相似文献   

10.
We describe the effects of lanthanum on protein secretion, potassium efflux, calcium uptake and phosphatidylinositol turnover stimulated by cholinergic agonists in rat parotid glands. Carbachol increases in vitro calcium uptake, protein secretion and K+ efflux through muscarinic receptor; however it fails to stimulate protein discharge or K+ release in a incubation medium free of calcium. Lanthanum inhibits calcium uptake, protein secretion and K+ efflux induced by carbachol without impairing protein discharge stimulated by norepinephrine through the beta-adrenergic receptor. Norepinephrine, in the presence of calcium in the incubation medium, stimulates the K+ efflux through the alpha-adrenergic receptor: this effect is suppressed by lanthanum. These results emphasize the role of increased influx of calcium in the cellular phenomena controlled by muscarinic or alpha-adrenergic receptors. Carbachol increases phosphatidylinositol turnover in the absence of calcium in extracellular medium; indeed it is shown that carbachol increases the rate of phosphatidylinositol breakdown and that lanthanum impairs this cholinergic effects. From these data it is suggested that the interaction between cholinergic agonist and muscarinic receptor could induce a stimulation of 'phosphatidylinositol turnover' which could control the calcium influx according to the gradient through the plasmalemma membrane.  相似文献   

11.
潘玉贞  王丽华 《生理学报》1992,44(4):326-332
通过埋植套管向大鼠双侧缰核分别注射0.1mol/L CaCl_2 0.5μl,0.06mol/L ACh0.5μl,5.4×10~(-3)mol/L三碘季铵酚0.5μl和14.4×10~(-3)mol/L阿托品0.5μl后观察到,Ca~(2 )降低基础痛阈并拮抗电针镇痛效应;ACh拮抗电针镇痛;Ca~(2 )拮抗电针镇痛的作用可被胆碱能N受体阻断剂三碘季铵酚完全翻转。提示缰核内的Ca~(2 )可能通过ACh实现其拮抗电针镇痛的效应。  相似文献   

12.
The inhibitory effect of atropine on phospholipid 32P labelling stimulated by muscarinic or alpha-adrenergic agonists was studied in isolated parotid cells. Atropine (10(-11) to 10(-4) M) had no effect on phospholipid 32P labelling in unstimulated cells. In contrast, 10(-8) to 10(-7) M atropine provoked a competitive inhibition of the cholinergic stimulation (i.e. this effect was completely wiped out at high agonist concentration). The atropine app. KD for the muscarinic receptor was 5 X 10(-9) M. Moreover, atropine inhibits the adrenergic stimulation of phospholipid 32P labelling by decreasing the efficacity and potency of the adrenergic agonists. The atropine app. KD for the alpha-adrenergic receptor can be estimated at 10(-5) M. This inhibition of alpha-adrenergic stimulation appears to be specific since atropine was without effect on the substance P or beta-adrenergic stimulation. At very low concentration (10(-10) - 10(-9) M) atropine seems to be a modulator (activator) of the muscarinic or adrenergic agonist-receptor complex. From the present data, it is suggested that atropine, besides its classical blocker effect at the muscarinic receptor, at high concentration is a specific alpha-adrenergic antagonist.  相似文献   

13.
Adenosine is an endogenous anticonvulsant that exerts its effects through A1 receptors. As the piriform/amygdala is a critical circuit for limbic seizure propagation, in this study, the role of basolateral amygdala A1 receptors on piriform cortex (PC)-kindled seizures was investigated. Rats were kindled by daily electrical stimulation of PC. In fully kindled animals, bilateral intra-amygdala N6-cyclohexyladenosine (CHA; 10-500 micromol/L, a selective A1 receptor agonist) had no effect on kindled-seizure parameters. However, bilateral intra-amygdala 2% lidocaine (reversal neuronal inhibitor) reduced the kindled seizure severity. There was significant increase in stage 4 latency and decrease in stage 5 duration. Bilateral lesion of basolateral amygdala of kindled animals (by electrical DC current) reduced the kindled seizure severity more dramatically. Our results showed afterdischarge duration, stage 5 duration, and seizure duration were decreased and stage 4 latency increased significantly. In addition, daily intra-amygdala CHA had no significant effect on PC kindling acquisition. Therefore, it may be concluded that although the basolateral amygdala neuronal activity has a critical role in the propagation of epileptic seizures from PC, the amygdala A1 receptors have no role in this regard. On the other hand, amygdala A1 receptors have no anticonvulsant or antiepileptogenic effect on PC-kindled seizures.  相似文献   

14.
The inhibitory effect of atropine on phospholipid 32P labelling stimulated by muscarinic or alpha-adrenergic agonists was studied in isolated parotid cells. Atropine (10(-11) to 10(-4) M) had no effect on phospholipid 32P labelling in unstimulated cells. In contrast, 10(-8) to 10(-7) M atropine provoked a competitive inhibition of the cholinergic stimulation (i.e. this effect was completely wiped out at high agonist concentration). The atropine app. KD for the muscarinic receptor was 5 × 10(-9) M. Moreover, atropine inhibits the adrenergic stimulation of phospholipid 32P labelling by decreasing the efficacity and potency of the adrenergic agonists. The atropine app. KD for the alpha-adrenergic receptor can be estimated at 10(-5) M. This inhibition of alpha-adrenergic stimulation appears to be specific since atropine was without effect on the substance P or beta-adrenergic stimulation. At very low concentration (10(-10) — 10(-9) M) atropine seems to be a modulator (activator) of the muscarinic or adrenergic agonist-receptor complex. From the present data, it is suggested that atropine, besides its classical blocker effect at the muscarinic receptor, at high concentration is a specific alpha-adrenergic antagonist.  相似文献   

15.
1. The effects of cholinergic drugs on catecholamine (CA) secretion from adrenal chromaffin tissue of the toad were studied. 2. CA secretion was induced by ACh or nicotine, but not by muscarine. 3. Hexamethonium inhibited the CA release evoked by ACh or nicotine, while d-tubocurarine only affected the nicotinic response. Atropine did not prevent the secretory response. 4. Muscarine abolished the secretion induced by the agonists, this effect being prevented by atropine or gallamine, but not by pirenzepine. 5. In conclusion, CA secretion in the toad is stimulated by activation of nicotinic receptors. Inhibitory muscarinic receptors are present, most likely of type M2, which may play a regulatory function.  相似文献   

16.
This study examined several in vivo and in vitro factors which influence the release of [Met5]-enkephalin (Met-ENK) from male rat hypothalamic slices superfused in vitro. Met-ENK release was significantly stimulated by corticotropin-releasing hormone (CRH; 10(-12)-10(-8) M), an effect which was abolished in the presence of the CRH-receptor antagonist, alpha-helical CRF9-41 (10(-6) M). The amount of Met-ENK release diminished with time in experiments in which the slices were continuously exposed to CRH. The opioid receptor antagonist naloxone (10(-6) M) stimulated Met-ENK release, even in the presence of the Na+ -channel blocker tetrodotoxin (10(-6) M), a result indicating presynaptic opioid feedback inhibition of Met-ENK release. The role of gonadal steroids in the control of Met-ENK release in vitro was also examined. It was found that the basal and CRH-induced release of Met-ENK was not changed 1 week after castration. However, a significant increase in the basal release of this peptide was observed 4 weeks after gonadectomy, and the Met-ENK-releasing efficacy of CRH was found to be reduced. The Met-ENK content of hypothalami from 1-week castrates was not significantly changed from control levels, but was significantly reduced in those from 4-week castrates. These long-term effects of castration could be overcome by the subcutaneous implantation of testosterone-containing capsules at the time of castration.  相似文献   

17.
Abstract: We have shown previously that noradrenaline (NA) stimulated or inhibited the release of corticotropin-releasing hormone (CRH) according to the availability of adrenal steroids. The aim of the present work was to examine whether the changes in the NA modulation of CRH release from hypothalamic neurons result from a steroid-induced plasticity of the adrenergic transduction pathways. From anterior hypothalamic slices cultured in standard medium (i.e., containing adrenal steroids at a final dilution of 61 ± 9 ng/ml), (a) the stimulatory effect of NA on CRH release was reversed in a dose-dependent manner by increasing concentrations of the α1-adrenoreceptor antagonist prazosin, (b) activation of protein kinase C by acute treatment with phorbol 12-myristate 13-acetate (0.5 µ M , 1 h) mimicked NA stimulation of CRH secretion, and (c) the activation of L-type Ca2+ channels by Bay K 8644 also produce an increased CRH secretion. In contrast, the inhibitory effect of NA on CRH secretion from slices cultured in steroid-free medium was markedly reversed by the α2-adrenoreceptor antagonist yohimbine, by pretreatment with pertussin toxin, or by the addition of 4-aminopyridine, a K+-channel blocker. Acute treatment with phorbol 12-myristate 13-acetate did not change the inhibitory NA effect. Moreover, all these effects were reversed by daily corticosterone supplementation, for as long as they were tested. These results are consistent with a steroid-dependent change in the nature of adrenergic receptors and its associated transduction pathways involved in the regulation of CRH secretion in the hypothalamus.  相似文献   

18.
Acetylcholine (ACh), a major neurotransmitter from the autonomic nervous system, regulates the cholinergic stimulation of insulin secretion, through interactions with muscarinic receptors. The present study has characterised the individual involvement of muscarinic receptor subtypes in ACh-induced insulin secretion, using clonal beta cells and selective muscarinic receptor antagonists. BRIN BD11 cells clearly expressed mRNA encoding m1--m4 whereas m5 was not detected by RT-PCR. Insulin release was measured from BRIN BD11 cells treated with ACh in the presence of muscarinic receptor antagonists at concentrations ranging from 3 nM to 1 microM. 300 nM of muscarinic toxin-3 (M4 antagonist) and 1 microM of methoctramine (M2 antagonist) increased ACh (100 microM) stimulated insulin secretion by 168% and 50% respectively (ANOVA, P<0.05). The antagonists alone had no effect on insulin secretion. In contrast, 300 nM of pirenzepine (M1 antagonist) and 30 nM of hexahydro-sila-difenidol p-fluorohydrochloride (M3 antagonist) inhibited ACh stimulation by 91% and 84% respectively (ANOVA, P<0.01). It is concluded that ACh acts on different receptor subtypes producing both a stimulatory and an inhibitory action on insulin release.  相似文献   

19.
Changes in urinary volume and electrolyte excretion were monitored after the injection of cholinergic and monoaminergic drugs into the third cerebral ventricle of conscious male rats made diuretic by an intravenous infusion of 5% dextrose. A natriuretic and kaliuretic response was induced by the intraventricular injection of norephrine (NE) or carbachol, whereas dopamine (DA) had no effect. The beta-receptor stimulator isoproterenol (ISO) induced an antinatriuretic and antikaliuretic effect. Intraventricular injection of the alpha-adrenergic blocker phentolamine abolished the natriuretic response to NE and carbachol and to intraventricular hypertonic saline (HS). By contrast, the beta-adrenergic blocker propranolol induced a natriuresis and kaliuresis when injected alone and an additive effect when its injection was followed by NE or HS. Propranolol potentiated the natriuretic response to carbachol. Cholinergic blockade with atropine diminished the response to NE and blocked the natriuretic response to HS. It is suggested that sodium receptors in the ventricular wall can modify renal sodium excretion via a stimulatory pathway involving cholinergic and alpha-adrenergic receptors and can inhibit sodium excretion via a tonically active beta-receptor pathway.  相似文献   

20.
Like melanophores of many teleosts, those of the dark chub, Zacco temmincki, and the common minnow, Z. platypus (Cyprinidae, Cypriniformes) responded to norepinephrine (NE) by the aggregation of pigment. It was further found that some melanophores were responsive to acetylcholine (ACh) in the same way. The response to NE was blocked by an alpha-adrenergic blocker, phentolamine, whereas the response to ACh was not. By contrast, two muscarinic cholinoceptor antagonists, namely, atropine and scopolamine, effectively blocked the action of ACh. The pigment aggregation due to the liberated sympathetic neurotransmitter was blocked by phentolamine but not by cholinergic blockers. These results suggest that, although the melanophores of these species are controlled in an orthodox manner by the sympathetic nervous system, some of them possess extra muscarinic cholinoceptors that also mediate the aggregation of pigment. The present report is the first to describe the presence of cholinoceptors on the chromatophores in species of fish other than those that belong to the order Siluriformes. The evolutionary implications of these findings are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号