首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A review is presented of the use of developmental toxicity testing in the United States and international regulatory assessment of human health risks associated with exposures to pharmaceuticals (human and veterinary), chemicals (agricultural, industrial, and environmental), food additives, cosmetics, and consumer products. Developmental toxicology data are used for prioritization and screening of pharmaceuticals and chemicals, for evaluating and labeling of pharmaceuticals, and for characterizing hazards and risk of exposures to industrial and environmental chemicals. The in vivo study designs utilized in hazard characterization and dose-response assessment for developmental outcomes have not changed substantially over the past 30 years and have served the process well. Now there are opportunities to incorporate new technologies and approaches to testing into the existing assessment paradigm, or to apply innovative approaches to various aspects of risk assessment. Developmental toxicology testing can be enhanced by the refinement or replacement of traditional in vivo protocols, including through the use of in vitro assays, studies conducted in alternative nonmammalian species, the application of new technologies, and the use of in silico models. Potential benefits to the current regulatory process include the ability to screen large numbers of chemicals quickly, with the commitment of fewer resources than traditional toxicology studies, and to refine the risk assessment process through an enhanced understanding of the mechanisms of developmental toxicity and their relevance to potential human risk. As the testing paradigm evolves, the ability to use developmental toxicology data to meet diverse critical regulatory needs must be retained.  相似文献   

2.
The prospects for using (Q)SAR modelling, read-across (chemical) and other non-animal approaches as part of integrated testing strategies for chemical risk assessment, within the framework of the EU REACH legislation, are considered. The potential advantages and limitations of (Q)SAR modelling and read-across methods for chemical regulatory risk assessment are reviewed. It is concluded that it would be premature to base a testing strategy on chemical-based computational modelling approaches, until such time as criteria to validate them for their reliability and relevance by using independent and transparent procedures, have been agreed. This is mainly because of inherent problems in validating and accepting (Q)SARs for regulatory use in ways that are analogous to those that have been developed and applied for in vitro tests. Until this issue has been resolved, it is recommended that testing strategies should be developed which comprise the integrated use of computational and read-across approaches. These should be applied in a cautious and judicious way, in association with available tissue culture methods, and in conjunction with metabolism and biokinetic studies. Such strategies should be intelligently applied by being driven by exposure information (based on bioavailability, not merely on production volume) and hazard information needs, in preference to a tick-box approach. In the meantime, there should be increased efforts to develop improved (Q)SARs, expert systems and new in vitro methods, and, in particular, ways to expedite their validation and acceptance must be found and prospectively agreed with all major stakeholders.  相似文献   

3.
Toxicological risk assessment for chemicals is still mainly based on highly standardised protocols for animal experimentation and exposure assessment. However, developments in our knowledge of general physiology, in chemicobiological interactions and in (computer-supported) modelling, have resulted in a tremendous change in our understanding of the molecular mechanisms underlying the toxicity of chemicals. This permits the development of biologically based models, in which the biokinetics as well as the toxicodynamics of compounds can be described. In this paper, the possibilities are discussed of developing systems in which the systemic (acute and chronic) toxicities of chemicals can be quantified without the heavy reliance on animal experiments. By integrating data derived from different sources, predictions of toxicity can be made. Key elements in this integrated approach are the evaluation of chemical functionalities representing structural alerts for toxic actions, the construction of biokinetic models on the basis of non-animal data (for example, tissue-blood partition coefficients, in vitro biotransformation parameters), tests or batteries of tests for determining basal cytotoxicity, and more-specific tests for evaluating tissue or organ toxicity. It is concluded that this approach is a useful tool for various steps in toxicological hazard and risk assessment, especially for those forms of toxicity for which validated in vitro and other non-animal tests have already been developed.  相似文献   

4.
Toxicity testing: creating a revolution based on new technologies   总被引:3,自引:0,他引:3  
Biotechnology is evolving at a tremendous rate. Although drug discovery is now heavily focused on high throughput and miniaturized screening, the application of these advances to the toxicological assessment of chemicals and chemical products has been slow. Nevertheless, the impending surge in demands for the regulatory toxicity testing of chemicals provides the impetus for the incorporation of novel methodologies into hazard identification and risk assessment. Here, we review the current and likely future value of these new technologies in relation to toxicological evaluation and the protection of human health.  相似文献   

5.
The manufacture of novel synthetic chemicals has increased in volume and variety, but often the environmental and health risks are not fully understood in terms of toxicity and, in particular, exposure. While efforts to assess risks have generally been effective when sufficient data are available, the hazard and exposure data necessary to assess risks adequately are unavailable for the vast majority of chemicals in commerce. The US Environmental Protection Agency has initiated the ExpoCast Program to develop tools for rapid chemical evaluation based on potential for exposure. In this context, a model is presented in which chemicals are evaluated based on inherent chemical properties and behaviorally-based usage characteristics over the chemical’s life cycle. These criteria are assessed and integrated within a decision analytic framework, facilitating rapid assessment and prioritization for future targeted testing and systems modeling. A case study outlines the prioritization process using 51 chemicals. The results show a preliminary relative ranking of chemicals based on exposure potential. The strength of this approach is the ability to integrate relevant statistical and mechanistic data with expert judgment, allowing for an initial tier assessment that can further inform targeted testing and risk management strategies.  相似文献   

6.
Integrated testing strategies have been proposed to facilitate the process of chemicals risk assessment to fulfil the requirements of the proposed EU REACH system. Here, we present individual, decision-tree style, strategies for the eleven major toxicity endpoints of the REACH system, including human health effects and ecotoxicity. These strategies make maximum use of non-animal approaches to hazard identification, before resorting to traditional animal test methods. Each scheme: a) comprises a mixture of validated and non-validated assays (distinguished in the schemes); and b) decision points at key stages to allow the cessation of further testing, should it be possible to use the available information to classify and label and/or undertake risk assessment. The rationale and scientific justification for each of the schemes, with respect to the validation status of the tests involved and their individual advantages and limitations, will be discussed in detail in a series of future publications.  相似文献   

7.
In its White Paper, "Strategy for a Future Chemicals Policy," published in 2001, the European Commission (EC) proposed the REACH (Registration, Evaluation and Authorisation of CHemicals) system to deal with both existing and new chemical substances. This system is based on a top-down approach to toxicity testing, in which the degree of toxicity information required is dictated primarily by production volume (tonnage). If testing is to be based on traditional methods, very large numbers of laboratory animals could be needed in response to the REACH system, causing ethical, scientific and logistical problems that would be incompatible with the time-schedule envisaged for testing. The EC has emphasised the need to minimise animal use, but has failed to produce a comprehensive strategy for doing so. The present document provides an overall scheme for predictive toxicity testing, whereby the non-animal methods identified and discussed in a recent and comprehensive ECVAM document, could be used in a tiered approach to provide a rapid and scientifically justified basis for the risk assessment of chemicals for their toxic effects in humans. The scheme starts with a preliminary risk assessment process (involving available information on hazard and exposure), followed by testing, based on physicochemical properties and (Q)SAR approaches. (Q)SAR analyses are used in conjunction with expert system and biokinetic modelling, and information on metabolism and identification of the principal metabolites in humans. The resulting information is then combined with production levels and patterns of use to assess potential human exposure. The nature and extent of any further testing should be based strictly on the need to fill essential information gaps in order to generate adequate risk assessments, and should rely on non-animal methods, as far as possible. The scheme also includes a feedback loop, so that new information is used to improve the predictivity of computational expert systems. Several recommendations are made, the most important of which is that the European Union (EU) should actively promote the improvement and validation of (Q)SAR models and expert systems, and computer-based methods for biokinetic modelling, since these offer the most realistic and most economical solution to the need to test large numbers of chemicals.  相似文献   

8.
This document discusses recommendations made by FRAME and the Royal Commission on Environmental Pollution (RCEP) with regard to the current European Commission proposals on the Registration, Evaluation and Authorisation of Chemicals (REACH) system for assessing the risks of chemicals to humans, wildlife and the environment. Of several common aims and recommendations, the two most important are: a) the greater use of non-animal testing methods, especially computational prediction methods (for example, [quantitative] structure-activity relationships, expert systems and biokinetic modelling) for prioritising chemicals for hazard assessment; and b) the greater use of intelligent exposure-based targeted risk assessment, with less emphasis being placed on tonnage-triggers. FRAME has produced a decision-tree testing scheme to illustrate the way in which these approaches could be used, together with in vitro test methods. This scheme has been slightly modified to take account of proposals subsequently made by the RCEP. In addition, FRAME points out that new and improved computational methods are needed through more coordinated research, and that these and existing methods need to be validated. The similarities between the independent publications of FRAME and the RCEP add weight to the recommendations that each have made concerning the implementation of the REACH system.  相似文献   

9.
This document discusses recommendations made by FRAME and the Royal Commission on Environmental Pollution (RCEP) with regard to the current European Commission proposals on the Registration, Evaluation and Authorisation of Chemicals (REACH) system for assessing the risks of chemicals to humans, wildlife and the environment. Of several common aims and recommendations, the two most important are: a) the greater use of non-animal testing methods, especially computational prediction methods (for example, [quantitative] structure-activity relationships, expert systems and biokinetic modelling) for prioritising chemicals for hazard assessment; and b) the greater use of intelligent exposure-based targeted risk assessment, with less emphasis being placed on tonnage-triggers. FRAME has produced a decision-tree testing scheme to illustrate the way in which these approaches could be used, together with in vitro test methods. This scheme has been slightly modified to take account of proposals subsequently made by the RCEP. In addition, FRAME points out that new and improved computational methods are needed through more coordinated research, and that these and existing methods need to be validated. The similarities between the independent publications of FRAME and the RCEP add weight to the recommendations that each have made concerning the implementation of the REACH system.  相似文献   

10.
In its White Paper, Strategy for a Future Chemicals Policy, published in 2001, the European Commission (EC) proposed the REACH (Registration, Evaluation and Authorisation of CHemicals) system to deal with both existing and new chemical substances. This system is based on a top-down approach to toxicity testing, in which the degree of toxicity information required is dictated primarily by production volume (tonnage). If testing is to be based on traditional methods, very large numbers of laboratory animals could be needed in response to the REACH system, causing ethical, scientific and logistical problems that would be incompatible with the time-schedule envisaged for testing. The EC has emphasised the need to minimise animal use, but has failed to produce a comprehensive strategy for doing so. The present document provides an overall scheme for predictive toxicity testing, whereby the non-animal methods identified and discussed in a recent and comprehensive ECVAM document, could be used in a tiered approach to provide a rapid and scientifically justified basis for the risk assessment of chemicals for their toxic effects in humans. The scheme starts with a preliminary risk assessment process (involving available information on hazard and exposure), followed by testing, based on physicochemical properties and (Q)SAR approaches. (Q)SAR analyses are used in conjunction with expert system and biokinetic modelling, and information on metabolism and identification of the principal metabolites in humans. The resulting information is then combined with production levels and patterns of use to assess potential human exposure. The nature and extent of any further testing should be based strictly on the need to fill essential information gaps in order to generate adequate risk assessments, and should rely on non-animal methods, as far as possible. The scheme also includes a feedback loop, so that new information is used to improve the predictivity of computational expert systems. Several recommendations are made, the most important of which is that the European Union (EU) should actively promote the improvement and validation of (Q)SAR models and expert systems, and computer-based methods for biokinetic modelling, since these offer the most realistic and most economical solution to the need to test large numbers of chemicals.  相似文献   

11.
In vitro genotoxicity assays are often used to screen and predict whether chemicals might represent mutagenic and carcinogenic risks for humans. Recent discussions have focused on the high rate of positive results in in vitro tests, especially in those assays performed in mammalian cells that are not confirmed in vivo. Currently, there is no general consensus in the scientific community on the interpretation of the significance of positive results from the in vitro genotoxicity assays. To address this issue, the Health and Environmental Sciences Institute (HESI), held an international workshop in June 2006 to discuss the relevance and follow-up of positive results in in vitro genetic toxicity assays. The goals of the meeting were to examine ways to advance the scientific basis for the interpretation of positive findings in in vitro assays, to facilitate the development of follow-up testing strategies and to define criteria for determining the relevance to human health. The workshop identified specific needs in two general categories, i.e., improved testing and improved data interpretation and risk assessment. Recommendations to improve testing included: (1) re-examine the maximum level of cytotoxicity currently required for in vitro tests; (2) re-examine the upper limit concentration for in vitro mammalian studies; (3) develop improved testing strategies using current in vitro assays; (4) define criteria to guide selection of the appropriate follow-up in vivo studies; (5) develop new and more predictive in vitro and in vivo tests. Recommendations for improving interpretation and assessment included: (1) examine the suitability of applying the threshold of toxicological concern concepts to genotoxicity data; (2) develop a structured weight of evidence approach for assessing genotoxic/carcinogenic hazard; and (3) re-examine in vitro and in vivo correlations qualitatively and quantitatively. Conclusions from the workshop highlighted a willingness of scientists from various sectors to change and improve the current paradigm and move from a hazard identification approach to a "realistic" risk-based approach that incorporates information on mechanism of action, kinetics, and human exposure..  相似文献   

12.
Liverpool John Moores University and FRAME were recently awarded a DEFRA tender to conduct a review of the status of alternative approaches to animal testing, and to recommend further research with regard to the forthcoming European Union REACH (Registration, Evaluation and Authorisation of Chemicals) system for the safety testing and risk assessment of chemicals. The outcome of the project is summarised, including the prospects for in vitro and in silico testing, areas where reduction and refinement could be applied, and how decision-tree integrated testing strategies could be used to reduce the number of animals needed to fulfil the testing requirements of the REACH system. This paper is a prelude to a series of individual papers on detailed suggestions for applying non-animal methods to each of the major toxicity endpoints in REACH.  相似文献   

13.
Parry JM 《Mutation research》2000,464(1):155-158
During the course of the safety evaluation and regulatory control of chemicals it is important to distinguish between "potential hazard" and "actual risk" of exposure to toxins. In the case of DNA reactive chemicals, it has been prudent to assume that hazard is expressed as risk at low exposure concentrations. However, analysis of the dose-response relationships of both DNA reactive and non-DNA reactive genotoxins (e.g., aneugens) indicate that there are exposure concentrations below which protective mechanisms such as DNA repair activity and the presence of multiple targets may lead to the prediction of no risk until threshold concentrations are achieved. Current European Union management procedures for mutagenic chemicals are based predominantly upon hazard assessment rather than assessment of actual risk under likely exposure scenarios. As our knowledge of protective mechanisms increases, the time is now appropriate to undertake a re-evaluation of European Union criteria and to base the clarification mutagenic chemical more firmly upon the basis of actual risks to the human population and to the environment.  相似文献   

14.
The use of Integrated Testing Strategies (ITS) permits the combination of diverse types of chemical and toxicological data for the purposes of hazard identification and characterisation. In November 2008, the European Partnership for Alternative Approaches to Animal Testing (EPAA), together with the European Centre for the Validation of Alternative Methods (ECVAM), held a workshop on Overcoming Barriers to Validation of Non-animal Partial Replacement Methods/Integrated Testing Strategies, in Ispra, Italy, to discuss the extent to which current ECVAM approaches to validation can be used to evaluate partial replacement in vitro test methods (i.e. as potential ITS components) and ITS themselves. The main conclusions of these discussions were that formal validation was only considered necessary for regulatory purposes (e.g. the replacement of a test guideline), and that current ECVAM approaches to validation should be adapted to accommodate such test methods. With these conclusions in mind, a follow-up EPAA-ECVAM workshop was held in October 2009, to discuss the extent to which existing validation principles are applicable to the validation of ITS test methods, and to develop a draft approach for the validation of such test methods and/or overall ITS for regulatory purposes. This report summarises the workshop discussions that started with a review of the current validation methodologies and the presentation of two case studies (skin sensitisation and acute toxicity), before covering the definition of ITS and their components, including their validation and regulatory acceptance. The following main conclusions/recommendations were made: that the validation of a partial replacement test method (for application as part of a testing strategy) should be differentiated from the validation of an in vitro test method for application as a stand-alone replacement, especially with regard to its predictive capacity; that, in the former case, the predictive capacity of the whole testing strategy (rather than of the individual test methods) would be more important, especially if the individual test methods had a high biological relevance; that ITS allowing for flexible and ad hoc approaches cannot be validated, whereas the validation of clearly defined ITS would be feasible, although practically quite difficult; and that test method developers should be encouraged to develop and submit to ECVAM not only full replacement test methods, but also partial replacement methods to be placed as parts of testing strategies. The added value from the formal validation of testing strategies, and the requirements needed in view of regulatory acceptance of the data, require further informed discussion within the EPAA forum on the basis of case studies provided by industry.  相似文献   

15.
Many chemicals are known to be, or have been implicated as, contact allergens, and allergic contact dermatitis is an important occupational and environmental health issue. It is the responsibility of toxicologists to identify those chemicals that have the potential to induce skin sensitisation, and to assess the conditions under which there will exist a risk to human health. This article describes progress that has been made in the development of new approaches to the toxicological evaluation of skin sensitisation, and the benefits to animal welfare that such developments have already produced, and are likely to produce in the future. In this context, the local lymph node assay is described with regard to hazard identification and risk assessment, and possible strategies for the development of in vitro approaches to safety assessment are discussed.  相似文献   

16.
Tonnage-based information requirements are specified in the proposal on the regulation on the Registration, Evaluation and Authorisation of Chemicals (REACH) in the European Union. The hazard assessment for toxic endpoints should be performed by using a tiered approach, i.e. as an information strategy (IS), starting with an evaluation of all of the data already available, including animal in vivo and in vitro data, and human evidence and case reports, as well as data from (Quantitative)-Structure Activity Relationships ([Q]SARs) or read-across, before any further testing is suggested. To contribute to the implementation of the REACH system, the Nordic countries launched two projects: 1) a review of currently used testing strategies, including a comparison with the REACH requirements; and 2) the development of detailed ISs for skin and eye irritation/corrosion. The review showed that the ISs and classification criteria for the selected endpoints are inconsistent in many cases. In the classification criteria, human data and in vivo test results are usually the prerequisites. Other types of information, such as data from in vitro studies, can sometimes be used, but usually as supportive evidence only. This differs from the REACH ISs, where QSARs, read-across and in vitro testing are important elements. In the other part of the project, an IS for skin and eye irritation/corrosion was proposed. The strategy was "tested" by using four high production volume (HPV) chemicals: hydrogen peroxide, methyl tertiary-butyl ether (MTBE), trivalent chromium, and diantimony trioxide, but only MTBE and trivalent chromium are dealt with in this paper. The "test" revealed that in vivo data, human case reports and physical-chemical data were available and could be used in the evaluation. Classification could be based on the proposed IS and the existing data in all cases, except for the eye irritation/corrosion of trivalent chromium. Weight-of-evidence analysis appeared to be a useful step in the ISs proposed, and including it in the REACH strategies should be considered. For these chemicals, few in vitro and (Q)SAR data were available--more of these data would be generated, if the relevant guidance and legislation on classification were updated.  相似文献   

17.
Liverpool John Moores University and FRAME conducted a joint research project, sponsored by Defra, on the status of alternatives to animal testing with regard to the European Union REACH (Registration, Evaluation and Authorisation of Chemicals) system for the safety testing and risk assessment of chemicals. The project covered all the main toxicity endpoints associated with REACH. This paper focuses on the use of alternative (non-animal) methods (both in vitro and in silico) for acute systemic toxicity and toxicokinetic testing. The paper reviews in vitro tests based on basal cytotoxicity and target organ toxicity, along with QSAR models and expert systems available for this endpoint. The use of PBPK modelling for the prediction of ADME properties is also discussed. These tests are then incorporated into a decision-tree style, integrated testing strategy, which also includes the use of refined in vivo acute toxicity tests, as a last resort. The implementation of the strategy is intended to minimise the use of animals in the testing of acute systemic toxicity and toxicokinetics, whilst satisfying the scientific and logistical demands of the EU REACH legislation.  相似文献   

18.
In the regulatory process, the hazards posed by potentially toxic agents to the female and male reproductive systems and to developing young are evaluated by risk assessment procedures. In this paper, toxicity testing and the regulatory process are discussed, with emphasis on risk assessment. The suggested testing protocols of the Pesticide Assessment Guidelines (U.S. EPA) are presented as an example of testing that might be done to produce toxicity data for an agent. Protocols and end points that are utilized in testing for reproductive effects are described. Included are acute, subchronic, chronic, and short-term tests. The four components of reproductive risk assessment (hazard identification, dose-response assessment, exposure assessment, and risk characterization) are examined. Effects of dibromochloropropane on rabbit testicular parameters are used to demonstrate approaches that could be taken in doing a reproductive risk assessment. Research needs for screening methods, adequate dose-response testing, toxicokinetics, end point development, and extrapolation methods are identified. Finally, this paper discusses selected areas in which changes in reproductive risk assessment are anticipated, as well as the mechanism for influencing the nature and extent of those changes.  相似文献   

19.
Animal welfare organisations have long been concerned about the use of animals for ecotoxicity testing. Ecotoxicity testing is a necessary part of the statutory risk assessment of chemicals that may be released into the environment. It is sometimes also carried out during the development of new chemicals and in the investigation of pollution in the field. This review considers the existing requirements for ecotoxicity testing, with particular reference to practices in the European Union, including the recent REACH system proposals, before discussing criticisms that have been made of existing practices for environmental risk assessment. These criticisms have been made on scientific and ethical grounds, as well as on questions of cost. A case is made for greater investment in the development of alternative testing methods, which could improve the science, as well as serving the cause of animal welfare. It has frequently been suggested that the statutory requirements for environmental risk assessment are too rigid and bureaucratic. A case is made for flexibility and the greater involvement of scientists in the risk assessment procedure, in the interests of both improved science and improved animal welfare.  相似文献   

20.
Liverpool John Moores University and FRAME conducted a research project, sponsored by Defra, on the status of alternatives to animal testing with regard to the European Union REACH (Registration, Evaluation and Authorisation of Chemicals) system for the safety testing and risk assessment of chemicals. The project covered all the main toxicity endpoints associated with the REACH system. This paper focuses on the prospects for the use of alternative methods (both in vitro and in silico) in developmental and reproductive toxicity testing. It considers many tests based on primary cells and cell lines, and the available expert systems and QSARs for developmental and reproductive toxicity, and also covers tests for endocrine disruption. Ways in which reduction and refinement measures can be used are also discussed, particularly the use of an enhanced one-generation reproductive study, which could potentially replace the two-generation study, and therefore considerably reduce the number of animals required in reproductive toxicity. Decision-tree style integrated testing strategies are also proposed for developmental and reproductive toxicity and for endocrine disruption, followed by a number of recommendations for the future facilitation of developmental and reproductive toxicity testing, with respect to human risk assessment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号