首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of red light and wavelength dependency of the protein phosphorylation in oat protoplasts were investigated by sodium dodecyl sulfate polyacrylamide gel electrophoresis and autoradiography. Red light (660 nm) irradiation of the protoplasts increased the phosphorylation of 15 different proteins, and the phosphorylation of 2 proteins (27 KDa, 32 KDa) out of 15 were observed to be dependent on the wavelength of the irradiating light. The phosphorylation densities of these two proteins increased up to two or three hundred percent during a three-minute period of irradiation. The phosphorylation of these two proteins revealed a red/far-red photoreversibility of phytochrome. When a calcium ion chelator (2 mM EGTA) was added into the cell suspension, the phosphorylations of all the proteins were reduced about 200%. These findings suggest that phytochrome action and Ca2+ influx are certainly involved in the in vivo phosphorylation of proteins in oat protoplasts.  相似文献   

2.
In vitro phosphorylation of brain proteins of developing chick embryos showed a drastic increase in the extent of phosphorylation of a 22 KDa protein from the fourteenth day reaching a peak at seventeenth day of development; the phosphorylation of the 22 KDa protein declined afterwards. Phosphoaminoacid analysis of the 22 KDa protein indicated serine residues as targets of phosphorylation. Isoelectric focusing followed by second dimensional SDS-PAGE indicated that the 22 KDa protein had a pI value of 4.5. Polymyxin B, an inhibitor of Ca2+ and phospholipid dependent protein kinases inhibited the phosphorylation of the 22 KDa protein.  相似文献   

3.
Phosphorylation of human erythrocyte ghost membrane proteins was found to be affected by micromolar calcium concentrations. Increasing Ca2+ concentration to 0.2 microM decreased spectrin (band 2) phosphorylation to 30 +/- 6% of control (to which no calcium was added). Decreasing calcium concentration by adding EGTA (0.2mM) to the standard membrane preparation increased spectrin phosphorylation to 575% control. This effect of Ca2+ was more pronounced at higher temperature. At 0 degree C, Ca2+ (0.05mM) had no effect on protein phosphorylation. Sodium fluoride like EGTA caused a four to five fold increase in phosphorylation. Pyrophosphate, a phosphoprotein phosphatase inhibator, had no effect. Once spectrin was phosphorylated in the presence of [gamma-32P]ATP the addition of Ca2+ or EGTA did not decrease or increase its phosphorylation. It is suggested that calcium regulates spectrin phosphorylation either by decreasing kinase activity or by decreasing substrate availability.  相似文献   

4.
It has been proposed that the plasma membrane Ca2+ pump of smooth muscle tissues may be regulated by cGMP-dependent phosphorylation [Popescu, L. M., Panoiu, C., Hinescu, M. & Nutu, O. (1985) Eur. J. Pharmacol. 107, 393-394; Furukawa, K. & Nakamura, H. (1987) J. Biochem. (Tokyo) 101, 287-290]. This hypothesis has been tested on a smooth muscle sarcolemma preparation from pig thoracic aorta. The actomyosin-extracted membranes showed ATP-dependent Ca2+ uptake as well as cGMP-dependent protein kinase (G-kinase) activity. The molecular masses of the major protein substrates of the G-kinase (G1) and that of the Ca2+ pump were compared. Electrophoretic analysis of the phosphorylated intermediate of the sarcolemmal Ca2+-ATPase and the G1 phosphoprotein showed that these two proteins are not identical. The results were confirmed by using a 125I-calmodulin overlay technique and an antibody against human erythrocyte Ca2+-ATPase. Ca2+-uptake experiments with prephosphorylated membrane vesicles were carried out to elucidate possible effects of cGMP-dependent phosphorylation of membrane proteins on the activity of the Ca2+ pump. The cGMP-dependent phosphorylation was found to be extremely sensitive to temperature leading to very low steady-state phosphorylation levels at 37 degrees C. The difficulty was overcome by ATP[gamma S], which produced full and stable thiophosphorylation of G1 during the Ca2+-uptake experiments at 37 degrees C. However, the cGMP-dependent thiophosphorylation failed to influence the Ca2+-uptake properties of sarcolemmal vesicles. The results show that the Ca2+ pump of smooth muscle plasma membrane is not a direct target of the cGMP-dependent protein kinase and is not regulated by the cGMP-dependent phosphorylation of membrane proteins.  相似文献   

5.
Sarcolemmal fractions of vascular smooth muscles were prepared from porcine thoracic aortae by differential and sucrose density gradient centrifugation. In these fractions, there was a high activity of 5'-nucleotidase, a putative marker enzyme of plasma membrane, and a low activity of rotenone insensitive NADH-cytochrome c reductase a marker of sarcoplasmic reticulum. In these fractions, the Ca2+ uptake was ATP-dependent. A low concentration of saponin which inhibited Ca2+ uptake by the plasma membrane but not by the sarcoplasmic reticulum, inhibited 65% of the Ca2+ uptake of this fraction. The Ca2+ uptake of this fraction was enhanced by cAMP- and cGMP-dependent protein kinases, and by calmodulin. The cAMP-dependent protein kinase enhanced the phosphorylation of 28 and 22 kDa proteins, while the cGMP-dependent protein kinase phosphorylated the 35 kDa protein. The phosphorylation of 100, 75, 65, 41 and 22 kDa proteins was enhanced by Ca2+ and calmodulin. These results indicate that cAMP- and cGMP-dependent protein kinases as well as calmodulin play important roles in Ca2+ transport in the sarcolemma, and that the phosphorylated proteins may be associated with an enhancement of Ca2+ transport in the sarcolemma.  相似文献   

6.
Bovine thyroid tissue exhibited cAMP-dependent and Ca2+-dependent protein kinase activities as well as a basal (cAMP- and Ca2+-independent) one, and phosphoprotein phosphatase activity. Although the former two protein kinase activities were not clearly demonstrated using endogenous protein as substrate, they were clearly shown in soluble, particulate and plasma membrane fractions using exogenous histones as substrate. The highest specific activities were in the plasma membrane. The apparent Km values of cAMP and Ca2+ for the membrane-bound protein kinase were 5 . 10(-8) M and 8.3 . 10(-4) M in the presence of 1 Mm EGTA), respectively. The apparent Km values of Mg2+ were 7.10-4M (without (in the cAMP and Ca2+), 5 . 10(-4) M (with cAMP) and 1.3 . 10(-3) M (with Ca2+), and those of ATP were 3.5 . 10(-5)M (with or without cAMP) and 8.5 . 10(-5) M (with Ca2+). The Ca2+-dependent protein kinase could be dissociated from the membrane by EGTA-washing. The enzyme activity so released was further activated by added phospholipid (phosphatidylserine/1,3-diolein), but not by calmodulin. Phosphoprotein phosphatase activity was also clearly demonstrated in all of the fractions using 32P-labeled mixed histones as substrate. The activity was not modified by either cAMP or Ca2+, but was stimulated by a rather broad range (5-25 mM) of Mg2+ and Mn2+. NaCl and substrate concentrations also influenced the activity. Pyrophosphate, ATP, inorganic phosphate and NaF inhibited the activity in a dose-dependent manner. Trifluoperazine, chlorpromazine, dibucaine and Triton X-100 (above 0.05%, w/v) specifically inhibited the Ca2+-dependent protein kinase in plasma membranes. Repetitive phosphorylation of intrinsic and extrinsic proteins by the membrane-bound enzyme activities clearly showed an important co-ordination of them at the step of protein phosphorylation. These findings suggest that these enzyme activities in plasma membranes may contribute to regulation of thyroid function in response to external stimuli.  相似文献   

7.
Phosphorylations of two proteins (27 KDa, 32 KDa) in oat cells were dependent on phytochrome action. To determine which kinase system(s) for the phosphorylation of these two proteins are controlled by the phytochrome, involvement of the Ca2+/DG dependent protein kinase (protein kinase C) was first investigated. When a protein kinase C inhibitor (1-(5-isoquinoline sulfonyl)-2-methylpiperazine:H-7) or the inositol phospholipid metabolic blocker Li+ was added into the cell suspension, respectively, the phosphorylations of these two proteins were substantially reduced. On the other hand, an addition of 1-oleoyl-2-acetyl-sn-glycerol (OAG:activator of protein kinase C) or phorbol 12-myristate 13-acetate (TPA: tumor promoting phorbol ester) enhanced the phosphorylations of these proteins. These results suggest that phytochrome action is certainly connected with the protein phosphorylation via the activation of protein kinase C or a similar molecule with protein kinase C.  相似文献   

8.
The Na+/Ca2+ exchanger of calf heart sarcolemma has been identified in solubilized membrane preparations with the help of specific antibodies as a molecule of approximate Mr of 30 KDa. The conclusion supports the previous proposal by Soldati et al. (J. Biol. Chem. 260, 13321-13327, 1985) that the exchanger is a molecule of Mr about 33 KDa. Antibodies (IgG) were raised in rabbits by injecting proteins electroeluted from different regions of preparative SDS gels of solubilized heart sarcolemma. After purification the IgG against the proteins of the 30 KDa region recognized the 33 KDa component but also proteins of Mr about 70 and 140 KDa. Conversely, antibodies against the 140 KDa protein(s) also recognized the 70 and the 33 KDa proteins. However, if the solubilized sarcolemma extract was treated with DTT prior to the transfer to nitrocellulose the 140 KDa protein was not seen. Both the antibodies against the 30 KDa and those against the 140 KDa proteins inhibited the Na+/Ca2+ exchange activity of sarcolemma vesicles. It is proposed that the basic unit of the Na+/Ca2+ exchanger of heart sarcolemma is a monomer of Mr about 33 KDa, the functionally active exchanger being a tetramer in which the four 33 KDa subunits are held together by disulfide bonds. In the monomer-tetramer transition an intermediate dimeric state of Mr 70 KDa is also formed.  相似文献   

9.
Incubating T51B rat liver cells in Ca2+-deficient, serum-rich medium containing only 0.02 mM Ca2+ strikingly decreased the phosphorylation of several trypsin-removable cell surface proteins and arrested the cells in late G1 phase. Raising the Ca2+ concentration in the Ca2+-deficient medium from 0.02 mM to 0.5 mM or adding 80 nM TPA (12-O-tetradecanoyl-phorbol-13-acetate), a protein kinase C activator, stimulated the phosphorylation of a certain set of surface proteins within 5 min and the initiation of DNA replication within the next 2 hr. By contrast, incubation in the same Ca2+-deficient medium, which does not affect the proliferation of neoplastic T51B-261B cells, did not reduce the phosphorylation of cell surface proteins. These observations suggest that the stimulation of a Ca2+-dependent protein kinase (possibly protein kinase C) directly or indirectly phosphorylates certain cell surface proteins that might be part of the mechanism that triggers the Ca2+-dependent G1----S transition of normal cells. They also suggest that an alteration of this Ca2+-dependent protein kinase might be the reason for neoplastic cells being able to proliferate in the face of an external Ca2+ shortage that would stop the proliferation of normal cells.  相似文献   

10.
1. Phosphorylation of rat liver endogenous substrates by protein kinase C (type III) was compared between cytosolic and particulate (mitochondria, microsomes and plasma membrane) fractions. 2. The rate and the maximum level of protein phosphorylation were several-fold higher in particulate fractions than in cytosolic fraction. 3. Protein phosphorylation in cytosolic fraction was dependent on both Ca2+ and phospholipid, but only Ca2+ was necessary in phosphorylation of particulate fractions. 4. These results suggest that protein kinase C (type III) has much more target proteins in particulate fractions rather than in cytosolic fraction and Ca2+ was important regulator in particulate protein phosphorylation.  相似文献   

11.
The purified Ca2+ ATPase of the erythrocyte plasma membrane has been submitted to controlled trypsin proteolysis under conditions that favor either its (putative) E1 or E2 configurations. The former configuration has been forced by treating the enzyme with Ca2+-saturated calmodulin, the latter with vanadate and Mg2+. The E1 conformation leads to the accumulation of a polypeptide of Mr 85 KDa which still binds calmodulin, the E2 conformation to the accumulation of one of Mr 81 KDa which does not. Both fragments arise from the hydrolysis of a transient 90 KDa product which has Ca2+-calmodulin dependent ATPase activity, and which retains the ability to pump Ca2+ in reconstituted liposomes. Highly enriched preparations of the 85 and 81 KDa fragments have been obtained and reconstituted into liposomes. The former has limited ATPase and Ca2+ transport ability and is not stimulated by calmodulin. The latter has much higher ATPase and Ca2+ transport activity. It is proposed that the Ca2+ pumping ATPase of erythrocytes plasma membrane contains a 9 KDa domain which is essential for the interaction of the enzyme with calmodulin and for the full expression of the hydrolytic and transport activity. This putative 9 KDa sequence contains a 4 KDa "inhibitory" domain which limits the activity of the ATPase. In the presence of this 4 KDa sequence, i.e., when the enzyme is degraded to the 85 KDa product, calmodulin can still be bound, but no longer stimulates ATPase and Ca2+ transport.  相似文献   

12.
Membranes prepared from highly purified rat liver lysosomes contain endogenous protein-phosphorylation activities. The transfer of phosphate to membrane fractions from [gamma-32P]ATP was analyzed by gel electrophoresis under acidic denaturing conditions. Two phosphopeptides were detected, with molecular weights of 3,000 and 14,000. Phosphorylation of these proteins was unaffected by the addition of cAMP, cGMP, or the heat-stable inhibitor of cAMP-dependent protein kinase. No additional phosphorylation was observed when cAMP-dependent protein kinase was included in the reaction or when exogenous protein kinase substrates were added. The 14,000-dalton 32P-labeled product was formed rapidly in the presence of low concentrations (250 microM) of either Ca2+ or Mg2+. This product was labile under both acidic and alkaline conditions, suggesting that this protein contains an acyl phosphate, present presumably as a catalytic intermediate in a phosphotransferase reaction. The lower molecular weight species required a high concentration (5 mM) of Mg2+ for phosphorylation, and micromolar concentrations of Ca2+ stimulated the Mg2+-dependent activity. The addition of Ca2+ and calmodulin stimulated the phosphorylation reaction to a greater extent than with Ca2+ alone. This activity was strongly inhibited by 0.2 mM LaCl3 and to a lesser extent by 50 microM chlorpromazine or trifluoperazine. These results suggest that the 3000-dalton peptide may be phosphorylated by a Ca2+, calmodulin-dependent kinase associated with the lysosomal membrane.  相似文献   

13.
To clarify the requirement of the association of substrate proteins with phospholipid membranes for phosphorylation by protein kinase C (PKC), we studied the relationship between membrane association of PKC-substrate proteins and their phosphorylation by PKC. In the presence of phosphatidylserine, 12-O-tetradecanoylphorbol-13-acetate induced PKC autophosphorylation in either the presence or the absence of Ca2+, and this phosphorylation was not inhibited by increasing salt concentration (up to 200 mM NaCl). Thus, Ca2+ and ionic strength did not markedly affect the enzymatic activity of PKC. Annexin I required Ca2+ for both its association with phospholipid membranes and phosphorylation by PKC, whereas histone and monomyristilated lysozyme (C14:0-lysozyme) did not. This result indicates that the membrane association of substrates closely correlates with their phosphorylation by PKC. Similar correlation was also observed in the effects of ionic strength on the membrane association of the substrates and their phosphorylation by PKC; increased ionic strength (200 mM NaCl) remarkably inhibited both the membrane association and the phosphorylation of histone and annexin I by PKC but C14:0-lysozyme was not markedly affected. These results suggest that the membrane association of PKC-substrate proteins is a prerequisite for their phosphorylation by PKC. This concept further conforms to the mechanisms of PKC inhibitors; some types of PKC inhibitors are mediated all or in part through inhibition of the substrate-membrane interaction.  相似文献   

14.
The retinal Na+:Ca2+, K+exchanger cDNA was transiently expressed in human embryonic kidney (HEK 293) cells by transfection with plasmid DNA. The correct targeting of the expressed protein to the plasma membrane was confirmed by immunocytochemistry. The reverse exchange offrent (Ca2+ imported per Na+ extruded) was measured in whole-cell voltage-clamp experiments after intracellular perfusion with Na+ (Na+i, 128 mM) and extracellular perfusion with Ca2+ (Ca2o+, 1 mM) and Ko+ (20 mM). As expected, the exchange current was suppressed by removing Ca2o+. Surprisingly, however, it was also abolished by increasing Na+o to almost abolish the Na+ gradient, and it was almost unaffected by the removal of Ko+. Apparently, then, at variance with the exchanger in the rod outer segment, the retinal exchanger expressed in 293 cells acts essentially as a Na+:Ca2+ exchanger and does not require K+ for its electrogenic activity.  相似文献   

15.
Incubation of plasma membrane preparations from several tissues with [gamma-32P]ATP resulted in the phosphorylation of phosphatidylinositol as well as of proteins. The presence of an active phosphatidylinositol kinase in these membranes was indicated by equal or greater incorporation of 32P into phosphatidylinositol phosphate than into proteins. Phosphorylation of endogenous protein and lipid substrates by protein and phosphatidylinositol kinases in the plasma membranes of a human astrocytoma was investigated in detail. Maximal protein phosphorylation required the presence of Nonidet-P40 and phosphatase inhibitors (vanadate or fluoride). The rate of protein phosphorylation was greater with Mg2+ than with Mn2+, and phosphoserine accounted for 60% of the radioactivity incorporated into proteins. In the presence of Mn2+, phosphorylation of tyrosine was increased and was equal to that of serine phosphorylation (40%). With one exception, the overall pattern of phosphorylated proteins was similar with either Mg2+ or Mn2+. Maximal phosphatidylinositol phosphorylation of the astrocytoma plasma membranes also required detergent and phosphatase inhibitors. However, the enzymatic characteristics of lipid phosphorylation differed from those of protein phosphorylation with respect to divalent cation activation, ATP dependence, and sensitivity to inhibition by p-chloromercuriphenyl sulfonate, quercetin, and nucleoside derivatives. These results suggest that phosphorylation of plasma membrane proteins and phosphatidylinositol is catalyzed by different enzymes. The fact that membrane preparations exhibited phosphatidylinositol kinase activity almost 100,000 times greater than that exhibited by the purified tyrosine kinase of ros gene would exclude this and similar oncogene proteins from making a significant contribution to the overall phosphatidylinositol phosphorylation of cell membranes.  相似文献   

16.
The findings presented in this study provide evidence that BSF1 receptors and mIg transmit signals via dissimilar transduction mechanisms that result in a common biologic response, hyper-Ia expression. Specifically, BSF1-containing supernatant does not induce PtdInsP2 hydrolysis as determined by measurement of PtdOH and InsP3. Additionally, BSF1 does not stimulate Ca2+ mobilization, PKC translocation from cytosol to membrane, or membrane depolarization. All of these metabolic events appear to play a central role in hyper-Ia expression mediated by mIg and are initiated after treatment of resting B cells with anti-Ig antibodies. In vitro phosphorylation studies with partially purified plasma membranes from resting B cells revealed that BSF1 interaction with membrane receptors stimulates a membrane-associated protein kinase that phosphorylates an endogenous protein of 44 KDa. Anti-Ig does not stimulate phosphorylation of the 44 KDa protein, suggesting that it does not activate the membrane-associated protein kinase. This observation provides the first evidence of a signal transduction mechanism associated with BSF1-receptor ligation. It indicates that although BSF1 does not modulate events associated with PKC activation, it may function via activation of a membrane-associated protein kinase. This provides a focal point for further studies directed at elucidating signal transduction resulting from BSF1-receptor interaction.  相似文献   

17.
Receptor mediated internalization of 125I-ANF (99-126) and the underlying mechanism was studied in PC12 cells. Phosphorylation of PC12 cell plasma membrane proteins at 0 degrees C or 37 degrees C was not altered in presence of ANF (99-126) or c-ANF (4-23). Exposure of cells to phorbol 12-myristate 13-acetate (PMA, 100 ng/ml) did not alter the endocytic rate or extent of 125I-ANF (99-126) internalization. When cells were treated with a combination of PMA and the calcium ionophore A23187, internalization was not stimulated. Incubation with A23187 (10 microM) alone decreased 125I-ANF (99-126) internalization by 22% in Ca2+ containing medium. Cell surface binding increased 10% in the presence of Ca2+ compared to Ca2+ free medium, irrespective of the presence of A23187. Ca2+ appears to play an important role in the binding of ANF to the receptor and initiation of ligand-receptor complex internalization. Activation of protein kinase C or receptor phosphorylation is not an essential step in initiating ANF receptor internalization.  相似文献   

18.
Calmodulin-Dependent Protein Phosphorylation in Synaptic Junctions   总被引:8,自引:4,他引:4  
Synaptic junctions (SJs) from rat forebrain were examined for Ca2+/calmodulin (CaM)-dependent kinase activity and compared to synaptic plasma membrane (SPM) and postsynaptic density (PSD) fractions. The kinase activity in synaptic fractions was examined for its capacity to phosphorylate endogenous proteins or exogenous synapsin I, in the presence or absence of Ca2+ plus CaM. When assayed for endogenous protein phosphorylation, SJs contained approximately 25-fold greater amounts of Ca2+/CAM-dependent kinase activity than SPMs, and fivefold more activity than PSDs. When kinase activities were measured by phosphorylation of exogenous synapsin I, SJs contained fourfold more activity than SPMs, and 10-fold more than PSDs. The phosphorylation of SJ proteins of 60- and 50-kilodalton (major PSD protein) polypeptides were greatly stimulated by Ca2+/CaM; levels of phosphorylation for these proteins were 23- and 17-fold greater than basal levels, respectively. Six additional proteins whose phosphorylation was stimulated 6-15-fold by Ca2+/CAM were identified in SJs. These proteins include synapsin I, and proteins of 240, 207, 170, 140, and 54 kilodaltons. The 54-kilodalton protein is a highly phosphorylated form of the major PSD protein and the 170-kilodalton component is a cell-surface glycoprotein of the postsynaptic membrane that binds concanavalin A. The CaM-dependent kinase in SJ fractions phosphorylated endogenous phosphoproteins at serine and/or threonine residues. Ca2+-dependent phosphorylation in SJ fractions was strictly dependent on exogenous CaM, even though SJs contained substantial amounts of endogenous CaM (15 micrograms CaM/mg SJ protein). Exogenous CaM, after being functionally incorporated into SJs, was rapidly removed by sequential washings. These observations suggest that the SJ-associated CaM involved in regulating Ca2+-dependent protein phosphorylation may be in dynamic equilibrium with the cytoplasm. These findings indicate that a brain CaM-dependent kinase(s) and substrate proteins are concentrated at SJs and that CaM-dependent protein phosphorylation may play an important role in mechanisms that underlie synaptic communication.  相似文献   

19.
1. The major functional role played by phosphorylation of plasma membrane proteins in the biological properties of tumor cells suggests that identification of protein kinases and their substrates will contribute to our understanding of the molecular basis of the malignant process and of the aberrant behavior of tumor cells. 2. The present study has investigated the phosphorylation of surface proteins of human tumor cells. Incubation of plasma membranes isolated from cultured human melanoma cells with [gamma-32P]ATP in the presence of Ca2+ and ethylene-bis-(oxyethylenenitrilo)-tetraacetic acid (EGTA) resulted in specific phosphorylation of serine and threonine residues on a 75kDa protein (pp75). 3. Neither Ca2+ or EGTA alone, nor any other divalent metal ion tested could induce phosphorylation of pp75. 4. The phosphorylation of pp75 was directly dependent upon the presence of non-ionic detergents, and was influenced by length of incubation and concentration ratio of Ca2+ and EGTA. 5. Incubation of isolated plasma membranes with [gamma-32P]ATP in the presence of Ca2+ and EGTA and immunochemical analysis by Western blotting with an anti pp75 xenoantiserum detected the pp75 in human melanoma, neuroblastoma, ovarian carcinoma and lymphoid T cells and fibroblasts but not in B-lymphoid cells, renal carcinoma cells, peripheral blood lymphocytes and splenocytes. 6. These results suggest the presence of a new class of plasma membrane bound protein kinases activated by chelated calcium and differentially expressed in normal and transformed human cells.  相似文献   

20.
 本文研究了几种蛋白激酶活化剂及吗啡对脑细胞膜蛋白质磷酸化的调节。cAMP刺激了一种68KDa蛋白质和几种60KDa相关的蛋白质的磷酸化作用,Ca~(++)刺激68KDa和50KDa蛋白质的磷酸化。μ吗啡受体的特异性兴奋剂D-脑啡肽(DAGO)增加68KDa蛋白质的磷酸化,而吗啡K受体的特异性兴奋剂,Bremazocyne抑制这一蛋白质的磷酸化。蛋白激酶c的特异性活化剂——磷脂酰丝氨酸(PS)和甘油二油酸酯(DO)不促进这一磷酸化。相反,却抑制cAMP、Ca~(++)、和DAGO所刺激的68KDa蛋白质的磷酸化。结果表明,在鼠脑细胞膜存在一种68KDa专一的蛋白激酶,其活性受吗啡及几种细胞内信使分子,如cAMP、Ca~(++)和DO的调节。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号