首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The relative ability of Th1 and Th2 T cells to help B cells remains controversial as do the mechanisms by which both T cell subsets provide help in vivo. Whether this help affects the clonal expansion and/or differentiation of B cells has been difficult to assess due to the low frequency of Ag-specific T and B lymphocytes. We have employed a novel technique to directly monitor the clonal expansion of Ag-specific T and B lymphocytes in vivo. OVA-specific TCR transgenic T lymphocytes were polarized toward a Th1 or Th2 phenotype in vitro. These cells were then transferred into syngeneic recipients, along with B cell receptor transgenic hen egg lysozyme-specific B lymphocytes. Our results indicate that Th1 and Th2 cells support B cell responses to a similar extent in vivo and that they achieve this in the same manner by migrating into B cell follicles to promote CD154-dependent B cell clonal expansion and Ab production.  相似文献   

3.
Inducing T cell responses requires at least two distinct signals: 1) TCR engagement of MHC-peptide and 2) binding of CD28 to B7.1/2. However, the recent avalanche of newly described costimulatory molecules may represent additional signals which can modify events after the initial two-signal activation. Inducible costimulatory molecule (ICOS) is a CD28 family member expressed on T cells rapidly following activation that augments both Th1 and Th2 T cell responses and has been implicated in sustaining rather than initiating T cell responses. Although it is known that blockade of ICOS-B7-related protein 1 (B7RP-1) in vivo dramatically reduces germinal center formation and Ab production, the mechanism(s) remains unclear. An optimal T cell-dependent Ab response requires T and B cell activation, expansion, differentiation, survival, and migration, and the ICOS-B7RP-1 interaction could be involved in any or all of these processes. Understanding this will have important implications for targeting ICOS-B7RP-1 therapeutically. We have therefore used a double-adoptive transfer system, in which all of the above events can be analyzed, to assess the role of ICOS-B7RP-1 in T cell help for B cell responses. We have shown that ICOS signaling is involved in the initial clonal expansion of primary and primed Th1 and Th2 cells in response to immunization. Furthermore, while ICOS-B7RP-1 interactions have no effect on the migration of T cells into B cell follicles, it is essential for their ability to support B cell responses.  相似文献   

4.
5.
CD7 and CD28 are T cell Ig superfamily molecules that share common signaling mechanisms. To determine roles CD7 and CD28 might play in peripheral lymphocyte development and function, we have generated CD7/CD28-double-deficient mice. CD7- and CD28-single-deficient and CD7/CD28-double-deficient mice had normal levels of CD4 and CD8-single-positive T cells in thymus and spleen. However, CD28-deficient mice had decreased CD4+CD25+ T cells in spleen compared with wild-type mice, and CD7/CD28-double-deficient mice had decreased numbers of CD4+CD25+ T cells in both thymus and spleen compared with both wild-type and CD28-deficient mice. Functional studies demonstrated that CD4+CD25+ T cells from CD28-deficient and CD7/CD28-double-deficient mice could mediate suppression of CD3 mAb activation of CD4+CD25- wild-type T cells, but were less potent than wild-type CD4+CD25+ T regulatory cells. Thyroiditis developed in aged CD7/CD28-double-deficient mice (>1 year) that was not seen in age-matched control mice or single CD7- or CD28-deficient mice, thus suggesting in vivo loss of T regulatory cells allowed for the development of spontaneous thyroiditis. Taken together, these data demonstrated collaborative roles for both CD7 and CD28 in determination of number and function of CD4+CD25+ T regulatory cells in the thymus and peripheral immune sites and in the development of spontaneous thyroiditis.  相似文献   

6.
Most current animal models focus on eosinophil-mediated asthma, despite compelling evidence that a neutrophil-mediated disease occurs in some asthma patients. Using intranasal challenge of mice sensitized either orally or nasally with whole peanut protein extract in the presence of cholera toxin, we developed mouse models of eosinophil- and neutrophil-mediated asthma, respectively. In this study, mice deficient in Th1 (IL-12 and IFN-gamma) or Th2 (IL-4 and IL-13) pathways were used to characterize the role played by Th1 and Th2 cytokines during the initial priming phase in the two models. Antigen-specific Ab responses were controlled primarily by Th2 cytokines in mice sensitized by the oral route, whereas Th1 cytokines appeared to play a predominant role in mice sensitized by the nasal route. Furthermore, the absence of key Th1 or Th2 cytokines during the initial phase of priming reduced lung reactivity in both mouse models of airway inflammation.  相似文献   

7.
Recent studies on G-protein-coupled receptors revealed that they can dimerize. However, the role of each subunit in the activation process remains unclear. The gamma-amino-n-butyric acid type B (GABA(B)) receptor is comprised of two subunits: GB1 and GB2. Both consist of an extracellular domain (ECD) and a heptahelical domain composed of seven transmembrane alpha-helices, loops and the C-terminus (HD). Whereas GB1 ECD plays a critical role in ligand binding, GB2 is required not only to target GB1 subunit to the cell surface but also for receptor activation. Here, by analysing chimeric GB subunits, we show that only GB2 HD contains the determinants required for G-protein signalling. However, the HD of GB1 improves coupling efficacy. Conversely, although GB1 ECD is sufficient to bind GABA(B) ligands, the ECD of GB2 increases the agonist affinity on GB1, and is necessary for agonist activation of the receptor. These data indicate that multiple allosteric interactions between the two subunits are required for wild-type functioning of the GABA(B) receptor and highlight further the importance of the dimerization process in GPCR activation.  相似文献   

8.
The recently described ICOS-B7RP-1 costimulatory pathway has been implicated in the generation of effector Th2 responses and, hence, has become an attractive therapeutic target for allergic diseases. In the present study, we used B7RP-1-deficient mice to investigate the role of B7RP-1 in the generation and maintenance of Th2 responses in a model of mucosal allergic airway inflammation. We found that exposure of B7RP-1 knockout mice to aerosolized OVA in the context of GM-CSF leads to airway eosinophilic inflammation. This response was long lasting because rechallenge of mice with the same Ag recapitulated airway eosinophilia. Moreover, significant expression of T1/ST2 on T cells and production of Th2-affiliated cytokines (IL-5, IL-4, and IL-13) and Igs (IgE and IgG1) conclusively demonstrate the generation of a Th2 response in the absence of B7RP-1. In addition, expression of two major Th2-associated costimulatory molecules-CD28 and ICOS-indicates T cell activation in the absence of B7RP-1 signaling. Finally, B7RP-1 knockout mice are resistant to the induction of inhalation tolerance as indicated by the sustained eosinophilia in the lung and IL-5 production. In summary, our results demonstrate that in a model of mucosal allergic sensitization, the ICOS-B7RP-1 pathway is redundant for the generation of Th2 responses but essential for the induction of inhalation tolerance.  相似文献   

9.
10.
CD4+CD25+ T regulatory (Treg) cells inhibit immunopathology and autoimmune disease in vivo. CD4+CD25+ Treg cells' capacity to inhibit conventional T cells in vitro is dependent upon cell-cell contact; however, the cell surface molecules mediating this cell:cell contact have not yet been identified. LFA-1 (CD11a/CD18) is an adhesion molecule that plays an established role in T cell-mediated cell contact and in T cell activation. Although expressed at high levels on murine CD4+CD25+ Treg cells, the role of LFA-1 in these cells has not been defined previously. We hypothesized that LFA-1 may play a role in murine CD4+CD25+ Treg function. To evaluate this, we analyzed LFA-1-deficient (CD18-/-) CD4+CD25+ T cells. We show that CD18-/- mice demonstrate a propensity to autoimmunity. Absence of CD18 led to diminished CD4+CD25+ T cell numbers and affected both thymic and peripheral development of these cells. LFA-1-deficient CD4+CD25+ T cells were deficient in mediating suppression in vitro and in mediating protection from colitis induced by the transfer of CD4+CD25- T cells into lymphopenic hosts. Therefore, we define a crucial role for CD18 in optimal CD4+CD25+ Treg development and function.  相似文献   

11.
LPS potently induces dendritic cell maturation and the production of proinflammatory cytokines, such as IL-12, by activation of Toll-like receptor 4 (TLR4). Since IL-12 is important for the generation and maintenance of Th1 responses and may also inhibit Th2 cell generation from naive CD4 T cell precursors, it has been inferred that TLR4 signaling would have similar effects via the induction of IL-12 secretion. Surprisingly, we found that TLR4-defective mice subjected to sensitization and pulmonary challenge with a protein allergen had reductions in airway inflammation with eosinophils, allergen-specific IgE levels, and Th2 cytokine production, compared with wild-type mice. These reduced responses were attributable, at least in part, to decreased dendritic cell function: Dendritic cells from TLR4-defective mice expressed lower levels of CD86, a costimulatory molecule important for Th2 responses. They also induced less Th2 cytokine production by antigenically naive CD4 T cells in vitro and mediated diminished CD4 T cell Ag-specific pulmonary inflammation in vivo. These results indicate that TLR4 is required for optimal Th2 responses to Ags from nonpathogenic sources and suggest a role for TLR4 ligands, such as LPS derived from commensal bacteria or endogenously derived ligands, in maturation of the innate immune system before pathogen exposure.  相似文献   

12.
The leukocyte-specific integrin, LFA-1, plays a critical role in trafficking of T cells to both lymphoid and nonlymphoid tissues. However, the role of LFA-1 in T cell activation in vivo has been less well understood. Although there have been reports describing LFA-1-deficient T cell response defects in vivo, due to impaired migration to lymphoid structures and to sites of effector function in the absence of LFA-1, it has been difficult to assess whether T cells also have a specific activation defect in vivo. We examined the role of LFA-1 in CD4(+) T cell activation in vivo by using a system that allows for segregation of the migration and activation defects through the adoptive transfer of LFA-1-deficient (CD18(-/-)) CD4(+) T cells from DO11.10 Ag-specific TCR transgenic mice into wild-type BALB/c mice. We find that in addition to its role in trafficking to peripheral lymph nodes, LFA-1 is required for optimal CD4(+) T cell priming in vivo upon s.c. immunization. CD18(-/-) DO11.10 CD4(+) T cells primed in the lymph nodes demonstrate defects in IL-2 and IFN-gamma production. In addition, recipient mice adoptively transferred with CD18(-/-) DO11.10 CD4(+) T cells demonstrate a defect in OVA-specific IgG2a production after s.c. immunization. The defect in priming of CD18(-/-) CD4(+) T cells persists even in the presence of proliferating CD18(+/-) CD4(+) T cells and in lymphoid structures to which there is no migration defect. Taken together, these results demonstrate that LFA-1 is required for optimal CD4(+) T cell priming in vivo.  相似文献   

13.
In this study, we have examined the relative contributions of CD4+ and CD8+ T cells in controlling an acute or chronic lymphocytic choriomeningitis virus (LCMV) infection. To study acute infection, we used the LCMV Armstrong strain, which is cleared by adult mice in 8 to 10 days, and to analyze chronic infection, we used a panel of lymphocyte-tropic and macrophage-tropic variants of LCMV that persist in adult mice for several months. We show that CD4+ T cells are not necessary for resolving an acute LCMV infection. CD4+ T-cell-depleted mice were capable of generating an LCMV-specific CD8+ cytotoxic T-lymphocyte (CTL) response and eliminated virus with kinetics similar to those for control mice. The CD8+ CTL response was critical for resolving this infection, since beta 2-microglobulin knockout (CD8-deficient) mice were unable to control the LCMV Armstrong infection and became persistently infected. In striking contrast to the acute infection, even a transient depletion of CD4+ T cells profoundly affected the outcome of infection with the macrophage- and lymphocyte-tropic LCMV variants. Adult mice given a single injection of anti-CD4 monoclonal antibody (GK1.5) at the time of virus challenge became lifelong carriers with high levels of virus in most tissues. Unmanipulated adult mice infected with the different LCMV variants contained virus for prolonged periods (> 3 months) but eventually eliminated infection from most tissues, and all of these mice had LCMV-specific CD8+ CTL responses. Although the level of CTL activity was quite low, it was consistently present in all of the chronically infected mice that eventually resolved the infection. These results clearly show that even in the presence of an overwhelming viral infection of the immune system, CD8+ CTL can remain active for long periods and eventually resolve and/or keep the virus infection in check. In contrast, LCMV-specific CTL responses were completely lost in chronically infected CD4-depleted mice. Taken together, these results show that CD4+ T cells are dispensable for short-term acute infection in which CD8+ CTL activity does not need to be sustained for more than 2 weeks. However, under conditions of chronic infection, in which CD8+ CTLs take several months or longer to clear the infection, CD4+ T-cell function is critical. Thus, CD4+ T cells play an important role in sustaining virus-specific CD8+ CTL during chronic LCMV infection. These findings have implications for chronic viral infections in general and may provide a possible explanation for the loss of human immunodeficiency virus-specific CD8+ CTL activity that is seen during the late stages of AIDS, when CD4+ T cells become limiting.  相似文献   

14.
In T lymphocytes, lipid rafts are preferred sites for signal transduction initiation and amplification. Many cell membrane receptors, such as the TCR, coreceptors, and accessory molecules associate within these microdomains upon cell activation. However, it is still unclear in most cases whether these receptors interact with rafts through lipid-based amino acid modifications or whether raft insertion is driven by protein-protein interactions. In murine T cells, a significant fraction of CD2 associates with membrane lipid rafts. We have addressed the mechanisms that control the localization of rat CD2 at the plasma membrane, and its redistribution within lipid rafts induced upon activation. Following incubation of rat CD2-expressing cells with radioactive-labeled palmitic acid, or using CD2 mutants with Cys226 and Cys228 replaced by alanine residues, we found no evidence that rat CD2 was subjected to lipid modifications that could favor the translocation to lipid rafts, discarding palmitoylation as the principal mechanism for raft addressing. In contrast, using Jurkat cells expressing different CD2 and Lck mutants, we show that the association of CD2 with the rafts fully correlates with CD2 capacity to bind to Lck. As CD2 physically interacts with both Lck and Fyn, preferentially inside lipid rafts, and reflecting the increase of CD2 in lipid rafts following activation, CD2 can mediate the interaction between the two kinases and the consequent boost in kinase activity in lipid rafts.  相似文献   

15.
CD40 is thought to play a central role in T cell-dependent humoral responses through two distinct mechanisms. CD4+ T helper cells are activated via CD40-dependent Ag presentation in which CD80/CD86 provides costimulation through CD28. In addition, engagement of CD40 on B cells provides a direct pathway for activation of humoral responses. We used a model of adenovirus-mediated gene transfer of beta-galactosidase (lacZ) into murine lung to evaluate the specific CD40-dependent pathways required for humoral immunity at mucosal surfaces of the lung. Animals deficient in CD40L failed to develop T and B cell responses to vector. Activation of Th2 cells, which normally requires CD40-dependent stimulation of APCs, was selectively reconstituted in CD40 ligand-deficient mice by systemic administration of an Ab that is agonistic to CD28. Surprisingly, this resulted in the development of a functional humoral response to vector as evidenced by formation of germinal centers and production of antiadenovirus IgG1 and IgA that neutralized and prevented effective readministration of vector. The CD28-dependent B cell response required CD4+ T cells and was mediated via IL-4. These studies indicate that CD40 signals to the B cells are not necessary for CD4+ Th2 cell-dependent humoral responses to be generated.  相似文献   

16.
Different cytokine profiles allow to divide the CD4+ lymphocytes into Th1, Th2 and Th0 subtypes. It has been observed that the Th2 cells are more efficient supporters for HIV-1 replication than the Th1 cells. The Th1 and the Th2 cells were isolated from peripheral blood lymphocytes of HIV-1 seronegative individuals and the density of CXCR4 receptors was determined by flow cytometry using antibodies directed against the CXCR4 receptor. Flow cytometric analysis revealed higher expression of the HIV-1 co-receptor CXCR4 on Th2 cells than on the Th1, which might explain better replication of HIV-1 viruses in the Th2 cells.  相似文献   

17.
Sitati EM  Diamond MS 《Journal of virology》2006,80(24):12060-12069
Although studies have established that innate and adaptive immune responses are important in controlling West Nile virus (WNV) infection, the function of CD4(+) T lymphocytes in modulating viral pathogenesis is less well characterized. Using a mouse model, we examined the role of CD4(+) T cells in coordinating protection against WNV infection. A genetic or acquired deficiency of CD4(+) T cells resulted in a protracted WNV infection in the central nervous system (CNS) that culminated in uniform lethality by 50 days after infection. Mice surviving past day 10 had high-level persistent WNV infection in the CNS compared to wild-type mice, even 45 days following infection. The absence of CD4(+) T-cell help did not affect the kinetics of WNV infection in the spleen and serum, suggesting a role for CD4-independent clearance mechanisms in peripheral tissues. WNV-specific immunoglobulin M (IgM) levels were similar to those of wild-type mice in CD4-deficient mice early during infection but dropped approximately 20-fold at day 15 postinfection, whereas IgG levels in CD4-deficient mice were approximately 100- to 1,000-fold lower than in wild-type mice throughout the course of infection. WNV-specific CD8(+) T-cell activation and trafficking to the CNS were unaffected by the absence of CD4(+) T cells at day 9 postinfection but were markedly compromised at day 15. Our experiments suggest that the dominant protective role of CD4(+) T cells during primary WNV infection is to provide help for antibody responses and sustain WNV-specific CD8(+) T-cell responses in the CNS that enable viral clearance.  相似文献   

18.
Mice infected with Schistosoma mansoni develop polarized Th2 responses in which Th1 responses are prevented by IL-10-mediated suppression of IL-12 production. We show that dendritic cells from infected mice are primed to make IL-12 in response to CD40 ligation, and that IL-10 acts by inhibiting this process. In infected mice, two subpopulations of CD4(+) cells, separable by their expression of CD25, make IL-10. CD25(+)CD4(+) cells expressed forkhead box P3, inhibited proliferation of CD4(+) T cells, and made IL-10, but little IL-5. In contrast, CD25(-)CD4(+) cells failed to express forkhead box P3 or to inhibit proliferation and accounted for all the IL-5, IL-6, and IL-13 produced by unseparated splenic populations. Thus, CD25(+) and CD25(-) subpopulations could be characterized as regulatory T cells (Treg cells) and Th2 cells, respectively. Consistent with their ability to make IL-10, both CD25(+) and CD25(-)CD4(+) T cells from infected mice were able, when stimulated with egg Ag, to suppress IL-12 production by CD40 agonist-stimulated dendritic cells. Additionally, in adoptive transfer experiments, both CD4(+) subpopulations of cells were able to partially inhibit the development of Th1 responses in egg-immunized IL-10(-/-) mice. The relationship of Treg cells in infected mice to natural Treg cells was strongly suggested by the ability of CD25(+)CD4(+) cells from naive mice to inhibit Th1 response development when transferred into egg-immunized or infected IL-10(-/-) mice. The data suggest that natural Treg cells and, to a lesser extent, Th2 cells play roles in suppressing Th1 responses and ensuring Th2 polarization during schistosomiasis.  相似文献   

19.
Leishmania major infect only macrophages in the host, where they reside in endolysosomal compartments into which MHC class II molecules co-localize. Experimental infection in mice has provided a useful model for the differentiation of Th1 CD4+ effector lymphocytes that are required for the generation of IFN-γ that activates the macrophage to a microbicidal state. Genetically susceptible BALB/c mice aberrantly activate Th2 CD4+ effector cells that are ineffective in arresting infection. Increasing evidence suggests that, rather than discrete parasite antigens or MHC molecules, cytokines mediate the critical decision in the developmental switch to either the Th1 or Th2 effector phenotype.  相似文献   

20.
A number of receptors and signaling pathways can influence the ability of dendritic cells (DC) to promote CD4(+) Th type 1 (Th1) responses. In contrast, the regulatory pathways and signaling events that govern the ability of DC to instruct Th2 cell differentiation remain poorly defined. In this report, we demonstrate that NF-kappaB1 expression within DC is required to promote optimal Th2 responses following exposure to Schistosoma mansoni eggs, a potent and natural Th2-inducing stimulus. Although injection of S. mansoni eggs induced production of IL-4, IL-5, and IL-13 in the draining lymph node of wild-type (WT) mice, NF-kappaB1(-/-) hosts failed to express Th2 cytokines and developed a polarized Ag-specific IFN-gamma response. In an in vivo adoptive transfer model in which NF-kappaB-sufficient OVA-specific DO11.10 TCR transgenic T cells were injected into OVA-immunized WT or NF-kappaB1(-/-) hosts, NF-kappaB1(-/-) APCs efficiently promoted CD4(+) T cell proliferation and IFN-gamma responses, but failed to promote Ag-specific IL-4 production. Further, bone marrow-derived DC from NF-kappaB1(-/-) mice failed to promote OVA-specific Th2 cell differentiation in in vitro coculture studies. Last, S. mansoni egg Ag-pulsed NF-kappaB1(-/-) DC failed to prime for Th2 cytokine responses following injection into syngeneic WT hosts. Impaired Th2 priming by NF-kappaB1(-/-) DC was accompanied by a reduction in MAPK phosphorylation in Ag-pulsed DC. Taken together, these studies identify a novel requirement for DC-intrinsic expression of NF-kappaB1 in regulating the MAPK pathway and governing the competence of DC to instruct Th2 cell differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号