首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
冠层位置对5种阔叶树叶片解剖结构与氮含量的影响   总被引:1,自引:0,他引:1  
不同树冠位置的叶片为了达到功能的最大化,形成了不同的结构与功能的特征。然而,在相同的环境条件下,不同树种之间叶片对环境的反应是否存在一致规律,我们仍然缺乏了解。本研究采用石蜡切片和化学分析方法,对东北林区5个常见阔叶树种(蒙古栎、白桦、水曲柳、胡桃楸和黄波罗)不同树冠位置叶片的形态(叶厚度)、解剖(气孔密度、保卫细胞长度、栅栏和海绵组织厚度)和氮(N)含量特征进行了研究。结果表明:叶片的特征在种间和种内不同树冠位置均存在明显差异,并存在较强的规律性。在种内,5个树种的叶片和栅栏组织厚度均是上层外部最大,而保卫细胞和海绵组织的变化不明显,N含量的变异与树种有关。叶片所处的树冠高度和暴露程度对叶片的结构与N含量变异有重要影响。树种之间,蒙古栎的气孔密度最大,叶片厚度和海绵组织厚度最小,保卫细胞最短,黄波罗恰恰相反。结果表明,为了更好地执行整个树冠的功能,不同树种叶片均出现了与冠层位置有关的结构特征适应。  相似文献   

2.
To investigate crown development patterns, branch architecture, branch-level light interception, and leaf and branch dynamics were studied in saplings of a plagiotropically branching tree species, Polyalthia jenkinsii Hk. f. & Thoms. (Annonaceae) in a Malaysian rain forest. Lengths of branches and parts of the branches lacking leaves ('bare' branches) were smaller in upper branches than in lower branches within crowns, whereas lengths of 'leafy' parts and the number of leaves per branch were larger in intermediate than in upper and lower branches. Maximum diffuse light absorption (DLA) of individual leaves was not related to sapling height or branch position within crowns, whereas minimum DLA was lower in tall saplings. Accordingly, branch-level light interception was higher in intermediate than in upper and lower branches. The leaf production rate was higher and leaf loss rate was smaller in upper than in intermediate and lower branches. Moreover, the branch production rate of new first-order branches was larger in the upper crowns. Thus, leaf and branch dynamics do not correspond to branch-level light interception in the different canopy zones. As a result of architectural constraints, branches at different vertical positions experience predictable light microenvironments in plagiotropic species. Accordingly, this pattern of carbon allocation among branches might be particularly important for growth and crown development in plagiotropic species.  相似文献   

3.
Light is considered a non‐limiting factor for vascular epiphytes. Nevertheless, an epiphyte's access to light may be limited by phorophyte shading and the spatio‐temporal environmental patchiness characteristic of epiphytic habitats. We assessed the extent to which potential light interception in Rodriguezia granadensis, an epiphytic orchid, is determined by individual factors (plant size traits and leaf traits), or environmental heterogeneity (light patchiness) within the crown of the phorophyte, or both. We studied 104 adult plants growing on Psidium guajava trees in two habitats with contrasting canopy cover: a dry tropical forest edge, and isolated trees in a pasture. We recorded the number of leaves and the leaf area, the leaf position angles, and the potential exposure of the leaf surface to direct irradiance (silhouette area of the leaf blade), and the potential irradiance incident on each plant. We found the epiphytes experience a highly heterogeneous light environment in the crowns of P. guajava. Nonetheless, R. granadensis plants displayed a common light interception strategy typical of low‐light environments, resembling terrestrial, forest understory plants. Potential exposure of the total leaf surface to direct irradiance correlated positively with plant size and within‐plant variation in leaf orientation. In many‐leaved individuals, within‐plant variation in leaf angles produced complementary leaf positions that enhanced potential light interception. This light interception strategy suggests that, in contrast to current wisdom, enhancing light capture is important for vascular epiphytes in canopies with high spatio‐temporal heterogeneity in light environments.  相似文献   

4.

Backgrounds and Aims

Shoot demography affects the growth of the tree crown and the number of leaves on a tree. Masting may cause inter-annual and spatial variation in shoot demography of mature trees, which may in turn affect the resource budget of the tree. The aim of this study was to evaluate the effect of masting on the temporal and spatial variations in shoot demography of mature Betula grossa.

Methods

The shoot demography was analysed in the upper and lower parts of the tree crown in mature trees and saplings over 7 years. Mature trees and saplings were compared to differentiate the effect of masting from the effect of exogenous environment on shoot demography. The fate of different shoot types (reproductive, vegetative, short, long), shoot length and leaf area were investigated by monitoring and by retrospective survey using morphological markers on branches. The effects of year and branch position on demographic parameters were evaluated.

Key Results

Shoot increase rate, production of long shoots, bud mortality, length of long shoots and leaf area of a branch fluctuated periodically from year to year in mature trees over 7 years, in which two masting events occurred. Branches within a crown showed synchronized annual variation, and the extent of fluctuation was larger in the upper branches than the lower branches. Vegetative shoots varied in their bud differentiation each year and contributed to the dynamic shoot demography as much as did reproductive shoots, suggesting physiological integration in shoot demography through hormonal regulation and resource allocation.

Conclusions

Masting caused periodic annual variation in shoot demography of the mature trees and the effect was spatially variable within a tree crown. Since masting is a common phenomenon among tree species, annual variation in shoot demography and leaf area should be incorporated into resource allocation models of mature masting trees.  相似文献   

5.
BACKGROUND AND AIMS: Light extinction through crowns of canopy trees determines light availability at lower levels within forests. The goal of this paper is the exploration of foliage distribution and light extinction in crowns of five canopy tree species in relation to their shoot architecture, leaf traits (mean leaf angle, life span, photosynthetic characteristics) and successional status (from pioneers to persistent). METHODS: Light extinction was examined at three hierarchical levels of foliage organization, the whole crown, the outermost canopy and the individual shoots, in a tropical moist forest with direct canopy access with a tower crane. Photon flux density and cumulative leaf area index (LAI) were measured at intervals of 0.25-1 m along multiple vertical transects through three to five mature tree crowns of each species to estimate light extinction coefficients (K). RESULTS: Cecropia longipes, a pioneer species with the shortest leaf life span, had crown LAI <0.5. Among the remaining four species, crown LAI ranged from 2 to 8, and species with orthotropic terminal shoots exhibited lower light extinction coefficients (0.35) than those with plagiotropic shoots (0.53-0.80). Within each type, later successional species exhibited greater maximum LAI and total light extinction. A dense layer of leaves at the outermost crown of a late successional species resulted in an average light extinction of 61% within 0.5 m from the surface. In late successional species, leaf position within individual shoots does not predict the light availability at the individual leaf surface, which may explain their slow decline of photosynthetic capacity with leaf age and weak differentiation of sun and shade leaves. CONCLUSION: Later-successional tree crowns, especially those with orthotropic branches, exhibit lower light extinction coefficients, but greater total LAI and total light extinction, which contribute to their efficient use of light and competitive dominance.  相似文献   

6.
 A genetic approach to the understanding of tree architecture is to cross trees of contrasting features and to study their segregating F2 progenies. For this purpose, members of a 3-generation pedigree, combining Populus trichocarpa, P. deltoides, and their F1 and F2 offspring, were grown side by side in a clonally replicated plantation. At 2 and 3 years of growth, tree architecture was analyzed at the stem, branch, and leaf levels. In all generations, proleptic branches were more numerous, longer, and had more and larger leaves than sylleptics initiated in the same year. The analysis of variance revealed significant genotypic effects on growth, branch and leaf biometrics in the F2 family, with broad-sense heritabilities (H2) ranging from 0.50 to 0.80 for most traits. For branch and leaf traits, the H2 values were found to vary among branch types and crown positions. In year 2, the degree of genetic control was stronger for sylleptics than proleptics and for upper than lower crown positions. These patterns were followed in year 3, except that H2 values were more a function of position within crown, as a consequence of increased competition among trees. The genetic correlations between branch/leaf morphology and stem growth were also a function of branch type and crown position. Generally, traits on proleptics or at upper positions were more tightly correlated with height growth, whereas those on sylleptics or at lower positions, with basal area growth. By year 3, proleptic traits showed increased genetic correlations with both height and radial growth. The implications of these results for the construction of ideotypes are discussed. Received: 1 December 1995  相似文献   

7.
Our understanding of leaf acclimation in relation to irradiance of fully grown or juvenile trees is mainly based on research involving tropical wet forest species. We studied sun-shade plasticity of 24 leaf traits of 43 tree species in a Bolivian dry deciduous forest. Sampling was confined to small trees. For each species, leaves were taken from five of the most and five of the least illuminated crowns. Trees were selected based on the percentage of the hemisphere uncovered by other crowns. We examined leaf trait variation and the relation between trait plasticity and light demand, maximum adult stature, and ontogenetic changes in crown exposure of the species. Leaf trait variation was mainly related to differences among species and to a minor extent to differences in light availability. Traits related to the palisade layer, thickness of the outer cell wall, and N(area) and P(area) had the greatest plasticity, suggesting their importance for leaf function in different light environments. Short-lived pioneers had the highest trait plasticity. Overall plasticity was modest and rarely associated with juvenile light requirements, adult stature, or ontogenetic changes in crown exposure. Dry forest tree species had a lower light-related plasticity than wet forest species, probably because wet forests cast deeper shade. In dry forests light availability may be less limiting, and low water availability may constrain leaf trait plasticity in response to irradiance.  相似文献   

8.
Selective pressures imposed by herbivores are often positively correlated with investments that plants make in defense. Research based on the framework of an evolutionary arms race has improved our understanding of why the amount and types of defenses differ between plant species. However, plant species are exposed to different selective pressures during the life of a leaf, such that expanding leaves suffer more damage from herbivores and pathogens than mature leaves. We hypothesize that this differential selective pressure may result in contrasting quantitative and qualitative defense investment in plants exposed to natural selective pressures in the field. To characterize shifts in chemical defenses, we chose six species of Inga, a speciose Neotropical tree genus. Focal species represent diverse chemical, morphological, and developmental defense traits and were collected from a single site in the Amazonian rainforest. Chemical defenses were measured gravimetrically and by characterizing the metabolome of expanding and mature leaves. Quantitative investment in phenolics plus saponins, the major classes of chemical defenses identified in Inga, was greater for expanding than mature leaves (46% and 24% of dry weight, respectively). This supports the theory that, because expanding leaves are under greater selective pressure from herbivores, they rely more upon chemical defense as an antiherbivore strategy than do mature leaves. Qualitatively, mature and expanding leaves were distinct and mature leaves contained more total and unique metabolites. Intraspecific variation was greater for mature leaves than expanding leaves, suggesting that leaf development is canalized. This study provides a snapshot of chemical defense investment in a speciose genus of tropical trees during the short, few‐week period of leaf development. Exploring the metabolome through quantitative and qualitative profiling enables a more comprehensive examination of foliar chemical defense investment.  相似文献   

9.
D. Lamb 《Plant and Soil》1976,45(2):477-492
Summary The concentrations of N, P, K, Ca, Mg, Zn, Cu, Mn, Fe and B were measured in leaves of various ages in upper, mid and lower crown positions in Eucalyptus deglupta Blume during both wet and dry seasons. Based on coefficients of variation, the number of samples trees necessary for different levels of precision were calculated for each crown position.Least variation was found during the wet season for all elements except K. For all elements except Ca, fewest trees were needed when foliar material was collected from upper crown branches.The rate of leaf production in the upper crown was constant and it was possible to sample leaves of the same age by collecting from similar sampling positions; in contrast, that in the lower crowns was erratic and it was difficult to collect leaves of comparable age.The patterns of distribution and variation of foliar nutrients in the crown of E. deglupta are discussed. re]19750521  相似文献   

10.
该研究从个体与物种两个水平分析福建省鬼洞山中亚热带常绿阔叶次生林中七种阔叶树种异龄叶的平均叶面积(MLA)、比叶面积(SLA)和叶干物质含量(LDMC)三个性状的变异及关联,探讨叶性状物质分配策略对植物生活策略优化的限制性影响。结果表明:(1)对七种阔叶树种的个体和物种水平变异系数而言,均为MLA(82.9%;76.9%)SLA(38.9%;35.5%)LDMC(25.4%;23.8%);在个体和物种水平上当年生叶片MLA变异系数(71.5%;64.0%)小于往年生叶片(72.2%;65.8%),SLA、LDMC值则相反。(2)在个体和物种水平,当年生叶MLA对往年生叶MLA变异的解释率分别为50.1%和61.5%,当年生叶SLA对往年生叶SLA变异的解释率分别为56.6%和77.0%,当年生叶LDMC对往年生叶LDMC变异的解释率分别为51.7%和68.3%。(3)7种亚热带常绿阔叶植物异龄叶MLA、SLA与LDMC变化规律说明,当年生叶与往年生叶投资相同干物质,当年叶可形成更大的叶面积,且叶面积建成的消耗较往年叶小。研究认为,异龄叶性状在异龄叶间存在变异与关联,叶面积形成过程中生物量建成与消耗的协调可能影响植物叶片的发育。  相似文献   

11.
Ülo Niinemets 《Plant Ecology》1996,124(2):145-153
Variation in leaf size (area per leaf) and leaf dry weight per area (LWA) in relation to species shade- and drought-tolerance, characterised by Ellenberg's light (ELD) and water demand (EWD) values, respectively, were examined in 60 temperate woody taxa at constant relative irradiance. LWA was independent of plant size, but leaf size increased with total plant height at constant ELD. Canopy position also affected leaf morphology: leaves from the upper crown third had higher LWA and were larger than leaves from the lower third. Leaf size and LWA were negatively correlated, and leaf size decreased and LWA increased with decreasing species shade-tolerance. Mean LWA was similar for trees and shrubs, but trees had larger leaves than shrubs. Furthermore, all relationships were altered by plant growth-form: none of the qualitative tendencies was significant for trees. This implies the considerably lower plasticity of foliar parameters in trees than those in shrubs. Accordingly, shade-tolerance of trees, having relatively constant leaf structure, may be most affected by the variability in biomass partitioning and crown geometry which influence foliage distribution and spacing and finally determine canopy light absorptance. Alteration of leaf form and investment pattern for construction of unit foliar surface area which change the efficiency of light interception per unit biomass investment in leaves, is a competitive strategy inherent to shrubs. EWD as well as wood anatomy did not control LWA and leaf size, though there was a trend of ring-porous tree species to be more shade-tolerant than diffuse-porous trees. Since ring-porous species are more vulnerable to cavitation than diffuse-porous species, they may be constrained to environments where irradiances and consequently evaporative demand is lower.  相似文献   

12.
The production of new leaves of host trees can be affected by the presence of epiphytic species. This experimental study was planned to evaluate the effects on the mean number of new leaves produced by Prosopis alba considering the factors site-disturbance, different epiphytes loads, and the respective zones in the tree crown. The number of new leaves produced was counted manipulating branches with originally low and high loads of epiphytes at different crown zones, in 10 trees per site. The effect of manual removal of epiphytes on the leaf production of the hosts was analyzed by comparing branch responses in short and medium periods of time (i.e., 6 months and 3 years, respectively). There were no significant differences when comparing the number of new leaves produced in the sampled trees at sites with different human disturbance intensities. By contrast, significant differences were observed between both epiphytic loads treatments and when comparing tree crown zones. Experimental results showed a higher subsequent host leaf production (>100%) in branches where epiphytes were experimentally removed, in comparison with branches with high load of epiphytes The number of new leaves produced in branches with naturally low loads of the epiphytes was higher than 1000% compared to branches with high Tillandsia loads. Finally, a higher significant production of new leaves was observed in the bottom crown zone as compared with the middle and upper crown zones. Furthermore, this trend was confirmed considering a longer time-period (3 years) after experimental removal of epiphytes. A significant increase (>100%) was observed when comparing the production of new leaves between different periods after total epiphyte removal. In consequence, Tillandsia species could be considered as “structural parasites” of Prosopis alba.  相似文献   

13.
Dependencies of foliage arrangement and structure on relative irradiance and total height (TH) were studied in saplings ofAcer platanoides andQuercus robur. The distribution of relative foliar area and dry weight (leaf area and weight in a crown layer per total tree leaf area and weight, respectively) were examined with respect to relative height (RH, height in the crown per TH) and characterized by the Weibull function. The distributions of relative area and weight were nearly identical, and the differences between them were attributable to a systematic decline in leaf dry weight per area with increasing crown depth. Foliage distribution was similarly altered by tree size in both species; RH at foliage maximum was lower and relative canopy size (RCS, length of live crown per TH) greater in taller trees. However, the distribution was more uniform inA. platanoides than inQ. robur. Apart from the size effects, relative irradiance also influenced canopy structure; RCS increased inQ. platanoides and decreased inQ. robur with increasing irradiance. As crown architecture was modified by irradiance, foliage distribution was shifted upwards with decreasing irradiance inA. platanoides, but it was independent of irradiance inQ. robur. Higher foliage maximum at lower irradiance in more shade-tolerantA. platanoides is likely to contribute towards more efficient foliar display for light interception and increase the competitive ability of this species in light-limited environments. Consequently, these differences in crown architecture and foliage distribution may partly explain the superior behavior ofA. platanoides in understory.  相似文献   

14.
Tree leaves are interfaces between the whole organism and the environment. Leaves display a series of attributes that are linked to specific functions (functional leaf traits—FLT) and/or show responses to biotic and abiotic stress factors (stress response traits, SRT), which can be subdivided into: (a) morphological traits; (b) chemical traits; (c) physiological traits; (d) symptoms. The analysis of FLT is a useful tool for tree species and provenance phenotyping, due to the adaptation of trees to environmental stress. Additionally, FLT can be used as response factor in long term and large spatial scales surveys of forest conditions. Despite these potential benefits of leaf traits in the assessment of ecosystem health and functioning, leaf sampling in forests is time-consuming and costly, especially in forests with a complex vertical and horizontal structure and in remote forest areas. Once a foliar sample has been collected, many different analyses can be carried out; however, analyses should be technically simple and able to be performed within one day following the leaf collection (i.e., on fresh samples), or after air-drying the leaves themselves (analysis of dried specimens). This paper reports the results of leaf sampling and foliar analyses carried out in previous research projects and revises the current state-of-the-art. The leaf traits that are easily obtainable from leaf sampling are listed, together with the operational procedures necessary for their measurement, described in a standardized protocol. Their ecological and functional relevance is discussed in relation to their potential information (as indicators of climatic stress, drought, air and soil pollution, tree light-use and competition, plant nutritional status, health and general plant stress conditions). Finally, this review provides suggestions for the elaboration and reporting of data, and proposes some guidelines to improve the effectiveness of foliar analysis in the assessment of forest ecosystem health, properties and functioning.  相似文献   

15.
Trees have the ability to respond to local environmental cues by expressing particular phenotypes across their canopy through a mechanism known as intracanopy plasticity. In this study, intracanopy plasticity of Olea europaea subsp. europaea was analyzed by sampling leeward and windward canopy exposures of individuals occurring in an area with sustained strong wind conditions. A suite of morphofunctional and reproductive traits was measured at these contrasting canopy positions and, for comparison, also in wind-protected trees. Furthermore, the pattern of intracanopy plasticity of these plants was compared to that previously documented in a closely related species, Olea europaea subsp. guanchica. Plants exposed to strong winds displayed substantial differences between leeward and windward exposures in most of the study traits. Leeward exposures experienced a mean reduction of 73% in wind speed as compared to windward ones, and displayed a modular phenotype matching that observed in wind-protected plants. Wind-exposed plants, however, were comparatively smaller and had fewer and smaller inflorescences, since inflorescence size was positively associated with crown size. The two closely related species showed similar crown and leaf sizes between populations exposed to strong winds, and intracanopy responses were comparable for most traits. These observations suggest that intracanopy plasticity resulted in the expression of contrasting phenotypes within individuals, which allowed trees to persist under sustained wind stress, although at the cost of a reduced reproductive fitness. In addition, this study gives support to the idea that intracanopy responses are conserved among closely related taxa evolving in different habitats, but experiencing a comparable limiting factor.  相似文献   

16.
Previous studies have shown that tree species richness increases forest productivity by allowing for greater spatial complementarity of tree crowns (crown complementarity), which in turn results in more densely packed canopies. However, the mechanisms driving crown complementarity in tree species mixtures remain unclear. Here, we take advantage of a high-resolution, three-dimensional terrestrial laser scanning approach in the context of a large-scale biodiversity-ecosystem functioning experiment in subtropical China (BEF-China) to quantify the extent to which functional dissimilarity and divergences in branch traits between neighbouring trees affect crown complementarity at the scale of tree species pairs (i.e., two adjacent trees). Overall, we found no support that functional dissimilarity (divergence in morphological flexibility, specific leaf area and wood density) promotes crown complementarity. However, we show that the effects of functional dissimilarity (the plasticity of the outer crown structure) on crown complementarity vary in their magnitude and importance depending on branch trait divergences. Firstly, crown complementarity tended to be highest for tree species pairs that strongly differed in their functional traits, but were similar in branch density. In contrast, heterospecific pairs with a low functional trait divergence benefitted the most from a large difference in branch density compared with pairs characterised by a large functional dissimilarity. Secondly, the positive effects of increasing divergence in branching intensity (the plasticity of the inner crown structure) on crown complementarity became most important at low levels of functional dissimilarity, i.e. when species pairs were similar in their branch packing and vice versa. This suggests that species mixing allows trees to occupy canopy space more efficiently mainly due to phenotypic changes associated with crown morphology and branch plasticity. Our findings highlight the importance of considering outer and inner crown structures (e.g. branching architecture) to deepen our understanding of tree-tree interactions in mixed-species communities.  相似文献   

17.
From the perspective of a specialist herbivore, how homogenous are individual tree crowns as patches of habitat? We partitioned variation in physical and chemical host leaf traits and in the abundance and performance of a specialist oak leaf miner, Tischeria ekebladella, into variation at different hierarchical levels. For the phenolic contents of the leaves, we examined variation among oak stands, among trees within stands and among branches within trees. For leaf size and water content, we assessed variation among trees within a single stand, among shoots within trees, and among leaves within shoots. For moth abundance and performance, we examined variation across all levels: among oak stands, among trees within stands, among branches within trees, among shoots within branches and among leaves and insect individuals. For measures of phenolic contents, we found little variation among stands but substantial variation among individual trees. Yet, a tree particularly rich in a given compound was often comparatively poor in another. At a finer spatial scale, the phenolic composition of individual parts of a single tree was quite consistent, whereas leaf weight and water content varied widely within individual tree crowns. Moth abundances varied more among shoots within branches than at any other spatial level, whereas moth survival showed equal levels of variation within individual shoots as among separate oak stands. Likewise, for four other measures of larval performance (assessed at the level of trees and lower), we found more variation within than between trees. In conclusion, the large variation observed in the performance of a specialist moth and in the physical traits of the leaves among different parts of single tree crowns refutes the image of an oak tree as an ‘island’ of internally homogeneous quality. Hence, we may expect little evolutionary adaptation of T. ekebladella at the scale of individual trees. The moths may instead evolve to behaviourally select their resource at a very fine scale. Large variation within trees also calls for extensive replication within trees in ecological sampling designs and/or the sampling of maximally similar leaves.  相似文献   

18.
The canopies of large broad‐leaf trees exhibit significant heterogeneity in both micro‐environmental conditions and leaf morphology. Whether the visible differences in the size and shape of leaves from the top and bottom of the crown are determined prior to bud break or result from different patterns of leaf expansion is not known. Analysis of ontogenetic changes of both the degree of lobing and vein density in Quercus rubra demonstrates that leaves throughout the crown are identical in size and shape at the time of bud break. Morphological adaptation to the local micro‐environment takes place during the expansion phase and starts after the determination of the vascular architecture has been completed. Leaves from the bottom of the crown undergo greater expansion in the tissue close to the main veins than occurs either in the more peripheral tissue of the same leaf or anywhere in leaves from the top of the crown. This results in a water transport system that is well suited to the low evaporative rates near the bottom of the crown, but inadequate for the conditions found at the top of the tree. Acclimation of leaf form and function based upon differential expansion may be entirely driven by the local hydraulic demand during the expansion phase, resulting in leaf size and vein density being determined during development by the same hydraulic properties which will constrain the size of leaf that can be functionally supported at maturity.  相似文献   

19.
The influence of environmental gradients on the foliar nutrient economy of forests has been well documented; however, we have little understanding of what drives variability among individuals within a single forest stand, especially tropical forests. We evaluated inter‐ and intra‐specific variation in nutrient resorption, foliar nutrient concentrations and physical leaf traits of nine canopy tree species within a 1‐ha secondary tropical rain forest in northeastern Costa Rica. Both nitrogen (N) and phosphorus (P) resorption efficiency (RE) and proficiency of the nine tree species varied significantly among species, but not within. Both N and P RE were significantly negatively related to leaf specific strength. Green leaf N and P concentrations were strongly negatively related to leaf mass per area, and senesced leaf nutrient concentrations were significantly positively related to green leaf nutrient concentrations. This study reveals a strong influence of physical leaf traits on foliar nutrient and resorption traits of co‐occurring species in a secondary wet tropical forest stand.  相似文献   

20.
Previous studies have shown that tree species richness increases forest productivity by allowing for greater spatial complementarity of tree crowns (crown complementarity), which in turn results in more densely packed canopies. However, the mechanisms driving crown complementarity in tree species mixtures remain unclear. Here, we take advantage of a high-resolution, three-dimensional terrestrial laser scanning approach in the context of a large-scale biodiversity-ecosystem functioning experiment in subtropical China (BEF-China) to quantify the extent to which functional dissimilarity and divergences in branch traits between neighbouring trees affect crown complementarity at the scale of tree species pairs (i.e., two adjacent trees). Overall, we found no support that functional dissimilarity (divergence in morphological flexibility, specific leaf area and wood density) promotes crown complementarity. However, we show that the effects of functional dissimilarity (the plasticity of the outer crown structure) on crown complementarity vary in their magnitude and importance depending on branch trait divergences. Firstly, crown complementarity tended to be highest for tree species pairs that strongly differed in their functional traits, but were similar in branch density. In contrast, heterospecific pairs with a low functional trait divergence benefitted the most from a large difference in branch density compared with pairs characterised by a large functional dissimilarity. Secondly, the positive effects of increasing divergence in branching intensity (the plasticity of the inner crown structure) on crown complementarity became most important at low levels of functional dissimilarity, i.e. when species pairs were similar in their branch packing and vice versa. This suggests that species mixing allows trees to occupy canopy space more efficiently mainly due to phenotypic changes associated with crown morphology and branch plasticity. Our findings highlight the importance of considering outer and inner crown structures (e.g. branching architecture) to deepen our understanding of tree-tree interactions in mixed-species communities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号