首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Selection for the oviposition site represents the criterion for the behavioral process of habitat selection for the next generation. It is well known that in Odonata the most general cues are detected visually, but laboratory investigations on the coenagrionid Ischnura elegans showed through behavioral and electrophysiological assays that adults were attracted by olfactory cues emitted by prey and that males of the same species are attracted by female odor.The results of the present behavioral and electrophysiological investigations on I. elegans suggest the involvement of antennal olfactory sensilla in oviposition behavior. In particular, I. elegans females laid in the laboratory significantly more eggs in water from larval rearing aquaria than in distilled or tap water. Moreover, the lack of preference between rearing water and tap water with plankton suggests a role of volatiles related to conspecific and plankton presence in the oviposition site choice. I. elegans may rely on food odor for oviposition site selection, thus supporting the predictions of the “mother knows best” theory. These behavioral data are partially supported by electroantennographic responses. These findings confirm a possible role of olfaction in crucial aspects of Odonata biology.  相似文献   

2.
Wild strain, mated, female Mexican fruit flies, Anastrepha ludens (Loew), with no prior experience with fruit (naive), were not attracted to grapefruit, a preferred cultivated host, in wind tunnel experiments. Naive, mated laboratory strain females were attracted. Prior experience with grapefruit increased attraction of both laboratory and wild strains. More females were attracted to fruit with peel damage than to undamaged fruit, indicating that fruit odor mediated attraction. More naive than experienced females attempted to oviposit on the sides of the wind tunnel. Experienced laboratory males, but not wild males or naive males, were attracted to grapefruit. Attraction and oviposition behavior of laboratory flies was greater than that of wild flies.  相似文献   

3.
During sustained stimulation most sensory neurons will adapt their response by decreasing their sensitivity to the signal. The adaptation response helps shape attention and also protects cells from over-stimulation. Adaptation within the olfactory circuit of C. elegans was first described by Colbert and Bargmann1,2. Here, the authors defined parameters of the olfactory adaptation paradigm, which they used to design a genetic screen to isolate mutants defective in their ability to adapt to volatile odors sensed by the Amphid Wing cells type C (AWC) sensory neurons. When wildtype C. elegans animals are exposed to an attractive AWC-sensed odor3 for 30 min they will adapt their responsiveness to the odor and will then ignore the adapting odor in a chemotaxis behavioral assay for ~1 hr. When wildtype C. elegans animals are exposed to an attractive AWC-sensed odor for ~1 hr they will then ignore the adapting odor in a chemotaxis behavioral assay for ~3 hr. These two phases of olfactory adaptation in C. elegans were described as short-term olfactory adaptation (induced after 30 min odor exposure), and long-term olfactory adaptation (induced after 60 min odor exposure). Later work from L''Etoile et al.,4 uncovered a Protein Kinase G (PKG) called EGL-4 that is required for both the short-term and long-term olfactory adaptation in AWC neurons. The EGL-4 protein contains a nuclear localization sequence that is necessary for long-term olfactory adaptation responses but dispensable for short-term olfactory adaptation responses in the AWC4. By tagging EGL-4 with a green fluorescent protein, it was possible to visualize the localization of EGL-4 in the AWC during prolonged odor exposure. Using this fully functional GFP-tagged EGL-4 (GFP::EGL-4) molecule we have been able to develop a molecular readout of long-term olfactory adaptation in the AWC5. Using this molecular readout of olfactory adaptation we have been able to perform both forward and reverse genetic screens to identify mutant animals that exhibit defective subcellular localization patterns of GFP::EGL-4 in the AWC6,7. Here we describe: 1) the construction of GFP::EGL-4 expressing animals; 2) the protocol for cultivation of animals for long-term odor-induced nuclear translocation assays; and 3) the scoring of the long-term odor-induced nuclear translocation event and recovery (re-sensitization) from the nuclear GFP::EGL-4 state.  相似文献   

4.
Sequencing of the Caenorhabditis elegans genome revealed sequences encoding more than 1,000 G-protein coupled receptors, hundreds of which may respond to volatile organic ligands. To understand how the worm''s simple olfactory system can sense its chemical environment there is a need to characterise a representative selection of these receptors but only very few receptors have been linked to a specific volatile ligand. We therefore set out to design a yeast expression system for assigning ligands to nematode chemoreceptors. We showed that while a model receptor ODR-10 binds to C. elegans Gα subunits ODR-3 and GPA-3 it cannot bind to yeast Gα. However, chimaeras between the nematode and yeast Gα subunits bound to both ODR-10 and the yeast Gβγ subunits. FIG2 was shown to be a superior MAP-dependent promoter for reporter expression. We replaced the endogenous Gα subunit (GPA1) of the Saccharomyces cerevisiae (ste2Δ sst2Δ far1Δ) triple mutant (“Cyb”) with a Gpa1/ODR-3 chimaera and introduced ODR-10 as a model nematode GPCR. This strain showed concentration-dependent activation of the yeast MAP kinase pathway in the presence of diacetyl, the first time that the native form of a nematode chemoreceptor has been functionally expressed in yeast. This is an important step towards en masse de-orphaning of C. elegans chemoreceptors.  相似文献   

5.
This study examined the effects of three lactic acid bacteria (LAB) strains on the nematode Caenorhabditis elegans. Lactobacillus salivarius, Lactobacillus reuteri, and Pediococcus acidilactici were found to inhibit the development and growth of the worm. Compared to Escherichia coli used as the control, L. reuteri and P. acidilactici reduced the lifespan of wild-type and short-lived daf-16 worms. On the contrary, L. salivarius extended the lifespan of daf-16 worms when used live, but reduced it as UV-killed bacteria. The three LAB induced the expression of genes involved in pathogen response and inhibited the growth of tumor-like germ cells, without affecting DAF16 localization or increasing corpse cells. Our results suggest the possible use of C. elegans as a model for studying the antitumor attributes of LAB. The negative effects of these LAB strains on the nematode also indicate their potential use against parasitic nematodes.  相似文献   

6.
Developmental and behavioral plasticity allow animals to prioritize alternative genetic programs during fluctuating environments. Behavioral remodeling may be acute in animals that interact with host organisms, since reproductive adults and the developmentally arrested larvae often have different ethological needs for chemical stimuli. To understand the genes that coordinate the development and host-seeking behavior, we used the entomophilic nematode Pristionchus pacificus to characterize dauer-constitutive mutants (Daf-c) that inappropriately enter developmental diapause to become dauer larvae. We found two Daf-c loci with dauer-constitutive and cuticle exsheathment phenotypes that can be rescued by the feeding of Δ7-dafachronic acid, and that are dependent on the conserved canonical steroid hormone receptor Ppa-DAF-12. Specifically at one locus, deletions in the sole hydroxysteroid dehydrogenase (HSD) in P. pacificus resulted in Daf-c phenotypes. Ppa-hsd-2 is expressed in the canal-associated neurons (CANs) and excretory cells whose homologous cells in Caenorhabditis elegans are not known to be involved in the dauer decision. While in wildtype only dauer larvae are attracted to host odors, hsd-2 mutant adults show enhanced attraction to the host beetle pheromone, along with ectopic activation of a marker for putative olfactory neurons, Ppa-odr-3. Surprisingly, this enhanced odor attraction acts independently of the Δ7-DA/DAF-12 module, suggesting that Ppa-HSD-2 may be responsible for several steroid hormone products involved in coordinating the dauer decision and host-seeking behavior in P. pacificus.  相似文献   

7.
The role of olfactory eavesdropping in interactions between mammalian predator and prey species is well established. Bird plumage can be odorous and consequently nest predators could use odor to identify and locate avian prey, and nest competitors could use odor to assess occupancy of nest cavities by birds. However, despite extensive research on avian nest predation and competition, the costs of olfactory eavesdropping on plumage odor by nest predators or competitors remain largely unknown. We used two experiments to investigate whether feather odor is detected by marsupial species which are competitors for nest hollows and predators of eggs and nestlings of crimson rosellas, Platycercus elegans. In the first experiment, odor presentation at nest boxes utilized by ringtail possums (Pseudocheirus peregrinus) and rosellas showed that the latency of possums to enter the nest was shorter when crimson rosella odor was present compared to the controls. In the second experiment, carried out away from nest hollows, brushtail possums (Trichosurus vulpecula) discriminated odors of two predators (dingo, Canis lupus dingo, and cat, Felis catus) from crimson rosella and control odors; however, they did not discriminate between crimson rosella odor and a control. We show that marsupials may use feather odor cues to assess nest hollow status, information which could aid their detection of avian prey or their vigilance at nest hollows (for which they compete with parrots). To our knowledge, our study is the first to show that wild mammalian predators and competitors of birds respond to plumage odor at nests and suggest that odor signaling may have hitherto unrecognized costs for birds.  相似文献   

8.
Upon presentation of two distinct chemoattractants such as sodium acetate and diacetyl simultaneously, the nematode Caenorhabditis elegans was preferentially attracted by one of these chemoattractants. We isolated two mutants having altered preference of chemotaxis behavior toward simultaneous presentation of sodium acetate and diacetyl. The chep-1(qr1) (CHEmosensory Preference) mutant preferred sodium acetate to diacetyl, while the chep-2(qr2) mutant preferred diacetyl to sodium acetate in simultaneous presentation of these chemoattractants. The chemotaxis behavior of chep-2(qr2) mutant in simultaneous presentation suggests a function of chep-2 gene products within the chemosensory informational integration pathway as well as in the chemosensory pathway.  相似文献   

9.
While most sensory neurons will adapt to prolonged stimulation by down-regulating their responsiveness to the signal, it is not clear which events initiate long-lasting sensory adaptation. Likewise, we are just beginning to understand how the physiology of the adapted cell is altered. Caenorhabditis elegans is inherently attracted to specific odors that are sensed by the paired AWC olfactory sensory neurons. The attraction diminishes if the animal experiences these odors for a prolonged period of time in the absence of food. The AWC neuron responds acutely to odor-exposure by closing calcium channels. While odortaxis requires a Gα subunit protein, cGMP-gated channels, and guanylyl cyclases, adaptation to prolonged odor exposure requires nuclear entry of the cGMP-dependent protein kinase, EGL-4. We asked which candidate members of the olfactory signal transduction pathway promote nuclear entry of EGL-4 and which molecules might induce long-term adaptation downstream of EGL-4 nuclear entry. We found that initiation of long-term adaptation, as assessed by nuclear entry of EGL-4, is dependent on G-protein mediated signaling but is independent of fluxes in calcium levels. We show that long-term adaptation requires polyunsaturated fatty acids (PUFAs) that may act on the transient receptor potential (TRP) channel type V OSM-9 downstream of EGL-4 nuclear entry. We also present evidence that high diacylglycerol (DAG) levels block long-term adaptation without affecting EGL-4 nuclear entry. Our analysis provides a model for the process of long-term adaptation that occurs within the AWC neuron of C. elegans: G-protein signaling initiates long-lasting olfactory adaptation by promoting the nuclear entry of EGL-4, and once EGL-4 has entered the nucleus, processes such as PUFA activation of the TRP channel OSM-9 may dampen the output of the AWC neuron.  相似文献   

10.
Isaya Higa  Yoshiaki Fuyama 《Genetica》1993,88(2-3):129-136
To reveal the genetic mechanism of host selection in a monophagous fruit flyDrosophila sechellia, olfactory responses and oviposition preferences of this species were compared with those of closely related polyphagous species,D. simulans andD. melanogaster. Adult flies ofD. sechellia were strongly attracted to the ripe fruit ofMorinda citrifolia which is known to be the sole breeding site of this species. They were also attracted to the odor ofn-caproic acid which is contained in the ripe fruit ofM. citrifolia and is presumably responsible for the characteristic odor of the fruit. In contrast,D. simulans andD. melanogaster showed a strong repulsion ton-caproic acid. In parallel with the olfactory responses,D. sechellia females laid eggs preferentially on a medium containingn-caproic acid, to which the other two species showed an aversion. Genetic analyses using the hybrid progeny betweenD. sechellia andD. simulans suggested that the species differences in these behaviors are controlled by gene(s) located on the second chromosome.  相似文献   

11.
This study aimed to develop a convenient model to investigate the senescence of host defenses and the influence of food and nutrition. A small soil nematode, Caenorhabditis elegans, was grown for 3 days from hatching on a lawn of Escherichia coli OP50 as the normal food source, and subsequently some of the nematodes were fed lactic acid bacteria (LAB). The life spans of worms fed LAB were significantly longer than the life spans of those fed OP50. To investigate the effect of age on host defenses, 3- to 7-day-old worms fed OP50 were transferred onto a lawn of Salmonella enterica serovar Enteritidis for infection. The nematodes died over the course of several days, and the accumulation of salmonella in the intestinal lumen suggested that the worms were infected. The 7-day-old worms showed a higher death rate during the 5 days after infection than nematodes infected at the age of 3 days; no clear difference was observed when the worms were exposed to OP50. We then investigated whether the LAB could exert probiotic effects on the worms' host defenses and improve life span. Seven-day-old nematodes fed LAB from the age of 3 days were more resistant to salmonella than worms fed OP50 until they were infected with salmonella. This study clearly showed that LAB can enhance the host defense of C. elegans and prolong life span. The nematode appears to be an appropriate model for screening useful probiotic strains or dietetic antiaging substances.  相似文献   

12.

Background

Predator attraction to prey social signals can force prey to trade-off the social imperatives to communicate against the profound effect of predation on their future fitness. These tradeoffs underlie theories on the design and evolution of conspecific signalling systems and have received much attention in visual and acoustic signalling modes. Yet while most territorial mammals communicate using olfactory signals and olfactory hunting is widespread in predators, evidence for the attraction of predators to prey olfactory signals under field conditions is lacking.

Methodology/Principal Findings

To redress this fundamental issue, we examined the attraction of free-roaming predators to discrete patches of scents collected from groups of two and six adult, male house mice, Mus domesticus, which primarily communicate through olfaction. Olfactorily-hunting predators were rapidly attracted to mouse scent signals, visiting mouse scented locations sooner, and in greater number, than control locations. There were no effects of signal concentration on predator attraction to their prey''s signals.

Conclusions/Significance

This implies that communication will be costly if conspecific receivers and eavesdropping predators are simultaneously attracted to a signal. Significantly, our results also suggest that receivers may be at greater risk of predation when communicating than signallers, as receivers must visit risky patches of scent to perform their half of the communication equation, while signallers need not.  相似文献   

13.
14.
The tropical root weevil Diaprepes abbreviatus is a major pest of multiple crops in the Caribbean Islands and has become a serious constraint to citrus production in the United States. Recent work has identified host and conspecific volatiles that mediate host- and mate-finding by D. abbreviatus. The interaction of light, color, and odors has not been studied in this species. The responses of male and female D. abbreviatus to narrow bandwidths of visible light emitted by LEDs offered alone and in combination with olfactory stimuli were studied in a specially-designed multiple choice arena combined with a locomotion compensator. Weevils were more attracted to wavelengths close to green and yellow compared with blue or ultraviolet, but preferred red and darkness over green. Additionally, dim green light was preferred over brighter green. Adult weevils were also attracted to the odor of its citrus host + conspecifics. However, the attractiveness of citrus + conspecific odors disappeared in the presence of a green light. Photic stimulation induced males but not females to increase their speed. In the presence of light emitted by LEDs, turning speed decreased and path straightness increased, indicating that weevils tended to walk less tortuously. Diaprepes abbreviatus showed a hierarchy between chemo- and photo-taxis in the series of experiments presented herein, where the presence of the green light abolished upwind anemotaxis elicited by the pheromone + host plant odor. Insight into the strong responses to visual stimuli of chemically stimulated insects may be provided when the amount of information supplied by vision and olfaction is compared, as the information transmission capacity of compound eyes is estimated to be several orders of magnitude higher compared with the olfactory system. Subordination of olfactory responses by photic stimuli should be considered in the design of strategies aimed at management of such insects.  相似文献   

15.
It is well known that proteolysis often occurs after rupture of metazoan cells. Thus proteins isolated from extracts may not be representative of their native cellular counterparts. In the present research, extensive proteolysis was observed in crude extracts of the freeliving soil nematode Caenorhabditis elegans and the parasitic nematode Ascaris suum. Phenylmethylsulfonyl fluoride (PMSF) reduced the loss in activity of isocitrate lyase (EC 4.1.3.1), fumarase (EC 4.2.1.2), and citrate synthase (EC 4.1.3.7) in extracts of C. elegans but had little or no effect upon loss of malate synthase (EC 4.1.3.2). Catalase (EC 1.11.1.6) was stable. The loss of isocitrate lyase and citrate synthase was less pronounced in extracts of 22-day-old embryos of A. suum. Catalase decayed in these extracts. The addition of PMSF reduced the loss in all three of these activities. Fumarase was stable. The number of active fragments of isocitrate lyase recovered after filtration on Sephadex G-200 increased with the length of storage of crude extracts in the absence of PMSF at 4 C. Even in the presence of PMSF five activity peaks were observed after storage of extracts of C. elegans at 4 C for 72 hr. The molecular weights of active species ranged between 549,000 and 128,000 for isocitrate lyase in extracts of either C. elegans or A. suum. The 549,000- and 214,000-dalton species of isocitrate lyase from A. suum were much more labile at 50 C than the 543,000- and 195,000-dalton species from C. elegans.  相似文献   

16.
Information specificity can be important to animals in makingoptimal decisions. However, it is not always necessary to useevery level of specificity. We analyzed the response of thepredatory mite Phytoseiulus persimilis to plant-produced informationrelated to a nonprey herbivore. This predator is a specialistfeeding on spider mites in the genus Tetranychus. Caterpillarsof Spodoptera exigua cannot serve as prey. Plants respond toan infestation by herbivores with the emission of volatilesthat attract carnivorous enemies of the herbivores. Conspecific plants infested with different herbivore species can emit blendsthat are qualitatively identical, while differing in the ratiosof blend components. However, different plant species emitvolatile blends that differ qualitatively. We demonstratedthat the predator P. persimilis is attracted to volatiles frombean plants infested with S. exigua caterpillars, but thatthis attraction is affected by predator starvation and host-plantexperience. One-hour and 24-h starved predators were made to represent predators that just lost a prey patch versus predatorsthat have totally lost a prey patch. Predators reared on spidermites on bean were attracted to bean plants infested with caterpillarswhen starved for 1 h but not when starved for 24 h. Both predatorgroups were attracted to bean plants infested with prey (i.e.,spider mites). One-hour starved predators can use the odorto relocate the rewarding prey patch they just lost contactwith, and using a general olfactory representation of the blendis sufficient for relocation. In contrast, for 24-h starvedpredators, the perception of a plant's odor blend is unlikelyto represent the prey patch lost, and discriminating betweenan odor blend representing prey or nonprey will avoid investingtime in finding a nonprey herbivore. In contrast, predatorsthat had been reared on spider mites on cucumber and thus hadexperienced a qualitatively different odor blend were not attractedto volatiles from caterpillar-infested bean plants. They wereattracted to spider mite-infested bean plants, irrespectiveof starvation level. To cucumber-experienced predators, theperception of bean plant odor cannot represent the prey patch lost, but only a new prey patch. Being discriminative and onlyresponding to prey-infested plants is adaptive in this situation.Our results are discussed in the context of optimal informationprocessing.  相似文献   

17.
Soil application of DBCP (l,2-dibromo-3-chloropropane) and foliar applications of oxamyl (methyl N'',N''-dimethyl-N-[(methylcarbamoyl)oxy]-l-thiooxamimidate) were compared for control of Tylenchulus semipenetrans in a grapefruit (Citrus paradisi) orchard, DBCP reduced nematode populations and increased fruit growth rate, fruit size at harvest, and yield compared to the untreated controls in the 2 years following treatments. Foliar applications of oxamyl reduced nematode populations and increased fruit growth rate slightly the first year, but not in the second. Foliar applications of oxamyl did not improve control attained by DBCP alone. Soil application of aldicarb [2-methyl-2-(methylthio)propionaldehyde-O-(methylcarbamoyl)oxime] or DBCP to an orange (C. sinensis) orchard reduced T. semipenetrans populations in the 3 years tested and increased yield in 1 of 3 years. Aldicarb treatment reduced fruit damage caused by the citrus rust mite, Phyllocoptruta oleivora. Aldicarb, applied at 5.7 or 11.4 kg/ha, by disk incorporation or chisel injection, was equally effective in controlling nematodes, improving yields, fruit size, and external quality. In a grapefruit orchard, chisel-applied aldicarb reduced nematode populations and rust mite damage and increased yields in both years and increased fruit size in one year. The 11.4-kg/ha rate was slightly more effective than the 5.7-kg/ha rate. Aldicarb appears to be an adequate substitute for DBCP for nematode control in Texas citrus orchards and well-suited to an overall pest management system for Texas citrus.  相似文献   

18.
In animal olfactory systems, odorant molecules are detected by olfactory receptors (ORs). ORs are part of the G-protein-coupled receptor (GPCR) superfamily. Heterotrimeric guanine nucleotide binding G-proteins (G-proteins) relay signals from GPCRs to intracellular effectors. G-proteins are comprised of three peptides. The G-protein α subunit confers functional specificity to G-proteins. Vertebrate and insect Gα-subunit genes are divided into four subfamilies based on functional and sequence attributes. The nematode Caenorhabditis elegans contains 21 Gα genes, 14 of which are exclusively expressed in sensory neurons. Most individual mammalian cells express multiple distinct GPCR gene products, however, individual mammalian and insect olfactory neurons express only one functional odorant OR. By contrast C. elegans expresses multiple ORs and multiple Gα subunits within each olfactory neuron. Here we show that, in addition to having at least one member of each of the four mammalian Gα gene classes, C. elegans and other nematodes also possess two lineage-specific Gα gene expansions, homologues of which are not found in any other organisms examined. We hypothesize that these novel nematode-specific Gα genes increase the functional complexity of individual chemosensory neurons, enabling them to integrate odor signals from the multiple distinct ORs expressed on their membranes. This neuronal gene expansion most likely occurred in nematodes to enable them to compensate for the small number of chemosensory cells and the limited emphasis on cephalization during nematode evolution. [Reviewing Editor: Dr. John Oakeshott] Damien M. O’Halloran and David A. Fitzpatrick contributed equally to this work.  相似文献   

19.
《Genomics》2022,114(5):110446
Multidrug and toxic compound extrusion (MATE) proteins are a class of secondary active multidrug transporters. In plants, this family has significantly expanded and is involved in numerous plant physiological processes. Although MATE proteins have been identified in an increasing number of species, the understanding about this family in citrus remains unclear. In this study, a total of 69 MATE transporters were identified in the citrus genome (Citrus clementina) and classified into four groups by phylogenetic analysis. Tandem and segmental duplication events were the main causes of the citrus MATE family expansion. RNA-seq and qRT-PCR analyses were performed during citrus fruit development. The results indicated that CitMATE genes showed specific expression profiles in citrus peels and flesh at different developmental stages. Combined with the variations of flavonoids and citrate levels in citrus fruit, we suggested that CitMATE43 and CitMATE66 may be involved in the transport process of flavonoids and citrate in citrus fruit, respectively. In addition, two flavonoids positive regulators, CitERF32 and CitERF33, both directly bind to and activated the CitMATE43 promoter. Our results provide comprehensive information on citrus MATE genes and valuable understanding for the flavonoids and citrate metabolism in citrus fruit.  相似文献   

20.
For decades the soil nematode Caenorhabditis elegans has been an important model system for biology, but little is known about its natural ecology. Recently, C. elegans has become the focus of studies of innate immunity and several pathogens have been shown to cause lethal intestinal infections in C. elegans. However none of these pathogens has been shown to invade nematode intestinal cells, and no pathogen has been isolated from wild-caught C. elegans. Here we describe an intracellular pathogen isolated from wild-caught C. elegans that we show is a new species of microsporidia. Microsporidia comprise a large class of eukaryotic intracellular parasites that are medically and agriculturally important, but poorly understood. We show that microsporidian infection of the C. elegans intestine proceeds through distinct stages and is transmitted horizontally. Disruption of a conserved cytoskeletal structure in the intestine called the terminal web correlates with the release of microsporidian spores from infected cells, and appears to be part of a novel mechanism by which intracellular pathogens exit from infected cells. Unlike in bacterial intestinal infections, the p38 MAPK and insulin/insulin-like growth factor (IGF) signaling pathways do not appear to play substantial roles in resistance to microsporidian infection in C. elegans. We found microsporidia in multiple wild-caught isolates of Caenorhabditis nematodes from diverse geographic locations. These results indicate that microsporidia are common parasites of C. elegans in the wild. In addition, the interaction between C. elegans and its natural microsporidian parasites provides a system in which to dissect intracellular intestinal infection in vivo and insight into the diversity of pathogenic mechanisms used by intracellular microbes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号