首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The mechanics of cell sorting and envelopment   总被引:3,自引:0,他引:3  
Aggregates of embryonic cells undergo a variety of intriguing processes including sorting by histological type and envelopment of cell masses of one type by another. It has long been held that these processes were driven by differential adhesions, as embodied in the famous differential adhesion hypothesis (DAH). Here, we use analytical mechanics to investigate the forces that are generated by various sub-cellular structures including microfilaments, cell membranes and their associated proteins, and by sources of cell-cell adhesions. We consider how these forces cause the triple junctions between cells to move, and how these motions ultimately give rise to phenomena such as cell sorting and tissue envelopment. The analyses show that, contrary to the widely accepted DAH, differential adhesions alone are unable to drive sorting and envelopment. They show, instead, that these phenomena are driven by the combined effect of several force generators, as embodied in an equivalent surface or interfacial tension. These unconventional findings follow directly from the relevant surface physics and mechanics, and are consistent with well-known cell sorting and envelopment experiments, and with recent computer simulations.  相似文献   

3.
Morphogenesis implies the controlled spatial organization of cells that gives rise to tissues and organs in early embryonic development. While morphogenesis is under strict genetic control, the formation of specialized biological structures of specific shape hinges on physical processes. Tissue engineering (TE) aims at reproducing morphogenesis in the laboratory, i.e., in vitro, to fabricate replacement organs for regenerative medicine. The classical approach to generate tissues/organs is by seeding and expanding cells in appropriately shaped biocompatible scaffolds, in the hope that the maturation process will result in the desired structure. To accomplish this goal more naturally and efficiently, we set up and implemented a novel TE method that is based on principles of developmental biology and employs bioprinting, the automated delivery of cellular composites into a three-dimensional (3D) biocompatible environment. The novel technology relies on the concept of tissue liquidity according to which multicellular aggregates composed of adhesive and motile cells behave in analogy with liquids: in particular, they fuse. We emphasize the major role played by tissue fusion in the embryo and explain how the parameters (surface tension, viscosity) that govern tissue fusion can be used both experimentally and theoretically to control and simulate the self-assembly of cellular spheroids into 3D living structures. The experimentally observed postprinting shape evolution of tube- and sheet-like constructs is presented. Computer simulations, based on a liquid model, support the idea that tissue liquidity may provide a mechanism for in vitro organ building.  相似文献   

4.
A mechanical model for the formation of vascular networks in vitro   总被引:4,自引:0,他引:4  
Endothelial cells, when cultured on gelled basement membrane matrix exert forces of tension through which they deform the matrix and at the same time they aggregate into clusters. The cells eventually form a network of cord-like structures connecting cell aggregates. In this network, almost all of the matrix has been pulled underneath the cell cords and cell clusters. This phenomenon has been proposed as a possible model for the growth and development of planar vascular systems in vitro. Our hypothesis is that the matrix is reorganized and the cellular networks form as a result of traction forces exerted by the cells on the matrix and the latter's elasticity. We construct and analyze a mathematical model based on this hypothesis and examine conditions necessary for the formation of the pattern. We show cell migration is not necessary for pattern formation and that isotropic, strain-stimulated traction is sufficient to form the observed patterns.  相似文献   

5.
Summary Tissue-like aggregates of human embryo fibroblasts can be created in vitro by limited aspiration of cells released from substrate during subcultivation. Aggregates increase in size, exhibit intercellular junctions, display a surface topography characteristic of cellular movement, elaborate an extracellular matrix and possess features of cellular death and phagocytosis. These cells, when introduced to a new culture environment, do not migrate away from one another as is common when a primary culture is started from tissue fragments. Instead, cells exhibit continued contact with each other, and develop complex junctional structures during that association. Cellular aggregates generated in this manner may provide a useful system for providing further information on cellular adhesion, intercellular communication, morphogenetic cell movements and the mechanisms of cell death. Dr. Kelley is the recipient of a Research Career Development Award (HD70407).  相似文献   

6.
R O Kelley  R B Lauer 《In vitro》1976,12(2):155-164
Tissue-like aggregates of human embryo fibroblasts can be created in vitro by limited aspiration of cells released from substrate during subcultivation. Aggregates increase in size, exhibit intercellular junctions, display a surface topography characteristic of cellular movement, elaborate an extracellular matrix and possess features of cellular death and phagocytosis. These cells, when introduced to a new culture environment, do not migrate away from one another as is common when a primary culture is started from tissue fragments. Instead, cells exhibit continued contact with each other, and develop complex junctional structures during that association. Cellular aggregates generated in this manner may provide a useful system for providing further information on cellular adhesion, intercellular communication, morphogenetic cell movements and the mechanisms of cell death.  相似文献   

7.
The monoclonal antibody, TS19, (Heimfeld et al., 1985), labels the apical surface of ectodermal epithelial cells of tentacles and lower peduncles in Hydra. To investigate the patterning process in a tissue whose original pattern was completely destroyed, the TS19 staining pattern was examined in developing aggregates of Hydra cells. Two types of aggregates were prepared. G-aggregates were made from tissue of the gastric portion of animals and RG-aggregates from gastric tissue allowed to regenerate for 24 hr before making aggregates. G-aggregates were initially TS19-negative, and later dim and uniformly TS19-positive. Thereafter, TS19 staining broke up into brightly stained and unstained regions. The brightly staining regions developed into head or foot structures. The TS19 pattern in RG-aggregates developed differently. Since the initial aggregates contained cells of regenerating tips, they started with TS19-positive cells as well as TS19-negative cells. The numbers of brightly staining TS19-positive cells increased with time. Some patches of these cells developed into head or foot structures, while others did not. These results and a simulation using a reaction-diffusion model suggest that the changes in activation levels affected the temporal changes in the pattern of TS19 staining, and that the de novo pattern formation in hydra can be explained in terms of a process involving activation and inhibition properties.  相似文献   

8.
The cartilage pattern of the developing chick limb changes along the proximal-distal (PD) axis. It is assumed that these spatial changes are brought about by differences in the cellular properties of distal mesoderm, the progress zone (PZ). To examine whether these differences are actually maintained in the individual cells composing the PZ, we dissociated early (stage 20) and late (stage 25) PZ tissues into single cells, then mixed and recombined them with ectodermal jackets. The recombinants were grafted to limb bud stumps and allowed to develop into limb-like structures. Early PZ cells were distributed within whole cartilage elements along the PD axis of the limb-like structures, while cells from late PZ participated only in the formation of distal cartilage elements.
A difference in distribution pattern between the cells of early and late PZ in mixed culture was also observed. Cells of early PZ aggregated rapidly in patches and formed cartilage nodules, while the cells of late PZ distributed in regions surrounding these cell aggregates and gradually differentiated to cartilage cells. These results suggest that the cellular properties in the PZ concerning the rate of chondrogenic aggregate formation change during limb bud development, and that this change may relate to the cartilage pattern formation along the PD axis.  相似文献   

9.
The formation of spore-filled fruiting bodies by myxobacteria is a fascinating case of multicellular self-organization by bacteria. The organization of Myxococcus xanthus into fruiting bodies has long been studied not only as an important example of collective motion of bacteria, but also as a simplified model for developmental morphogenesis. Sporulation within the nascent fruiting body requires signaling between moving cells in order that the rod-shaped self-propelled cells differentiate into spores at the appropriate time. Probing the three-dimensional structure of myxobacteria fruiting bodies has previously presented a challenge due to limitations of different imaging methods. A new technique using Infrared Optical Coherence Tomography (OCT) revealed previously unknown details of the internal structure of M. xanthus fruiting bodies consisting of interconnected pockets of relative high and low spore density regions. To make sense of the experimentally observed structure, modeling and computer simulations were used to test a hypothesized mechanism that could produce high-density pockets of spores. The mechanism consists of self-propelled cells aligning with each other and signaling by end-to-end contact to coordinate the process of differentiation resulting in a pattern of clusters observed in the experiment. The integration of novel OCT experimental techniques with computational simulations can provide new insight into the mechanisms that can give rise to the pattern formation seen in other biological systems such as dictyostelids, social amoeba known to form multicellular aggregates observed as slugs under starvation conditions.  相似文献   

10.
Using epifluorescence microscopy and image analysis, we have quantitatively described the frequency, size, and spatial distribution of bacterial aggregates on leaf surfaces of greenhouse-grown bean plants inoculated with the plant-pathogenic bacterium Pseudomonas syringae pv. syringae strain B728a. Bacterial cells were not randomly distributed on the leaf surface but occurred in a wide range of cluster sizes, ranging from single cells to over 10(4) cells per aggregate. The average cluster size increased through time, and aggregates were more numerous and larger when plants were maintained under conditions of high relative humidity levels than under dry conditions. The large majority of aggregates observed were small (less than 100 cells), and aggregate sizes exhibited a strong right-hand-skewed frequency distribution. While large aggregates are not frequent on a given leaf, they often accounted for the majority of cells present. We observed that up to 50% of cells present on a leaf were located in aggregates containing 10(3) cells or more. Aggregates were associated with several different anatomical features of the leaf surface but not with stomates. Aggregates were preferentially associated with glandular trichomes and veins. The biological and ecological significance of aggregate formation by epiphytic bacteria is discussed.  相似文献   

11.
12.
Normal rat kidney cells infected with a Rous sarcoma virus (strain LA23) were used to study the dynamics of alpha-actinin-containing aggregates in transformed cells. Experiments were performed by microinjecting living cells with iodoacetamidotetramethylrhodamine alpha-actinin and allowing the fluorescent analogue to incorporate into cellular structures. Subsequent time-lapse recording indicated that the alpha-actinin-containing aggregates can undergo rapid formation, movement, and breakdown. In addition, experiments using the photobleaching recovery technique indicated that alpha-actinin molecules associated with the aggregates have a very high rate of exchange, whereas those associated with adhesion plaques in normal cells exchange much more slowly. The dynamic properties of alpha-actinin-containing aggregates may be closely related to the changes in cellular behavior upon oncogenic transformation.  相似文献   

13.
Proteins can aggregate in a wide variety of structures, both compact and extended. We present simulations of a coarse-grained anisotropic model that reproduce many of the experimentally observed aggregate structures. Conversely, all structures predicted by our model have experimental counterparts (ribbons, multistranded fibrils, and vesicles). The model we use is that of a rodlike particle with an attractive (hydrophobic) stripe on its side. Our Monte Carlo simulations show that aggregate morphologies crucially depend on two parameters. The first one is the width of the attractive stripe and the second one is a presence or absence of attractive interactions at the particle ends. These results provide us with a generic insight into the relation between the shape of protein-protein interaction potential and the morphology of protein aggregates.  相似文献   

14.
It is well known that in embryonic tissues at the key stages of morphogenesis there arise stable, stage--specific tension fields. These fields occur due to particular pattern of morphologically polarized cells. Some basic properties have been understood previously. 1. Morphologically polarized and isotropic shapes correspond to the alternative stable states of embryonic cells. 2. Polarization can be transmitted between the adjacent cells via intercellular contacts. 3. The tension fields at particular stage of development determine the pattern of morphogenetic movements. In this paper the physical model is suggested which interprets the selforganization of tension fields in embryonic tissues. The polarization in some region of tissue is assumed to generate the elastic tension in the surrounding cells thus restricting the propagation of cell polarization. It is shown that the properties underlined are sufficient to provide spontaneous subdivision of the cellular layer into the domains of polarized and unpolarized stretched cells. The proportion of polarized and unpolarized areas is determined and size--invariant.  相似文献   

15.
Polyglutamine (polyQ) extension in the coding sequence of mutant huntingtin causes neuronal degeneration associated with the formation of insoluble polyQ aggregates in Huntington's disease. We constructed an array of CAG/CAA triplet repeats, coding for a range of 25-300 glutamine residues, which was used to generate expression constructs with minimal flanking sequence. Normal-length (25 glutamine residues) polyQ did not aggregate when transfected alone. Remarkably, when co-transfected with extended (100-300 glutamine residues) polyQ tracts, normal-length polyQ-containing peptides were trapped in insoluble detergent-resistant aggregates. Aggregates formed in the cytoplasm but were visible in the nucleus only when a strong nuclear localization signal was present. Intermolecular interactions between polyQ tracts mediated the localization of heterogeneous aggregates into the nucleolus by nucleolin protein. Our results suggest that extended polyQ can interact with cellular polyQ-containing proteins, transport them to ectopic cellular locations, and form heterogeneous polyQ aggregates. We provide evidence for a recruitment mechanism for pathogenesis in the polyQ neurodegenerative disorders. In susceptible cells, extended polyQ tracts in huntingtin might interact with and sequester or deplete certain endogenous polyQ-containing cellular proteins.  相似文献   

16.
Using epifluorescence microscopy and image analysis, we have quantitatively described the frequency, size, and spatial distribution of bacterial aggregates on leaf surfaces of greenhouse-grown bean plants inoculated with the plant-pathogenic bacterium Pseudomonas syringae pv. syringae strain B728a. Bacterial cells were not randomly distributed on the leaf surface but occurred in a wide range of cluster sizes, ranging from single cells to over 104 cells per aggregate. The average cluster size increased through time, and aggregates were more numerous and larger when plants were maintained under conditions of high relative humidity levels than under dry conditions. The large majority of aggregates observed were small (less than 100 cells), and aggregate sizes exhibited a strong right-hand-skewed frequency distribution. While large aggregates are not frequent on a given leaf, they often accounted for the majority of cells present. We observed that up to 50% of cells present on a leaf were located in aggregates containing 103 cells or more. Aggregates were associated with several different anatomical features of the leaf surface but not with stomates. Aggregates were preferentially associated with glandular trichomes and veins. The biological and ecological significance of aggregate formation by epiphytic bacteria is discussed.  相似文献   

17.
Somites are condensations of mesodermal cells that form along the two sides of the neural tube during early vertebrate development. They are one of the first instances of a periodic pattern, and give rise to repeated structures such as the vertebrae. A number of theories for the mechanisms underpinning somite formation have been proposed. For example, in the “clock and wavefront” model (Cooke and Zeeman in J. Theor. Biol. 58:455–476, 1976), a cellular oscillator coupled to a determination wave progressing along the anterior-posterior axis serves to group cells into a presumptive somite. More recently, a chemical signaling model has been developed and analyzed by Maini and coworkers (Collier et al. in J. Theor. Biol. 207:305–316, 2000; Schnell et al. in C. R. Biol. 325:179–189, 2002; McInerney et al. in Math. Med. Biol. 21:85–113, 2004), with equations for two chemical regulators with entrained dynamics. One of the chemicals is identified as a somitic factor, which is assumed to translate into a pattern of cellular aggregations via its effect on cell–cell adhesion. Here, the authors propose an extension to this model that includes an explicit equation for an adhesive cell population. They represent cell adhesion via an integral over the sensing region of the cell, based on a model developed previously for adhesion driven cell sorting (Armstrong et al. in J. Theor. Biol. 243:98–113, 2006). The expanded model is able to reproduce the observed pattern of cellular aggregates, but only under certain parameter restrictions. This provides a fuller understanding of the conditions required for the chemical model to be applicable. Moreover, a further extension of the model to include separate subpopulations of cells is able to reproduce the observed differentiation of the somite into separate anterior and posterior halves. N.J. Armstrong was supported by a Doctoral Training Account Studentship from EPSRC. K.J. Painter and J.A. Sherratt were supported in part by Integrative Cancer Biology Program Grant CA113004 from the US National Institute of Health and in part by BBSRC grant BB/D019621/1 for the Centre for Systems Biology at Edinburgh.  相似文献   

18.
Growing evidence is pointing to the importance of multicellular bacterial structures in the interaction of pathogenic bacteria with their host. Transition from planktonic to host cell-associated multicellular structures is an essential infection step that has not been described for the opportunistic human pathogen Pseudomonas aeruginosa. In this study we show that P. aeruginosa interacts with the surface of epithelial cells mainly forming aggregates. Dynamics of aggregate formation typically follow a sigmoidal curve. First, a single bacterium attaches at cell-cell junctions. This is followed by rapid recruitment of free-swimming bacteria and association of bacterial cells resulting in the formation of an aggregate on the order of minutes. Aggregates are associated with phosphatidylinositol 3,4,5-trisphosphate (PIP3)-enriched host cell membrane protrusions. We further show that aggregates can be rapidly internalized into epithelial cells. Lyn, a member of the Src family tyrosine kinases previously implicated in P. aeruginosa infection, mediates both PIP3-enriched protrusion formation and aggregate internalization. Our results establish the first framework of principles that define P. aeruginosa transition to multicellular structures during interaction with host cells.  相似文献   

19.
By modifying and calibrating an active vertex model to experiments, we have simulated numerically a confluent cellular monolayer spreading on an empty space and the collision of two monolayers of different cells in an antagonistic migration assay. Cells are subject to inertial forces and to active forces that try to align their velocities with those of neighboring ones. In agreement with experiments in the literature, the spreading test exhibits formation of fingers in the moving interfaces, there appear swirls in the velocity field, and the polar order parameter and the correlation and swirl lengths increase with time. Numerical simulations show that cells inside the tissue have smaller area than those at the interface, which has been observed in recent experiments. In the antagonistic migration assay, a population of fluidlike Ras cells invades a population of wild type solidlike cells having shape parameters above and below the geometric critical value, respectively. Cell mixing or segregation depends on the junction tensions between different cells. We reproduce the experimentally observed antagonistic migration assays by assuming that a fraction of cells favor mixing, the others segregation, and that these cells are randomly distributed in space. To characterize and compare the structure of interfaces between cell types or of interfaces of spreading cellular monolayers in an automatic manner, we apply topological data analysis to experimental data and to results of our numerical simulations. We use time series of data generated by numerical simulations to automatically group, track and classify the advancing interfaces of cellular aggregates by means of bottleneck or Wasserstein distances of persistent homologies. These techniques of topological data analysis are scalable and could be used in studies involving large amounts of data. Besides applications to wound healing and metastatic cancer, these studies are relevant for tissue engineering, biological effects of materials, tissue and organ regeneration.  相似文献   

20.
The kinetics of lysozyme refolding and aggregation is studied using an existing competing first- and third-order reaction scheme. The existing model overestimates yield at high refolding concentrations (>1 mg/mL), thus limiting its use for reactor design at industrially relevant refolding concentrations. This study demonstrates that a pathway exists for the incorporation of refolded native protein into aggregates. Specifically, native lysozyme labeled with fluorescein isothiocyanate was added to the refolding buffer prior to dilution refolding of denatured and reduced lysozyme. Aggregates collected from these experiments showed significant fluorescence, indicating that labeled lysozyme had been incorporated into the aggregates during refolding. Although the precise pathway of incorporation has not been elucidated, it is clear from this work that the existing model for lysozyme refolding is not globally applicable. In particular, previous work has analytically demonstrated that neglect of a pathway from native to aggregate can result in the design of a grossly suboptimal reactor strategy. This study demonstrates that such a pathway can exist experimentally and emphasizes the need to critically assess refolding kinetic models before their use in reactor design equations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号