首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Eight phenolic glycosides have been isolated from the leaves of S. glaucophyllum, one of them being quercetin-3-O-(2G-β-D-apiosylrutinoside).  相似文献   

2.
Leaflets of soybean plants which are moderately inorganic nitrogen (N)-limited exhibit either no difference in the rate of net photosynthesis or as much as a 15–23% lower net photosynthesis rate per unit area than leaflets of N-sufficient plants [Robinson JM (1996) Photosynth Res 50: 133–148; Robinson JM (1997a) Int J Plant Sci 158: 32–43]. However, mature leaflets of N-limited soybean plants have a higher CO2photoassimilation rate per unit chlorophyll than leaflets of N-sufficient soybean plants at both moderate light intensity (500 µmol m-2s-1) and saturating light intensity (1200 µmol m-2s-1) [Robinson JM (1996) Photosynth Res 50: 133–148]. This study was undertaken to determine whether chloroplast thylakoids isolated from the leaflets of nitrogen-limited soybean plants displayed similar or higher linear electron transport rates (H2O ferredoxin NADP) per unit chlorophyll than thylakoids isolated from leaflets of N-sufficient plants. Chlorophyll concentration in reaction mixtures containing chloroplast thylakoids prepared from leaflets of N-limited plants was manipulated so that it was similar to the chlorophyll concentration in reaction mixtures of thylakoids prepared from leaflets of N-sufficient plants. Measurements of ferredoxin dependent, NADP dependent, O2photo-evolution in thylakoid isolates were carried out in saturating light (1500 µmol m-2s-1) and with (an uncoupler) in the chloroplast reaction mixtures. Chloroplast thylakoids isolated from N-limited soybean plant leaflets routinely had a 1.5 to 1.7 times higher rate of uncoupled, whole chain electron transport per unit chlorophyll in saturating light than did chloroplast thylakoids isolated from leaflets of N-sufficient plants. The results suggest that the photosystems and photosynthetic electron transport chain components are more active per unit Chl in leaflet chloroplast thylakoids of N-limited soybean plants than in thylakoids of N-sufficient plants.  相似文献   

3.
Isolation of mesophyll protoplasts from mature leaves of soybeans   总被引:3,自引:2,他引:1       下载免费PDF全文
Lin W 《Plant physiology》1983,73(4):1067-1069
A procedure based on a combined cellulase-Pectolyase Y-23 enzyme digestion and metrizamide-sorbitol gradient purification protocol was developed for isolating mesophyll protoplasts from mature leaves of soybean (Glycine max L. Merr.). Based on chlorophyll content, this procedure results in a 10 to 15% protoplast yield from fully expanded mature leaves and a 20 to 30% yield from young (expanding) leaves within 3 hours. Isolated protoplasts displayed high rates of HCO3-dependent photosynthesis; greater than 75 micromoles O2 evolved per milligram chlorophyll per hour at 25°C. This photosynthetic rate is comparable to that of mesophyll cells isolated mechanically from the same leaves.  相似文献   

4.
Prolonged inorganic nitrogen (NO3 +NH4 +) limitation of non-N2-fixing soybean plants affected leaflet photosynthesis rates, photosynthate accumulation rates and levels, and anaplerotic carbon metabolite levels. Leaflets of nitrogen-limited (N-Lim), 27–31-day-old plants displayed 15 to 23% lower photosynthesis rates than leaflets of nitrogen-sufficient (N-Suff) plants. In contrast, N-Lim plant leaflets displayed higher sucrose and starch levels and rates of accumulation, as well as higher levels of carbon metabolites associated with sucrose and starch synthesis, e. g., glycerate-3-phosphate and glucose phosphates, than N-Suff plant leaflets. Concurrently, levels of soluble protein, chlorophyll, and anaplerotic metabolites, e.g., malate and phosphoenolpyruvate, were lower in leaflets of N-Lim plants than N-Suff plants, suggesting that the enzymes of the anaplerotic carbon metabolite pathway were lower in activity in N-Lim plant leaflets. Malate net accumulation rates in the earliest part of the illumination period were lower in N-Lim than in N-Suff plant leaflets; however, by the midday period, malate accumulation rate in N-Lim plant leaflets exceeded that in leaflets of N-Suff plants. Further, soluble protein accumulation rates in leaflets of N-Suff and N-Lim plants were similar, and the rate of dark respiration, measured in the early part of the dark period, was higher in N-Lim plant leaflets than in N-Suff plant leaflets. It was concluded that during prolonged N-limitation, foliar metabolite conditions favored the channelling of a large proportion of the carbon assimilate into sucrose and starch, while assimilate flow through the anaplerotic pathway was diminished. However, in some daytime periods, there was a normal level of carbon assimilate channelled through the anaplerotic pathway for ultimate use in amino acid and protein synthesis.Abbreviations ADPG-PPiase ADPglucose pyrophosphorylase - Ce CO2 in the leaf photosynthesis measuring cuvette - Ci leaf internal CO2 during photosynthesis measurement - Chl chlorophyll - DHAP dihydroxyacetone phosphate - GAP glyceraldehyde-3-phosphate - Gsw stomatal conductance with units as mmol H2O m–2 s–1 - G1P glucose-1-phosphate - G6P glucose-6-phosphate - F6P fructose-6-phosphate - FBP fructose-1,6-bisphosphate - FBPase-pH 8.1 chloroplastic fructose-1,6-bisP (C-1) phosphatase (pH 8.1) - MAL malate - N inorganic nitrogen, i.e. NO3 +NH4 + (at levels and molar ratios indicated) - PE post-emergence - PEP phosphoenolpyruvate - PEPCase phosphoenolpyruvate carboxylase - PGA 3-phosphoglycerate - PYR pyruvate - PYR kinase pyruvate kinase - Pn net CO2 photoassimilation in leaves - PPFD photosynthetic photon flux density - PPRC pentose phosphate reductive cycle - RuBP ribulose-1,5-bisphosphate; rubisco-ribulose-1,5-bisphosphate carboxylase/oxygenase - SLW specific leaf mass - SPS sucrose-6-phosphate synthase - TCA cycle tricarboxylic acid cycle; triose-P-DAP+GAP  相似文献   

5.
Mesophyll cells were rapidly isolated from soybean (Glycine max [L.]) leaves using a combined Macerase enzyme-stirring technique. About 50% to 70% of the leaf cells on a chlorophyll basis from 3 grams of leaves could be isolated in 15 minutes. The cells obtained by this method were capable of high rates of photosynthesis even after storage in the dark for periods of up to 9 hours. The CO2-saturated rate of photosynthesis increased from 5 μm CO2/mg Chl·hour at 5 C to 170 μm CO2/mg Chl·hour at 40 C. At atmospheric CO2 concentration, the rate varied from 5 to 55 μm CO2/mg Chl·hour over this temperature range. The reduced temperature response of photosynthesis at low CO2 concentration was due to an increased Km(CO2) of the cells with increasing temperature. The products of photosynthesis in the isolated cells were similar to the products of leaf photosynthesis.  相似文献   

6.
Photosynthesis rates of detached Panicum miliaceum leaves were measured, by either CO2 assimilation or oxygen evolution, over a wide range of CO2 concentrations before and after supplying the phosphoenolpyruvate (PEP) carboxylase inhibitor, 3,3-dichloro-2-(dihydroxyphosphinoyl-methyl)-propenoate (DCDP). At a concentration of CO2 near ambient, net photosynthesis was completely inhibited by DCDP, but could be largely restored by elevating the CO2 concentration to about 0.8% (v/v) and above. Inhibition of isolated PEP carboxylase by DCDP was not competitive with respect to HCO3, indicating that the recovery was not due to reversal of enzyme inhibition. The kinetics of 14C-incorporation from 14CO2 into early labeled products indicated that photosynthesis in DCDP-treated P. miliaceum leaves at 1% (v/v) CO2 occurs predominantly by direct CO2 fixation by ribulose 1,5-bisphosphate carboxylase. From the photosynthesis rates of DCDP-treated leaves at elevated CO2 concentrations, permeability coefficients for CO2 flux into bundle sheath cells were determined for a range of C4 species. These values (6-21 micromoles per minute per milligram chlorophyll per millimolar, or 0.0016-0.0056 centimeter per second) were found to be about 100-fold lower than published values for mesophyll cells of C3 plants. These results support the concept that a CO2 permeability barrier exists to allow the development of high CO2 concentrations in bundle sheath cells during C4 photosynthesis.  相似文献   

7.
Photosynthetic rates of both C4- and C3-pathway plants grown at 25 C were measured before and during a period of chilling stress at 10 C, and then again at 25 C following various periods at 10 C. When temperatures are first lowered photosynthetic rates drop immediately, then undergo a further reduction which is quite rapid in species such as Sorghum, maize, and Pennisetum; slower in soybean; and very slow in Paspalum and ryegrass. Visible light causes progressive permanent damage to the photosynthetic capacity of leaves during this period of lowered photosynthesis. The extent of damage increases with light intensity and the length of time leaves are held at 10 C but varies greatly between species, being roughly correlated with the extent to which chilling initially and subsequently lowers photosynthesis. Three days of chilling (10 C) at 170 w·m−2 reduces the photosynthetic capacity of youngest-mature Paspalum leaves only 30 to 40% while Sorghum leaves are essentially inoperative when returned to 25 C after the same stress. Root temperature has a substantial rapid effect on photosynthesis of soybean and little immediate effect on Sorghum. Photosynthesis of stress-intolerant species (Sorghum) is reduced only slightly more than that of semitolerant species (Paspalum) when temperatures are lowered at mid-photo-period, but to a far greater extent if temperatures are reduced at the commencement of a photoperiod.  相似文献   

8.
Catabolism of flavonol glucosides was investigated in plant cell suspension cultures using kaempferol 3-O-β-d-glucoside and kaempferol 7-O-β-d-glucoside labelled with 14C either in the glucose or in the flavonol moiety. Catabolic rates of glucosides were compared with those of free glucose and kaempferol. All substrates were degraded efficiently by cell cultures of mungbean, soybean, garbanzo bean and parsley. Based on 14CO2-formation, glucose from position 3 of kaempferol is 3–5 times more rapidly metabolized than that from position 7. The flavonol nucleus from both isomers is, however, oxidized to the same extent with a considerable portion of the flavonol being incorporated into insoluble polymeric cell material.  相似文献   

9.
Growth at an elevated CO2 concentration resulted in an enhanced capacity for soybean (Glycine max L. Merr. cv Bragg) leaflet photosynthesis. Plants were grown from seed in outdoor controlled-environment chambers under natural solar irradiance. Photosynthetic rates, measured during the seed filling stage, were up to 150% greater with leaflets grown at 660 compared to 330 microliters of CO2 per liter when measured across a range of intercellular CO2 concentrations and irradiance. Soybean plants grown at elevated CO2 concentrations had heavier pod weights per plant, 44% heavier with 660 compared to 330 microliters of CO2 per liter grown plants, and also greater specific leaf weights. Ribulose 1,5-bisphosphate carboxylase/oxygenase (rubisco) activity showed no response (mean activity of 96 micromoles of CO2 per square meter per second expressed on a leaflet area basis) to short-term (~1 hour) exposures to a range of CO2 concentrations (110-880 microliters per liter), nor was a response of activity (mean activity of 1.01 micromoles of CO2 per minute per milligram of protein) to growth CO2 concentration (160-990 microliters per liter) observed. The amount of rubisco protein was constant, as growth CO2 concentration was varied, and averaged 55% of the total leaflet soluble protein. Although CO2 is required for activation of rubisco, results indicated that within the range of CO2 concentrations used (110-990 microliters per liter), rubisco activity in soybean leaflets, in the light, was not regulated by CO2.  相似文献   

10.
The current study confirmed earlier conclusions regarding differential ozone (O3) tolerances of two soybean cultivars, Essex and Forrest, and evaluated antioxidant enzyme activities of these two varieties based on their performance under environmentally relevant, elevated O3 conditions. The experiment was conducted in open-top chambers in the field during the 1994 and 1995 growing seasons. Exposure of plants to moderately high O3 levels (62.9 nl l−1 air, 2-year seasonal average) caused chlorophyll loss and increased membrane permeability when compared to control plants grown in charcoal filtered air (24.2 nl l−1 air). The other effects of O3 treatment were decrease in seed yield, loss of total sulfhydryl groups, reduction of soluble protein content, and increase in guaiacol peroxidase activity in leaves of both cultivars. The O3-induced increase in guaiacol peroxidase activity was much smaller in cv. Essex leaflets. Cv. Essex had less leaf oxidative damage and smaller reduction in seed yield than cv. Forrest under elevated O3 conditions. During ozonation, mature leaflets of the more O3 tolerant cv. Essex had higher levels of glutathione reductase (30%), ascorbate peroxidase (13%), and superoxide dismutase (45%) activity than did mature leaflets of cv. Forrest. Cu,Zn-superoxide dismutase, which represented 95% of total superoxide dismutase activity in the two cultivars, appeared to be increased by O3 exposure in the leaflets of O3 tolerant cv. Essex but not in those of cv. Forrest. Cytosolic ascorbate peroxidase activity was also higher in leaflets of cv. Essex than in cv. Forrest regardless of O3 level. Stromal ascorbate peroxidase and Mn-superoxide dismutase activity did not appear to be involved in the O3 tolerance of the two soybean cultivars. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

11.
Wheat (Triticum aestivum L. cv Albis) was grown in open-top chambers in the field and fumigated daily with charcoal-filtered air (0.015 microliters per liter O3), nonfiltered air (0.03 microliters per liter O3), and air enriched with either 0.07 or 0.10 microliters per liter ozone (seasonal 8 hour/day [9 am-5 pm] mean ozone concentration from June 1 until July 10, 1987). Photosynthetic 14CO2 uptake was measured in situ. Net photosynthesis, dark respiration, and CO2 compensation concentration at 2 and 21% O2 were measured in the laboratory. Leaf segments were freeze-clamped in situ for the determination of the steady state levels of ribulose 1,5-bisphosphate, 3-phosphoglycerate, triose-phosphate, ATP, ADP, AMP, and activity of ribulose, 1,5-bisphosphate carboxylase/oxygenase. Photosynthesis of flag leaves was highest in filtered air and decreased in response to increasing mean ozone concentration. CO2 compensation concentration and the ratio of dark respiration to net photosynthesis increased with ozone concentration. The decrease in photosynthesis was associated with a decrease in chlorophyll, soluble protein, ribulose bisphosphate carboxylase/oxygenase activity, ribulose bisphosphate, and adenylates. No decrease was found for triose-phosphate and 3-phosphoglycerate. The ratio of ATP to ADP and of triosephosphate to 3-phosphoglycerate were increased suggesting that photosynthesis was limited by pentose phosphate reductive cycle activity. No limitation occurred due to decreased access of CO2 to photosynthetic cells since the decrease in stomatal conductance with increasing ozone concentration did not account for the decrease in photosynthesis. Ozonestressed leaves showed an increased degree of activation of ribulose bisphosphate carboxylase/oxygenase and a decreased ratio of ribulose bisphosphate to initial activity of ribulose bisphosphate carboxylase/oxygenase. Nevertheless, it is suggested that photosynthesis in ozone stressed leaves is limited by ribulose bisphosphate carboxylation possibly due to an effect of ozone on the catalysis by ribulose bisphosphate carboxylase/oxygenase.  相似文献   

12.
The levels of ribulose 1,5-bisphosphate (RuBP), 3-phosphoglyceric acid (PGA), glycolate, glycine, and serine were measured in soybean leaflets during photosynthesis in atmospheres ranging from 1 to 60% O2 and from 0 to 500 microliters per liter CO2.  相似文献   

13.
Kumagai E  Araki T  Hamaoka N  Ueno O 《Annals of botany》2011,108(7):1381-1386

Background and Aims

Rice (Oryza sativa) plants lose significant amounts of volatile NH3 from their leaves, but it has not been shown that this is a consequence of photorespiration. Involvement of photorespiration in NH3 emission and the role of glutamine synthetase (GS) on NH3 recycling were investigated using two rice cultivars with different GS activities.

Methods

NH3 emission (AER), and gross photosynthesis (PG), transpiration (Tr) and stomatal conductance (gS) were measured on leaves of ‘Akenohoshi’, a cultivar with high GS activity, and ‘Kasalath’, a cultivar with low GS activity, under different light intensities (200, 500 and 1000 µmol m−2 s−1), leaf temperatures (27·5, 32·5 and 37·5 °C) and atmospheric O2 concentrations ([O2]: 2, 21 and 40 %, corresponding to 20, 210 and 400 mmol mol−1).

Key Results

An increase in [O2] increased AER in the two cultivars, accompanied by a decrease in PG due to enhanced photorespiration, but did not greatly influence Tr and gS. There were significant positive correlations between AER and photorespiration in both cultivars. Increasing light intensity increased AER, PG, Tr and gS in both cultivars, whereas increasing leaf temperature increased AER and Tr but slightly decreased PG and gS. ‘Kasalath’ (low GS activity) showed higher AER than ‘Akenohoshi’ (high GS activity) at high light intensity, leaf temperature and [O2].

Conclusions

Our results demonstrate that photorespiration is strongly involved in NH3 emission by rice leaves and suggest that differences in AER between cultivars result from their different GS activities, which would result in different capacities for reassimilation of photorespiratory NH3. The results also suggest that NH3 emission in rice leaves is not directly controlled by transpiration and stomatal conductance.  相似文献   

14.
Three new phenolic glycosides, salviifosides A?C (13), and three known compounds salicin (4), kaempferol (5), and kaempferol 3-O-β-d-glucopyranoside (6) were isolated from the leaves of Alangium salviifolium (L.f.) Wangerin (Alangiaceae). The structures of the new metabolites were determined on the basic of spectroscopic analyses including two dimensional NMR. The anti-inflammatory activities of new compounds (1?3) were investigated on lipopolysaccharide (LPS)-induced murine macrophage cells line, RAW 264.7. Salviifoside B (2) potentially inhibits the productions of nitric oxide (NO), prostaglandin E2 (PGE2), and tumor necrosis factor-α (TNF-α).  相似文献   

15.
The initial (in vivo) and total (activity present after preincubation with CO2 and Mg2+) activities of ribulose bisphosphate carboxylase were both assayed in extracts of leaves of soybean (Glycine max) plants which had been grown under 4 different irradiance levels. The total carboxylase activity per unit leaf area decreased with decreased irradiance during growth but was not different on a dry weight basis. The initial activity as a percentage of the total activity was unchanged (approximately 95%) except in leaves of plants grown at the lowest irradiance (74%). When the plants grown at the lowest irradiance were exposed to high irradiance, the initial activity was increased to 93% of the total. Light saturated rates of photosynthesis per unit leaf area were lower and saturated at lower irradiance for plants grown at lower irradiances. Initial carboxylase activity was correlated closely (r2=0.84) with leaf photosynthesis rate on a dry weight basis.  相似文献   

16.
Twelve flavonol glycosides have been isolated from the leaves of Securidaca diversifolia. The separation of ten quercetin 3-glycosides and two kaempferol 3-glycosides was achieved by droplet counter-current chromatography (DCCC), preparative reversed-phase chromatography and gel chromatography. The structures were established on the basis of partial and total acid hydrolysis and spectral data (UV, 13C NMR, FAB, MS, D/CI MS). The four apiosides: quercetin 3-(2″-β-D-apiofuranosyl-β-D-glucopyranoside), 3-(2″-β-D-apiofuranosyl-β-D-galactoside), 3-(2″-β-D-apiofuranosyl-α-L-arabinopyranoside) and 3-(2″-β-D-apiofuranosyl-β-D-xylopyranoside) are new natural products. The structure of kaempferol 3-(2″-β-D-apiofuranosyl-β-D-glucopyranoside), previously isolated from Cicer arietinum, is confirmed.  相似文献   

17.
Terry N 《Plant physiology》1976,57(4):477-479
Effects of sulfur on photosynthesis in sugar beets (Beta vulgaris L. cv. F58-554H1) were studied by inducing sulfur deficiency and determining changes in the photosynthesis of whole attached leaves and of isolated chloroplasts. The rates of photosynthetic CO2 uptake by intact leaves, photoreduction of ferricyanide, cyclic and noncyclic photophosphorylation of isolated chloroplasts, and the rate of CO2 assimilation by ribulose diphosphate carboxylase, decreased with decrease in total leaf sulfur from 2500 to about 500 μg g−1 dry weight. Sulfur deficiency reduced photosynthesis through an effect on chlorophyll content, which decreased linearly with leaf sulfur, and by decreasing the rate of photosynthesis per unit chlorophyll. There was only a small effect of sulfur deficiency on stomatal diffusion resistance to CO2 until leaf sulfur decreased below 1000 μg g−1 when stomatal resistance became a more significant proportion of the total diffusion resistance to CO2. Light respiration rates were positively correlated with photosynthesis rates and dark respiration was unchanged as leaf sulfur concentrations declined.  相似文献   

18.
Jenkins CL 《Plant physiology》1989,89(4):1231-1237
The effect of 3,3-dichloro-2-(dihydroxyphosphinoylmethyl)-propenoate (DCDP), an analog of phosphoenolpyruvate (PEP), on PEP carboxylase activity in crude leaf extracts and on photosynthesis of excised leaves was examined. DCDP is an effective inhibitor of PEP carboxylase from Zea mays or Panicum miliaceum; 50% inhibition was obtained at 70 or 350 micromolar, respectively, in the presence of 1 millimolar PEP and 1 millimolar HCO3. When fed to leaf sections via the transpiration stream, DCDP at 1 millimolar strongly inhibited photosynthesis in C4 species (79-98% inhibition for a range of seven C4 species), but only moderately in C3 species (12-46% for four C3 species), suggesting different mechanisms of inhibition for each photosynthetic type. The response of P. miliaceum (C4) net photosynthesis to intercellular pCO2 showed that carboxylation efficiency, as well as the CO2 saturated rate, are lowered in the presence of DCDP and supported the view that carboxylation efficiency in C4 species is directly related to PEP carboxylase activity. A fivefold increase in intercellular pCO2 over that occurring in P. miliaceum under normal photosynthesis conditions only increased net photosynthesis rate in the presence of 1 millimolar DCDP from zero to about 5% of the maximal uninhibited rate. Therefore, it seems unlikely that direct fixation of atmospheric CO2 by the bundle sheath cells makes any significant contribution to photosynthetic CO2 assimilation in C4 species. The results support the concept that C4-selective herbicides may be developed based on inhibitors of C4 pathway reactions.  相似文献   

19.
Mesophyll conductance (Gm) is one of the most important factors determining photosynthesis. Tropospheric ozone (O3) is known to accelerate leaf senescence and causes a decline of photosynthetic activity in leaves. However, the effects of age-related variation of O3 on Gm have not been well investigated, and we, therefore, analysed leaf gas exchange data in a free-air O3 exposure experiment on Siebold's beech with two levels (ambient and elevated O3: 28 and 62 nmol mol−1 as daylight average, respectively). In addition, we examined whether O3-induced changes on leaf morphology (leaf mass per area, leaf density and leaf thickness) may affect CO2 diffusion inside leaves. We found that O3 damaged the photosynthetic biochemistry progressively during the growing season. The Gm was associated with a reduced photosynthesis in O3-fumigated Siebold's beech in August. The O3-induced reduction of Gm was negatively correlated with leaf density, which was increased by elevated O3, suggesting that the reduction of Gm was accompanied by changes in the physical structure of mesophyll cells. On the other hand, in October, the O3-induced decrease of Gm was diminished because Gm decreased due to leaf senescence regardless of O3 treatment. The reduction of photosynthesis in senescent leaves after O3 exposure was mainly due to a decrease of maximum carboxylation rate (Vcmax) and/or maximum electron transport rate (Jmax) rather than diffusive limitations to CO2 transport such as Gm. A leaf age×O3 interaction of photosynthetic response will be a key for modelling photosynthesis in O3-polluted environments.  相似文献   

20.
《Plant science》1986,44(2):119-123
The low activity of ribulose bisphosphate carboxylase from darkened soybean (Glycine max [L.] Merr. cv. Bragg) leaves was not raised to the level of that from leaves in the light by CO2 and Mg2+, even after a 4-h incubation. The extract of darkened leaves, unlike the extract from illuminated leaves, was not fully CO2/Mg2+-activatable after Sephadex gel filtration in the absence of Mg2+. (NH4)2SO4 fractionation eliminated the inhibition effect found in the dark extracts resulting in similar rates for the extracts obtained from leaves in the dark and light. Although the Vmax values of the gel-filtered extracts from dark and light leaves differed by 3-fold, the Km(CO2)-values were the same (12.7 μM), as were the Km(RuBP)-values (250 μM). These data support the hypothesis that for soybean leaves in the dark a tightly-binding inhibitor renders much of the ribulose bisphosphate carboxylase enzyme catalytically non-functional.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号