首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Effects of transforming growth factor-beta 1 (TGF-beta 1), either alone or in combination with TNF, on the induction of differentiation of human myelogenous leukemic cell lines were examined. TGF-beta 1 alone induced differentiation of a human monocytic leukemia U-937 line into the cells with macrophage characteristics. When combined with TNF, TGF-beta 1 synergistically or additively induced differentiation associated properties. A human myeloblastic leukemia cell line, ML-1, differently responded to TGF-beta 1 in induction of differentiation. FcR activity and phagocytic activity induced by TNF were suppressed by TGF-beta 1. However, nitroblue tetrazolium reducing activity was synergistically induced by combinations of TGF-beta 1 and TNF. Scatchard analysis of TNF receptors indicated that the number of binding sites and dissociation constant of TNF for its receptors on U-937 or ML-1 cells were not changed by treatment with TGF-beta 1. Although IFN-gamma, IL-6, granulocyte CSF, and granulocyte-macrophage CSF-induced nitroblue tetrazolium reducing activity of U-937 cells, only IFN-gamma, and TNF induced it synergistically in combination with TGF-beta 1. Synergism between TGF-beta 1 and TNF was also observed in inhibition of growth of U-937 and ML-1 cells. Although TGF-beta 1 induction of differentiation of other monocytoid leukemic THP-1 cells was similar to that of U-937 cells, TGF-beta 1 only slightly induced differentiation of promyelocytic leukemic HL-60 cells, either alone or in combination with TNF. Our observations indicate that TGF-beta 1 strongly modulates differentiation and proliferation of human myelogenous leukemia cells, macrophage precursors.  相似文献   

2.
Highly purified natural interferon-gamma (IFN-gamma) induced differentiation having characteristics that are associated with the human promyelocytic leukemia cell line, HL-60. Monoclonal antibody to INF-gamma neutralized its activity. However, the natural IFN-gamma had almost no inducing activity in ML-1, a human myeloblastic leukemia cell line. Similar results were obtained using recombinant IFN-gamma. Mitogen stimulated human leukocyte conditioned medium (LCM) induced differentiation of both ML-1 and HL-60 cells. After treatment of LCM with monoclonal antibody to IFN-gamma, LCM activity was reduced more than 50% in ML-1 cells, and 80% in HL-60 cells. Even if IFN-gamma was eliminated from LCM by affinity chromatography, the LCM induced differentiation of ML-1 and HL-60 cells, but IFN-gamma markedly enhanced the ML-1 cell differentiation induced by IFN-gamma free LCM. The results suggest that leukocytes produce differentiation inducing factor(s) other than IFN-gamma, and that IFN-gamma is both an inducer and an enhancer of induction of human myelogenous leukemia cells.  相似文献   

3.
We have previously characterized more than 20 proteins induced by the immunoregulatory lymphokine IFN-gamma in human fibroblasts by their m.w. and isoelectric points determined in two-dimensional gels. Some of these proteins are induced uniquely by IFN-gamma, whereas others are also induced by IFN-alpha, TNF, or IL-1. Recent technologic advances have allowed us to begin to rapidly identify proteins induced by IFN-gamma and other cytokines by sequencing the induced proteins from blots of preparative two-dimensional gels of total cell lysates. In this study, we show that the approximately 21 kDa, isoelectric point greater than 7 protein induced by IFN-gamma is manganese superoxide dismutase (Mn-SOD), a mitochondrial protective enzyme encoded by a nuclear gene. Mn-SOD is induced by IFN-gamma and also by TNF in all four human cell lines examined: HS153 fibroblasts, ACHN renal carcinoma, A549 lung carcinoma, and A375 melanoma. Induction of Mn-SOD mRNA is a primary, rapid, and dose-dependent response to IFN-gamma. In ACHN renal carcinoma cells, Mn-SOD mRNA and protein are induced synergistically by IFN-gamma in combination with either TNF or IL-1, and the induced protein is enzymatically active. IFN-gamma and TNF together induce Mn-SOD mRNA by more than 100-fold relative to its level in untreated ACHN cells. The induction of Mn-SOD by IFN-gamma and its synergistic induction by IFN-gamma in combination with TNF and IL-1 should protect healthy cells from the toxicity of O2- during an immune response, and may provide a mechanism for selective killing of infected cells.  相似文献   

4.
A fibroblast-derived differentiation inducing factor (F-DIF) purified from medium conditioned by a human fibroblast cell line (WI-26VA4) induced differentiation of human monocytic leukemia cell lines (U-937, THP-1) into cells with macrophage characteristics. F-DIF alone induced the differentiation of ML-1 cells only marginally, but it synergistically increased the differentiation when combined with TNF. Interferon-gamma, tumor necrosis factor, GM-CSF, interleukin-1 and interlukin-4 synergistically enhanced the differentiation of U-937 cells when combined with F-DIF.  相似文献   

5.
Freshly harvested murine peritoneal macrophages and a line of transformed murine macrophages (RAW) were used in experiments designed to investigate the effect of different interferons (IFN) and interleukin-1 (IL-1) on tumor necrosis factor (TNF) receptors. Low concentrations of IFN-gamma or somewhat higher concentrations of IFN-alpha drastically downregulated the TNF receptors of RAW cells. A similar, but less pronounced, downregulation of TNF receptors was observed in peritoneal macrophages treated with these IFNs. This downregulation could not be accounted for by an induction of TNF secretion. Furthermore, IFN-alpha and gamma interacted synergistically in downregulating TNF receptors of RAW cells. IL-1 also downregulated TNF receptors. When RAW cells were treated with inhibitors of protein kinase C, the downregulation of TNF receptors by IFNs or IL-1 was reversed, and TNF binding increased up to 2-fold over that of untreated cells. Such increase was also observed in RAW cells treated only with the inhibitor of protein kinase C, staurosporine. However, TNF receptors decreased in peritoneal macrophages treated with staurosporine. This finding was explained by activation of macrophages by staurosporine, which induced secretion of TNF. These findings indicate that protein kinase C activity regulates TNF receptors in macrophages.  相似文献   

6.
7.
Hepatocyte growth factor (HGF) is one of the vital factors for wound healing. HGF expression markedly increases in wounded skin and is mainly localized in dermal fibroblasts. HGF expression level in human dermal fibroblasts in vitro, however, is low and thus may be stimulated by some factors in the process of wound healing. Candidates of the factors are inflammatory cytokines released by polymorphonuclear and mononuclear cells infiltrating the wounded area, but HGF production in human dermal fibroblasts is only slightly induced by interleukin (IL)-1, tumor necrosis factor (TNF)-alpha or interferon (IFN)-gamma. We here report that a combination of IL-1beta and IFN-gamma or a combination of TNF-alpha and IFN-gamma very markedly induced HGF production. The synergistic effect of the former was more marked than that of the latter. Synergistic effects of IL-1beta and IFN-gamma were observed at more than 10 pg/ml and 10 IU/ml, respectively, and were detectable as early as 12 h after addition. Neither IFN-alpha nor IFN-beta was able to replace IFN-gamma. HGF mRNA expression was also synergistically upregulated by IL-1beta and IFN-gamma. IL-1beta plus IFN-gamma-induced synergistic production of HGF was potently inhibited by treatment of cells with the extracellular signal-regulated kinase (ERK) kinase inhibitor PD98059 and the p38 inhibitor SB203580 but not by the c-Jun N-terminal kinase (JNK) inhibitor SP600125. Taken together, our results indicate that a combination of IL-1beta and IFN-gamma synergistically induced HGF production in human dermal fibroblasts and suggest that activation of ERK and p38 but not of JNK is involved in the synergistic effect.  相似文献   

8.
We have recently demonstrated that two IFN-gamma-inducing cytokines, interleukin (IL)-12 and IL-18, synergistically induced the fungicidal activity of mouse peritoneal exudate cells (PEC) against Cryptococcus neoformans through NK cell production of interferon (IFN)-gamma and nitric oxide (NO) synthesis. In the present study, we further dissected these effects by examining the involvement of tumor necrosis factor (TNF)-alpha in the induction of IL-12/IL-18-stimulated PEC fungicidal activity. The addition of neutralizing anti-TNF-alpha mAb significantly suppressed IL-12/IL-18-stimulated PEC anticryptococcal activity. This effect was ascribed to the inhibition of macrophage NO synthesis, but not of IFN-gamma production by NK cells, because the same treatment inhibited the former response, but not the latter one. On the other hand, combined treatment with IL-12 and IL-18 synergistically induced the production of TNF-alpha by PEC and this effect was almost completely abrogated by neutralizing anti-IFN-gamma mAb. The cell type producing TNF-alpha among PEC was mostly macrophage. TNF-alpha significantly promoted macrophage NO production and anticryptococcal activity induced by IFN-gamma, and furthermore anti-TNF-alpha mAb partially inhibited these responses. Considered together, our results indicated that TNF-alpha contributed to the potentiation of IL-12/IL-18-induced PEC fungicidal activity against C. neoformans through enhancement of IFN-gamma-induced production of NO by macrophages, but not through increased production of IFN-gamma by NK cells.  相似文献   

9.
The lymphokines IL-2 and IL-4 promoted the growth of human PHA-triggered T cells, but only IL-2 induced the production of IFN-gamma and TNF. The addition of purified monocytes strongly enhanced the production of IFN-gamma in IL-2-stimulated T cell cultures but did not influence the production of TNF or the level of T cell proliferation. The addition of IL-1 to T cells activated by PHA and optimal concentrations of IL-2 resulted in a strong induction of IFN-gamma production but had no influence on TNF production or T cell proliferation. IL-6 did not influence IFN-gamma or TNF production or T cell proliferation induced by PHA-IL-2 and did not modulate IL-1-induced IFN-gamma production. The production of IFN-gamma by CD4+ 45R+ Th cells was strongly enhanced by IL-1, whereas CD8+ T cells were less responsive to IL-1 and CD4+ 45R+ T cells were unresponsive to IL-1. We demonstrate, at the clonal level, that the optimal production of IFN-gamma by human Th cells requires both IL-1 and IL-2, whereas the production of TNF and T cell proliferation are induced by IL-2 alone. We suggest that IL-1 acts as a second signal for IFN-gamma production and that it may have an important function in regulating the pattern of lymphokines produced by T cell subsets during activation.  相似文献   

10.
11.
12.
Cytokine-induced polypeptides were identified in whole cell lysates of human fibroblasts by computer-based analysis of two-dimensional gels with the use of the PDQuest System. Treatment with interferon-alpha (IFN-alpha) and interferon-gamma (IFN-gamma) enhanced the synthesis of 12 and 28 polypeptides, respectively. Exposure to interleukin 1 alpha (IL-1 alpha) or interleukin 1 beta (IL-1 beta) resulted in the increased synthesis of seven identical polypeptides. Treatment with tumor necrosis factor (TNF) at 100 U/ml led to enhanced expression of seven polypeptides, whereas exposure to TNF at 1000 U/ml increased the levels of these seven plus two additional polypeptides. The antiviral and antiproliferative effects of these cytokines in strain 153 fibroblasts were also assessed. Both IFN-alpha and IFN-gamma exhibited antiviral activity, whereas both IL-1 and TNF stimulated fibroblast growth. IFN-gamma was alone in inhibiting proliferation. Thus, although these cytokines exhibit low degrees of structural homology, they share some common functions, and a number of polypeptides were induced in common by two or more of these agents. The greatest similarities in polypeptide induction occur between IFN-alpha and IFN-gamma and between the IL-1s and TNF. However, polypeptides were also induced in common by IFN-alpha and TNF, IFN-gamma and IL-1, and IFN-gamma and TNF. These similarities in polypeptide induction may reflect the overlapping functions of these cytokines and may be indicative of common biochemical pathways in their mechanisms of action.  相似文献   

13.
The objectives of these studies were to study the effects of bacterial lipopolysaccharide (LPS) on interferon-gamma (IFN-gamma)-induced Fc receptor expression on human monocytes and to examine whether these effects were mediated through stimulation of interleukin 1 (IL-1) production. Fc receptor expression was determined by binding of monomeric monoclonal murine immunoglobulin (Ig)G2a and cytofluorographic analysis. IL-1 activity in monocyte supernatants and lysates was assayed by augmentation of mitogen-induced murine thymocyte proliferation. IFN-gamma induced the expression of Fc receptors on human monocytes that were specific for murine IgG2a. This induction was inhibited by the addition of LPS in amounts as low as 2 to 8 pg/ml. LPS inhibition of IFN-gamma-induced Fc receptor expression was paralleled by the appearance of IL-1 in monocyte lysates and supernatants. The addition of purified human or recombinant IL-1 beta at the initiation of culture similarly inhibited the expression of IFN-gamma-induced Fc receptors on the monocytes. LPS also inhibited Fc receptor expression on the human myelomonocytic cell line THP-1 after induction with IFN-gamma or phorbol myristate acetate alone or with both agents together. This inhibition also was paralleled by the production of IL-1 but the addition of exogenous IL-1 to the THP-1 cells had no effect on IFN-gamma-induced Fc receptor expression. Tumor necrosis factor (TNF) inhibited IFN-gamma-induced Fc receptor expression on human monocytes but was much less potent than comparable amounts of IL-1. TNF also did not inhibit Fc receptor expression on THP-1 cells. In fact, IL-1 or TNF led to an enhancement in IFN-gamma-induced Fc receptor expression on THP-1 cells. These results indicate that LPS can inhibit IFN-gamma-induced Fc receptor expression on human monocytes and that IL-1 and TNF may mediate these effects of LPS. Thus, an autocrine or paracrine role is suggested for these cytokines. The possibility exists that intracellular IL-1 resulting from LPS stimulation may be at least in part responsible for inhibition of Fc receptor expression.  相似文献   

14.
Highly purified human T cells from peripheral blood fail to produce interferon (IFN)-gamma in the absence of accessory cells. The ability of T cells to produce IFN-gamma upon stimulation with phytohemagglutinin (PHA) or concanavalin A could be restored by the addition of cultured allogeneic human foreskin fibroblasts. Addition of antibodies specific for HLA-DR, DQ, and DP antigens failed to block this accessory function of the fibroblasts. In contrast, antibodies to HLA-DR and DQ antigens inhibited the accessory cell activity of autologous monocytes. Allogeneic fibroblasts failed to exert accessory activity when exogenous interleukin 2 (IL-2) was used as the stimulus for IFN-gamma production. In contrast, autologous monocytes were active as accessory cells for IL-2-stimulated T cells. Addition of recombinant human interleukin 1 alpha (IL-1 alpha) or IL-1 beta to PHA-stimulated T cells co-cultured with fibroblasts stimulated IFN-gamma production. In contrast, preincubation of fibroblasts with IL-1 alpha or IL-1 beta caused a dose-dependent suppression of the ability of fibroblasts to augment PHA- and concanavalin A-induced IFN-gamma production by T cells. Preincubation of fibroblasts with recombinant human tumor necrosis factor (TNF) also reduced their accessory activity. Incubation of fibroblasts with IFN-gamma produced some reduction in their accessory activity and the inhibitory effect of TNF was further enhanced in the presence of IFN-gamma. A 4- to 10-hr incubation of fibroblasts with IL-1 or TNF was sufficient to produce a maximal suppression of accessory activity. Fixation of fibroblasts with formaldehyde decreased their accessory activity, but fixation did not abolish the suppression of accessory function induced by earlier incubation with IL-1. Supernatants of IL-1-treated fibroblast cultures had less suppressive activity than the IL-1-treated fibroblasts per se, and no suppressive activity at all was detected in the supernatants of TNF-treated fibroblasts. Enhanced prostaglandin synthesis may play a role in the IL-1- and TNF-induced suppression of accessory cell function, but other factors are likely to be involved. Our results show that fibroblasts can have a marked effect on T cell function and that IL-1 and TNF can exert immunoregulatory activities indirectly by altering the interactions of fibroblasts with T cells.  相似文献   

15.
16.
The effect of IFN-alpha and IFN-beta on the expression of cell surface receptors for tumor necrosis factor (TNF) was examined in two human cell lines. In HeLa cells, IFN-alpha and IFN-beta increased 125I-TNF binding, whereas in HT-29 cells these two IFN either slightly decreased or had no effect on 125I-TNF binding. In contrast, IFN-gamma increased 125I-TNF binding in both cell lines. Both IFN-alpha and IFN-beta exerted an antagonistic effect on IFN-gamma-induced stimulation of TNF receptor expression in HT-29 cells, but did not inhibit TNF receptor induction by IFN-gamma in HeLa cells. IFN-gamma and, to a lesser extent, IFN-beta were synergistic with TNF in producing cytotoxic/cytostatic activity in HT-29 cells. Despite the inhibitory effect of IFN-beta on the IFN-gamma-induced stimulation of TNF receptor expression, IFN-beta did not inhibit the synergistic enhancement of TNF cytotoxicity by IFN-gamma in HT-29 cells. The dissociation between the effects of IFN-beta on TNF receptor expression and on the cytotoxic activity of TNF in HT-29 cells suggests that TNF receptor modulation is not a major mechanism of synergism between IFN and TNF.  相似文献   

17.
18.
19.
The effects of human recombinant tumor necrosis factor (TNF) and interferon-gamma (IFN-gamma) in damage of liposome membranes were examined to elucidate the molecular mechanism of their antiproliferative actions on tumor cells. The extent of membrane damage was assayed by measuring the rate of release of the fluorescent dye calcein encapsulated in the liposomes at different pH values in the presence of TNF and/or IFN-gamma. At pH values below about 5, TNF bound to phospholipid liposomes composed of mixtures of phosphatidyl-serine and phosphatidylcholine in molar ratios of 2:1 and 1:2 and caused rapid release of calcein. In contrast, IFN-gamma induced very slow leakage of dye although it bound almost completely to the membranes, suggesting that it causes much less membrane damage than TNF. Small amounts of these two antitumor factors bound to phosphatidylcholine liposomes in the pH range of 4-7, inducing relatively slow leakage of calcein. In the presence of both TNF and IFN-gamma at pH 5, the maximal leakage rate was twice the sum of the rates with the two proteins individually, and the rate depended on the TNF/IFN-gamma ratio, indicating synergistic effects of TNF and IFN-gamma in induction of membrane damage. These different and synergistic actions on liposome membranes may account for the different antitumor properties of the two antitumor cytokines and their synergism.  相似文献   

20.
Recombinant human lymphotoxin (LT) was compared with recombinant human tumor necrosis factor (TNF) for direct actions on cultured human endothelial cells (HEC). At equivalent half-maximal concentrations (based on L929 cytotoxicity units) LT and TNF each caused rapid and transient induction (peak 4 to 6 hr) of an antigen associated with leukocyte adhesion (detected by monoclonal antibody H4/18), a rapid but sustained increased expression (plateau 24 hr) of a lymphocyte adhesion structure (ICAM-1), a gradual (plateau 4 to 6 days) increase in expression of HLA-A,B antigens, and gradual (4 to 6 days) conversion of HEC culture morphology from epithelioid to fibroblastoid, an effect enhanced by immune interferon (IFN-gamma). Induction of H4/18 binding by maximal concentrations of LT or TNF could not be augmented by addition of the other cytokine, and 24 hr pretreatment with LT or TNF produced hyporesponsiveness to both mediators for reinduction. H4/18 binding can be transiently induced by tumor-promoting phorbol esters. Pretreatment with either LT or TNF also fully inhibited induction of H4/18 binding by phorbol ester, whereas phorbol ester pretreatment only variably and partially inhibited reinduction by LT or TNF. These actions of LT on endothelium shared with TNF may serve in vivo to promote lymphocyte and inflammatory leukocyte adhesion and transendothelial migration. Recombinant human interleukin 1 species (IL 1 alpha and IL 1 beta) shared many of the actions of LT and TNF and were indistinguishable from each other. However, IL 1 species could be distinguished from LT/TNF by their relative inability to enhance HLA-A,B expression, by their ability to augment H4/18 binding caused by maximally effective concentrations of LT or TNF, and by their inability to inhibit reinduction of H4/18 binding by LT or TNF. In contrast to the actions of LT or TNF, pretreatment with IL 1 alpha or IL 1 beta only partially inhibited induction of H4/18 binding by phorbol ester, and phorbol ester pretreatment consistently, albeit partially, inhibited induction by IL 1 species. These studies suggest that activated T cells through the secretion of LT can in turn activate the local endothelial lining so as to promote homing and extravasation of inflammatory cells. Furthermore, these LT actions can be augmented or complemented by other locally produced mediators such as IFN-gamma or IL 1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号