首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The biomass and primary production of phytoplankton in Lake Awasa, Ethiopia was measured over a 14 month period, November 1983 to March 1985. The lake had a mean phytoplankton biomass of 34 mg chl a m–3 (n = 14). The seasonal variation in phytoplankton biomass of the euphotic zone (mg chl a m–2 h–1) was muted with a CV (standard deviation/mean) of 31%. The vertical distribution of photosynthetic activity was of a typical pattern for phytoplankton with light inhibition on all but overcast days. The maximum specific rates of photosynthesis or photosynthetic capacity (Ømax) for the lake approached 19 mg O2 (mg chl a)–1 h–1, with high values during periods of low phytoplankton biomass. Areal rates of photosynthesis ranged between 0.30 to 0.73 g O2 m–2 h–1 and 3.3 to 7.8 g O2 m–2 d–1. The efficiency of utilisation of PhAR incident on the lake surface varied from 2.4 to 4.1 mmol E–1 with the highest efficiency observed corresponding to the lowest surface radiation. Calculated on a caloric basis, the efficiency ranged between 1.7 and 2.9%. The temporal pattern of primary production by phytoplankton showed limited variability (CV = 21 %).  相似文献   

2.
Gross and net primary production together with chlorophyll-a biomass were investigated with respect to depth and diurnal changes in three categories of inland waters (reservoirs, temporary ponds, brackish water lagoons) in Sri Lanka. Ten field sites, in both the dry and wet zones of the island, were investigated. Bimodal productivity profiles were recorded in two of the three reservoirs studied. The diel pattern of net photosynthetic rate varied between sites although peak photosynthetic efficiency occurred at solar noon. Surface photoinhibition was characteristic of the reservoirs and brackish water lagoons but not of the temporary ponds. Mean gross primary production was 3.02 g C m–2 d–1 but was higher in the temporary ponds than in the reservoirs. The gross primary production in the brackish water Koggala Lagoon at 0.08 g C m–2 d–1 is a record low for tropical lagoons and was 2.5 times less than the two other lagoons investigated. Variability in net primary production between sites was similar to the variation in gross production with a relatively low mean value for tropical inland waters of 0.495 C m–2 d–1. Mean maximum photosynthetic rate was 0.30 mg C m–3 h–1 but was lower in the reservoirs than in the temporary ponds and lagoons.  相似文献   

3.
Butterbach-Bahl  K.  Rothe  A.  Papen  H. 《Plant and Soil》2002,240(1):91-103
Complete annual cycles of N2O and CH4 flux in forest soils at a beech and at a spruce site at the Höglwald Forest were followed in 1997 by use of fully automatic measuring systems. In order to test if on a microsite scale differences in the magnitude of trace gas exchange between e.g. areas in direct vicinity of stems and areas in the interstem region at both sites exist, tree chambers and gradient chambers were installed in addition to the already existing interstem chambers at our sites. N2O fluxes were in a range of –4.6–473.3 g N2O-N m–2 h–1 at the beech site and in a range of –3.7–167.2 g N2O-N m–2 h–1 at the spruce site, respectively. Highest N2O emissions were observed during and at the end of a prolonged frost period, thereby further supporting previous findings that frost periods are of crucial importance for controlling annual N2O losses from temperate forests. Fluxes of CH4 were in a range of +10.4––194.0 g CH4 m–2 h–1 at the beech site and in a range of –4.4––83.5 g CH4 m–2 h–1 at the spruce site. In general, both N2O-fluxes as well as CH4-fluxes were higher at the beech site. On a microsite scale, N2O and CH4 fluxes at the beech site were highest within the stem area (annual mean: 49.6±3.3 g N2O-N m–2 h–1; –77.2±3.1 g CH4 m–2 h–1), and significantly lower within interstem areas (18.5±1.4 g N2O-N m–2 h–1; –60.2±1.8 g CH4 m–2 h–1). Significantly higher values of total N, C and pH in the organic layer, as well as increased soil moisture, especially in spring, in the stem areas, are likely to contribute to the higher N2O fluxes within the stem area of the beech. Also for the spruce site, such differences in trace gas fluxes could be demonstrated to exist (mean annual N2O emission within (a) stem areas: 9.7±0.9 g N2O-N m–2 h–1 and (b) interstem areas: 6.2±0.6 g N2O-N m–2 h–1; mean annual CH4 uptake within (a) stem areas: –26.1±0.6 g CH4 m–2 h–1 and (b) interstem areas: –38.4±0.8 g CH4 m–2 h–1), though they were not as pronounced as at the beech site.  相似文献   

4.
Phytoplankton primary productivity of eleven irrigation reservoirs located in five river basins in Sri Lanka was determined on a single occasion together with light climate and nutrient concentrations. Although area-based gross primary productivity (1.43–11.65 g O2 m–2 d–1) falls within the range already established for tropical water bodies, net daily rate was negative in three water bodies. Light-saturated optimum rates were found in water bodies, with relatively high algal biomass, but photosynthetic efficiency or specific rates were higher in water bodies with low algal biomass, indicating nutrient limitation or physiological adaptation of phytoplankton. Concentrations of micronutrients and algal biomass in the reservoirs are largely altered by high flushing rate resulting from irrigation release. Underwater light climate and nutrient availability control the rate of photosynthesis and subsequent area-based primary production to a great extent. However, morpho-edephic index or euphotic algal biomass in the most productive stratum of the water column is not a good predictor of photosynthetic capacity or daily rate of primary production of these shallow tropical irrigation reservoirs.  相似文献   

5.
Newrkla  P.  Gunatilaka  A. 《Hydrobiologia》1982,91(1):531-536
Benthic community respiration rates of profundal sediments of Fuschlsee (37.6 mg · O2 · m–2 · h–1 — eutrophic), Mondsee (40.19 mg · O2 · m–2 · h–1 — eutrophic) and Attersee (11.5 mg · O2 · m–2 · h–1 — oligo-mesotrophic) were measuredin situ, and in cores. By exposing the sediments to different oxygen levels in the laboratory it was found that benthic community metabolism reduced with decreasing oxygen concentrations. The slope of the regression lines, relating oxygen uptake rates to oxygen concentrations, differed significantly for the different sites investigated. These results were closely related to the trophic conditions of the lakes.  相似文献   

6.
Summary The influence of temperature on the growth of the theromophilic Bacillus caldotenax was investigated using chemostat techniques and a chemically defined minimal medium. All determined growth constants, that is maximal specific growth rate, yield and maintenance, were temperature dependent. It was striking that the very large maintenance requirement was about 10 times higher than for mesophilic cells under equivalent conditions. A death rate, which was very substantial at optimal and supraoptimal growth temperatures, was estimated by comparing the maintenance for substrate and oxygen. There was no indication for a thermoadaptation as postulated by Haberstich and Zuber (1974).Symbols D Dilution rate (h–1) - Dc=max Critical dilution rate (h–1) - E Temperature characteristic (J mol–1) - k Organism constant - kd Death rate coefficient (h–1) - km Maintenance substrate coefficient estimated from MO (h–1) - MO Maintenance respiration, mmol O2 per g dry biomass and h (mmol g–1h–1) - MO Maintenance respiration, taking kd into account - mS Maintenance substrate coefficient, g glucose per g dry biomass and h (h–1) - OD Optical density at 546 nm - QO2 Specific O2-uptake rate (mmol g–1h–1) - Q O2 V Specific O2-uptake rate for viable portion of biomass (mmol g–1 h–1) - QS Specific glucose uptake rate (h–1) - Q S V Specific glucose uptake rate for viable portion of biomass (h–1) - R Gas constant 8.28 J mol–1K–1 - S Substrate concentration in reactor (g l–1) - SO Influent substrate concentration (g l–1) - Tmax Maximal growth temperature (°C) - Tmin Minimal growth temperature (°C) - X Dry biomass (g l–1) - XtOt=X Dry biomass containing dead and viable cells - Xv Viable portion of biomass - Y O m Potential yield for O2 corrected for maintenance respiration (g mol–1) - Y S m Potential yield for substrate corrected for maintenance requirement, g biomass per g glucose (–) - Specific growth rate (h–1) - max Maximal specific growth rate (h–1)  相似文献   

7.
D. M. Alongi 《Oecologia》1994,98(3-4):320-327
Benthic oxygen consumption and primary production were measured using the bell jar technique in deltaic and fringing mangrove forests of tropical northeastern Australia. In a deltaic forest, rates of sediment respiration ranged from 197 to 1645 mol O2 m–2 h–1 (mean=836), but did not vary significantly with season or intertidal zone. Gross primary production varied among intertidal zones and seasons, ranging from –281 to 1413 mol O2 m–2 h–1 (mean=258). Upon tidal exposure, rates of gross primary production increased, but respiration rates did not change significantly. In a fringing mangrove forest, benthic respiration and gross primary production exhibited strong seasonality. In both forests, rates of oxygen consumption and production were low compared to salt marshes, but equivalent to rates in other mangrove forests. The production:respiration (P/R) ratio varied greatly over space and time (range:–0.61 to 1.76), but most values were «1 with a mean of 0.15, indicating net heterotrophy. On a bare creek bank and a sandflat, rates of gross primary production and P/R ratios were generally higher than in the adjacent mangroves. Low microalgal standing stocks, low light intensity under the canopy, and differences in gross primary production between mangroves and tidal flats, and with tidal status, indicate that benthic microalgae are light-limited and a minor contributor to primary productivity in these tropical mangrove forests.  相似文献   

8.
The CO2 production of individual larvae of Apis mellifera carnica, which were incubated within their cells at a natural air humidity of 60–80%, was determined by an open-flow gas analyzer in relation to larval age and ambient temperature. In larvae incubated at 34 °C the amount of CO2 produced appeared to fall only moderately from 3.89±1.57 µl mg–1 h–1 in 0.5-day-old larvae to 2.98±0.57 µl mg–1 h–1 in 3.5-day-old larvae. The decline was steeper up to an age of 5.5 days (0.95±1.15 µl mg–1 h–1). Our measurements show that the respiration and energy turnover of larvae younger than about 80 h is considerably lower (up to 35%) than expected from extrapolations of data determined in older larvae. The temperature dependency of CO2 production was determined in 3.5-day-old larvae, which were incubated at temperatures varying from 18 to 38 °C in steps of 4 °C. The larvae generated 0.48±0.03 µl mg–1 h–1 CO2 at 18 °C, and 3.97±0.50 µl mg–1 h–1 CO2 at 38 °C. The temperature-dependent respiration rate was fitted to a logistic curve. We found that the inflection point of this curve (32.5 °C) is below the normal brood nest temperature (33–36 °C). The average Q10 was 3.13, which is higher than in freshly emerged resting honeybees but similar to adult bees. This strong temperature dependency enables the bees to speed up brood development by achieving high temperatures. On the other hand, the results suggest that the strong temperature dependency forces the bees to maintain thermal homeostasis of the brood nest to avoid delayed brood development during periods of low temperature.Abbreviations m body mass - R rate of development or respiration - TI inflexion point of a logistic (sigmoid) curve - TL lethal temperature - TO temperature of optimum (maximum) developmentCommunicated by G. Heldmaier  相似文献   

9.
Rates of O2 consumption and CO2 production, telemetered body temperature (Tb) and activity level were recorded from adult and subadult water shrews (Sorex palustris) over an air temperature (Ta) range of 3–32°C. Digesta passage rate trials were conducted before metabolic testing to estimate the minimum fasting time required for water shrews to achieve a postabsorptive state. Of the 228 metabolic trials conducted on 15 water shrews, 146 (64%) were discarded because the criteria for inactivity were not met. Abdominal Tb of S. palustris was independent of Ta and averaged 38.64±0.07°C. The thermoneutral zone extended from 21.2°C to at least 32°C. Our estimate of the basal metabolic rate for resting, postabsorptive water shrews (96.88±2.93 J g–1 h–1 or 4.84±0.14 ml O2 g–1 h–1) was three times the mass-predicted value, while their minimum thermal conductance in air (0.282±0.013 ml O2 g–1 h–1) concurred with allometric predictions. The mean digesta throughput time of water shrews fed mealworms (Tenebrio molitor) or ground meat was 50–55 min. The digestibility coefficients for metabolizable energy (ME) of water shrews fed stickleback minnows (Culaea inconstans) and dragonfly nymphs (Anax spp. and Libellula spp.) were 85.4±1.3% and 82.8±1.1%, respectively. The average metabolic rate (AMR) calculated from the gas exchange of six water shrews at 19–22°C (208.0±17.0 J g–1 h–1) was nearly identical to the estimate of energy intake (202.9±12.9 J g–1 h–1) measured for these same animals during digestibility trials (20°C). Based on 24-h activity trials and our derived ME coefficients, the minimum daily energy requirement of an adult (14.4 g) water shrew at Ta = 20°C is 54.0 kJ, or the energetic equivalent of 14.7 stickleback minnows.  相似文献   

10.
Ground-based measurements of stores, growth, mortality, litterfall, respiration, and decomposition were conducted in an old-growth forest at Wind River Experimental Forest, Washington, USA. These measurements were used to estimate gross primary production (GPP) and net primary production (NPP); autotrophic respiration (Ra) and heterotrophic (Rh) respiration; and net ecosystem production (NEP). Monte Carlo methods were used to calculate uncertainty (expressed as ± 2 standard deviations of 200–400 calculations). Live carbon (C) stores were 39,800 g C m–2 (34,800–44,800 g C m–2). The store of C in detritus and mineral soil was 22,092 g C m–2 (20,600–23,600 g C m–2), and the total C stores were 61,899 g C m–2 (56,600–67,700 g C m–2). Total NPP was 597 g C m–2 y–1 (453 to 741 g C m–2 y–1). Ra was 1309 g C m–2 y–1 (845–1773 g C m–2 y–1), indicating a GPP of 1906 g C m–2 y–1 (1444–2368 g C m–2 y–1). Rh, including the respiration of heart rots in tree boles, was 577 g C m–2 y–1 (479–675 g C m–2 y–1). Long-term NEP was estimated to be +20 g C m–2 y–1 (–116 to +156 g C m–2 y–1), indicating this stand might be a small sink. These estimates contrast with the larger sink estimated at the same site using eddy-flux methods. Several hypotheses to explain this discrepancy were explored, including (a) undetected biomass increases, (b) underestimates of NPP, (c) unmeasured losses, and (d) a temporal mismatch between the two sets of measurements. The last hypothesis appears the most likely.  相似文献   

11.
Soil CO2 efflux and pCO2 in the soil atmosphere were measured during one year at three montane sites of Mediterranean sclerophyllous forests in NE Spain. Two sites were located in the upper and lower slopes of a small catchment in the Prades mountains (mean precipitation 550 mm year–1), and a third site was located on a lower slope in the Montseny mountains (mean precipitation 900 mm year–1). The three sites were similar in bedrock and vegetation, but differed in soil characteristics and water availability. Seasonal variation of CO2 efflux and soil pCO2 were affected by soil temperature and, to a lesser extent, by soil moisture. Annual mean soil CO2 efflux (considered as soil respiration) was similar at Montseny and at the comparably located site at Prades (83 ± 18 S.E. vs. 75 ± 9 mg CO2 m–2 hour–1 , respectively), and was highest at the Prades upper slope site (122 ± 22 mg C02 m–2 hour–1 ). Despite those relatively similar CO2 effluxes, mean soil pCO2 was much higher at both Prades sites than at Montseny. Soil pCO2 always increased with depth at Prades while maxima pCO2 at Montseny were often at 20–30 cm depth. A model based on gas diffusion theory was able to explain why soil pCO2 was much higher at Prades than at Montseny, and to reproduce the shape of the vertical profile of pCO2 at the Prades soils. Nevertheless, the model failed to simulate the soil pCO2 maximum found at 20–30 cm depth at the Montseny site. Model simulations using a time-variable CO2 production rate suggested that pCO2 maxima at intermediate depth could be the result of a transient situation instead of an equilibrium one.  相似文献   

12.
Summary The activity of the respiratory electron transport system (ETS) of the microplankton (<240 m size) was measured in the Northern Weddell Sea during EPOS 1, in the Close Pack Ice (CPI), and in the ice edge (Outer and Inner Marginal Zones, OMIZ and IMIZ). During early spring the activity increased with time and in the pack ice-open water direction. The temporal trend was more obvious than the spatial one. ETS activity ranged from 0.01 to 1.25 ml O2 m–3 h–1 under the ice and from 0.1 to 1.6 ml O2 m–3 h–1 in the open water at the ice edge. Depth-integrated ETS activity in the upper 300 m ranged from 13 to 130 ml O2 m–2h–1. 60% to 80% of the activity took place above 100 m in the OMIZ in the prebloom conditions at the end of the cruise. ETS/Chl a ratios showed the importance of microheterotrophs under the ice, versus a greater phytoplankton dominance in the ice edge-open water zone. The carbon-specific activity reached a maximum (0.43 day–1) in the innermost zone of the CPI where bacteria dominated. Respiratory activity under the ice is important in producing the oxygen deficit observed, due to the negative balance between photosynthesis and respiration. The ETS activity was at the lower range of that found in the region in summer and is comparable to that measured in other oligotrophic, stratified systems in oceanic areas.Data presented here were collected during the European Polarstern Study (EPOS) sponsored by the European Science Foundation  相似文献   

13.
Summary The nitrogen fixation rate in a 4-year-old stand of the woody legumeLeucaena leucocephala (Lam.) de Wit. was estimated in the field at a rather dry site in Tanzania by use of an acetylene reduction technique. The diurnal mean value during April–May was 35 nmol C2H4 mg–1 (dry weight) nodules h–1, with a variation between 22±8 and 48±12 nmol C2H4 mg–1 (dry weight) nodules h–1 in early morning and at midday, respectively. The nodule biomass was determined by auger sampling to be 51±16 kg (dry weight) ha–1. Most of the nodules were found at the 10–30 cm soil depth level. A rough calculation of the amount of nitrogen fixed annually arrived at 110±30 kg ha–1. The results give strong support for the use ofL. leucocephala for soil enrichment in less humid areas of tropical Africa.  相似文献   

14.
Rivers are believed to play an important role in nitrogen removal via denitrification. Unfortunately, there are few data quantifying these processes in situ, primarily due to methodological constraints. We have developed a new approach for estimating denitrification in rivers at the whole reach scale and have applied this approach to three small rivers, the Millstone River in central New Jersey, and the Iroquois River and Sugar Creek in northwest Indiana–northeast Illinois (USA). The approach is based on measuring the change in dissolved N2 concentration as a parcel of water moves downstream. Two volatile, non-reactive tracers (propane and isobutane) were co-injected, and the rate of change in the ratio of these gases was used to calculate a first-order transfer rate of N2 (KN2) to correct for loss of the gas to the atmosphere. Nitrogen removal via denitrification ranged between 0.27 ± 1.21 mmol N m–2 h–1 in Sugar Creek during May 2000 and 15.81 ± 2.51 mmol N m–2 h–1 in the Millstone River during March 2001. This approach could permit testing of factors that are believed to control denitrification at the reach scale, such as nitrate concentration, discharge, temperature, and water residence time, and could provide a clearer picture of nitrogen transformations in rivers.  相似文献   

15.
Sulfate transport processes and its regulation were studied in roots of poplar trees (Populus tremula x P. alba). From the exponential increase in sulfate uptake with temperature an activation energy (Ea) of 9.0±0.8 kJ mol–1 was calculated. In the concentration range 0.005–10 mM sulfate uptake showed biphasic Michaelis-Menten kinetics with a Km of 3.2±3.4 M and a Vmax of 49±11 nmol SO42– g–1 FW h–1 for the high-affinity uptake system (phase 1) and a Km of 1.33±0.41 mM and a Vmax of 255±25 nmol SO42– g–1 FW h–1 for the low-affinity system (phase 2). Xylem loading decreased linearly with temperature and remained unchanged within the sulfate concentration range studied. Regulation of sulfate uptake and xylem loading by O-acetyl serine (OAS), Cys, reduced glutathione (GSH), Met and S-methylmethionine (SMM) were tested by perfusion into the xylem sap with the pressure probe and by addition to the incubation medium. When added directly to the transport medium, Cys and GSH repressed, and OAS stimulated sulfate uptake; xylem loading was stimulated by Cys, repressed by GSH and only slightly affected by OAS. When perfused into the xylem, none of the compounds tested affected sulfate uptake of excised roots, but xylem loading was stimulated by SMM and OAS and repressed by Met. Apparently, the site of application strongly determined the effect of regulatory compounds of sulfate transport processes.  相似文献   

16.
Macrofaunal biomass of the Lucero reef flat in the northwestern Philippines accounted for 9 to 52% of total sediment organic matter, and did not exhibit any significant temporal trend. The polychaetes and crustaceans consistently alternated as biomass dominants; the latter group showed monthly and seasonal variations along with the chaetognaths, molluscs, chordates, and chelicerates, among the major groups (p<0.05). Faunal abundance correlated significantly with biomass. Salinity, mean sediment grain size, sediment heterogeneity, and total organic matter were found to significantly influence faunal biomass.The sandy substrate community was characteristically heterotrophic throughout the monitoring period, i.e., P/R<1. Hourly rates of net primary production (p n ) did not exhibit any significant diurnal pattern. Monthly comparisons yielded significant differences for estimates of daily gross primary production, P, and respiration, R. Values of P were relatively low, and ranged from 2240 (± 1526 S.D.) to 4890 (± 1377) mg O2 m–2 d–1 while R ranged from 3744 (± 1504) to 6879 (± 903) mg O2 m–2 d–1. R was lower during the dry warm months than the wet months. Multiple regression analyses indicate that primary production was a positive function of light intensity and temperature, and a negative correlate of salinity (adjusted R 2 = 0.2444, p< 0.05). Respiration (r) did not appear to relate with any environmental variable, with total macroinfaunal abundance nor with biomass.Results of the study suggest that other heterotrophic components of the sand community were probably responsible for most of the energy consumption, and that these may be dependent on external sources of organic matter.  相似文献   

17.
Removal of toluene in waste gases using a biological trickling filter   总被引:12,自引:0,他引:12  
The removal of toluene from waste gas was studied in a trickling biofilter. A high level of water recirculation (4.7 m h–1) was maintained in order to keep the liquid phase concentration constant and to achieve a high degree of wetting. For loads in the range from 6 to 150 g m–3 h–1 the maximum volumetric removal rate (elimination capacity) was 35±10 g m–3 h–1, corresponding to a zero order removal rate of 0.11±0.03 g m–2 h–1 per unit of nominal surface area. The surface removal was zero order above the liquid phase concentrations of approximately 1.0 g m–3, corresponding to inlet gas concentrations above 0.7–0.8 g m–3. Below this concentration the surface removal was roughly of first order. The magnitude of the first order surface removal rate constant, k1A , was estimated to be 0.08–0.27 m h–1 (k1A a=24–86 h–1). Near-equilibrium conditions existed in the gas effluent, so mass transfer from gas to liquid was obviously relatively fast compared to the biological degradation. An analytical model based on a constant liquid phase concentration through the trickling filter column predicts the effluent gas concentration and the liquid phase concentration for a first and a zero order surface removal. The experimental results were in reasonable agreement with a very simple model valid for conditions with an overall removal governed by the biological degradation and independent of the gas/liquid mass transfer. The overall liquid mass transfer coefficient, KLa, was found to be a factor 6 higher in the system with biofilm compared to the system without. The difference may be explained by: 1. Difference in the wetting of the packing material, 2. Mass transfer occurring directly from the gas phase to the biofilm, and 3. Enlarged contact area between the gas phase and the biofilm due to a rough biofilm surface.  相似文献   

18.
Accurate measurement of coral reef community metabolism is a necessity for process monitoring and in situ experimentation on coral reef health. Traditional methodologies used for these measurements are effective but limited by location and scale constraints. We present field trial results for a new benthic chamber system called the Submersible Habitat for Analyzing Reef Quality (SHARQ). This large, portable incubation system enables in situ measurement and experimentation on community-scale metabolism. Rates of photosynthesis, respiration, and calcification were measured using the SHARQ for a variety of coral reef substrate types on the reef flat of South Molokai, Hawaii, and in Biscayne National Park, Florida. Values for daily gross production, 24-h respiration, and net calcification ranged from 0.26 to 6.45 g O2 m–2 day–1, 1.96 to 8.10 g O2 m–2 24 h–1, and 0.02 to 2.0 g CaCO3 m–2 day–1, respectively, for all substrate types. Field trials indicate that the SHARQ incubation chamber is an effective tool for in situ isolation of a water mass over a variety of benthic substrate types for process monitoring, experimentation, and other applications.  相似文献   

19.
Metabolic rate and evaporative water loss (EWL) were measured for a small, arid-zone marsupial, the stripe-faced dunnart (Sminthopsis macroura), when normothermic and torpid. Metabolic rate increased linearly with decreasing ambient temperature (Ta) for normothermic dunnarts, and calculated metabolic water production (MWP) ranged from 0.85±0.05 (Ta=30°C) to 3.13±0.22 mg H2O g–1 h–1 (Ta=11°C). Torpor at Ta=11 and 16°C reduced MWP to 24–36% of normothermic values. EWL increased with decreasing Ta, and ranged from 1.81±0.37 (Ta=30°C) to 5.26±0.86 mg H2O g–1 h–1 (Ta=11°C). Torpor significantly reduced absolute EWL to 23.5–42.3% of normothermic values, resulting in absolute water savings of 50–55 mg H2O h–1. The relative water economy (EWL/MWP) of the dunnarts was unfavourable, remaining >1 at all Ta investigated, and did not improve with torpor. Thus torpor in stripe-faced dunnarts results in absolute, but not relative, water savings.  相似文献   

20.
Sequencing-batch reactors were used to develop an activated sludge enrichment culture capable of degrading 1-naphthylamine (1NA). Approximately 5 months acclimation with salicylic acid (1600 mg l–1) as the primary source of carbon were required to obtain an enrichment culture able to degrade even small quantities of 1NA. After an additional 4 months acclimation, during which the concentration of salicyclic acid was decreased to 50 mg l–1, a culture developed that degraded 1NA concentrations as high as 300 mg l–1. Kinetic determinations showed that 1NA degradation (in the presence of salicylate) followed Michaelis-Menten kinetics with K m and V m values of 32.5±2.2 mg l–1 and 375±18 ng 1NA mg–1 cells h–1, respectively. The same enrichement was able to degrade 1NA when present as the sole source of carbon and energy and to convert approximately 87% to CO2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号