首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 851 毫秒
1.
Studies on the mode of action of a series of bisphosphonates derived from fatty acids, which had previously proved to be potent inhibitors against Trypanosoma cruzi proliferation in in vitro assays, have been performed. Some of these drugs proved to be potent inhibitors against the intracellular form of the parasite, exhibiting IC(50) values at the low micromolar level. As bisphosphonates are FDA clinically approved for treatment of bone resorption disorders, their potential innocuousness makes them good candidates to control tropical diseases.  相似文献   

2.
Geminal bisphosphonates can be used for a variety of purposes in human disease including reduction of bone resorption in osteoporosis, treatment of fractures associated with malignancies of the prostate, breast, and lung, and direct anticancer activity against bone marrow derived malignancies. Previous research led to identification of some novel isoprenoid bisphosphonates that inhibit geranylgeranyl pyrophosphate (GGPP) synthesis and diminish protein geranylgeranylation. Described here is the synthesis of fluorescent anthranilate analogues of the most active isoprenoid bisphosphonates and examine their ability to impact post-translational processing of the small GTPases Ras, Rap1a, and Rab6. Similar to their non-fluorescent counterparts, some of these fluorescent isoprenoid bisphosphonates diminish protein geranylgeranylation. Their biological activity and fluorescent character suggest that they may be useful in studies of bisphosphonate localization both in cultured cells and in whole organisms.  相似文献   

3.
A series of indole conjugated bisphosphonate derivatives have been synthesized and evaluated for their in vitro anti-bone resorptive activity using bone marrow osteoclast culture. Two bisphosphonates 23 and 24 significantly inhibited osteoclastogenesis, 23 showed inhibition at 10 and 100 pM which was lower than the concentration of standard drug alendronate, and 24 inhibited osteoclastogenesis at 100 nM which was comparable to alendronate. Two other compounds 13 and 14 also showed inhibition comparable to alendronate, but were cytotoxic in the osteoblast cells. The two active bisphosphonates 23 and 24 induced significant osteoclast apoptosis at concentrations 100 nM for compound 24 and at 10 pM for compound 23 compared to alendronate. In vivo effect of active bisphosphonates 23 and 24 resulted in osteoclastogenesis of bone marrow cells (BMCs) to almost 40-50% (23 showing 8.4% decrease and 24 showing 9.0%) compared to 16.5% of the ovariectomized group. Further, screening of anti-leishmanial activity, four compounds 24-25 and 27-28 showed more than 80% inhibition against both the promastigote and amastigote stages of the Leishmania parasite.  相似文献   

4.
5.
Trypanosomatid parasites are the causative agents of many neglected tropical diseases and there is currently considerable interest in targeting endogenous sterol biosynthesis in these organisms as a route to the development of novel anti-infective drugs. Here, we report the first x-ray crystallographic structures of the enzyme squalene synthase (SQS) from a trypanosomatid parasite, Trypanosoma cruzi, the causative agent of Chagas disease. We obtained five structures of T. cruzi SQS and eight structures of human SQS with four classes of inhibitors: the substrate-analog S-thiolo-farnesyl diphosphate, the quinuclidines E5700 and ER119884, several lipophilic bisphosphonates, and the thiocyanate WC-9, with the structures of the two very potent quinuclidines suggesting strategies for selective inhibitor development. We also show that the lipophilic bisphosphonates have low nM activity against T. cruzi and inhibit endogenous sterol biosynthesis and that E5700 acts synergistically with the azole drug, posaconazole. The determination of the structures of trypanosomatid and human SQS enzymes with a diverse set of inhibitors active in cells provides insights into SQS inhibition, of interest in the context of the development of drugs against Chagas disease.  相似文献   

6.
乳腺癌是女性发病率和死亡率最高的恶性肿瘤,复发和远处转移仍是导致患者死亡的首位原因,而双膦酸盐作为一种骨质吸收抑制剂,能够抑制破骨细胞介导的骨质吸收,在多种实体肿瘤骨转移及多发性骨髓瘤等恶性疾病所致的骨相关事件治疗中起重要作用。近年来大量体外、体内实验表明双膦酸盐还具有抑制肿瘤细胞生长、粘附、播散和侵润,降低肿瘤细胞膜稳定性、促进肿瘤细胞凋亡等直接抗肿瘤作用以及抑制肿瘤血管生成、激活免疫细胞对肿瘤细胞的杀伤等间接抗肿瘤作用,基于这些基础研究结果已经开展了一系列针对双膦酸盐辅助治疗乳腺癌的临床试验研究,本文就近年相关临床试验研究进展做简要综述。  相似文献   

7.
The aim of this review was to discuss the current state of research of combining bisphosphonates with allograft bone for implant fixation. The allograft bone can only be reached by the bisphosphonate once it has been revascularized. However, this can be circumvented by local administration of bisphosphonates. Several animal studies showed that local application of bisphosphonates might protect the graft from resorption. There seems to be an optimum concentration for local application, however, this optimum varies for all different bisphosphonates. It can be concluded that local administration of bisphosphonates might play an important role in improving stability after surgery in which a prosthesis is combined with allograft bone to restore bony defects, however caution should be taken when extrapolating results of animal research to the human clinical situation. More research is needed to study the effect of local bisphophonate use in humans and to study possible side effects.  相似文献   

8.
乳腺癌是女性发病率和死亡率最高的恶性肿瘤,复发和远处转移仍是导致患者死亡的首位原因,而双膦酸盐作为一种骨质吸收抑制剂,能够抑制破骨细胞介导的骨质吸收,在多种实体肿瘤骨转移及多发性骨髓瘤等恶性疾病所致的骨相关事件治疗中起重要作用。近年来大量体外、体内实验表明双膦酸盐还具有抑制肿瘤细胞生长、粘附、播散和侵润,降低肿瘤细胞膜稳定性、促进肿瘤细胞凋亡等直接抗肿瘤作用以及抑制肿瘤血管生成、激活免疫细胞对肿瘤细胞的杀伤等间接抗肿瘤作用,基于这些基础研究结果已经开展了一系列针对双膦酸盐辅助治疗乳腺癌的,陆床试验研究,本文就近年相关临床试验研究进展做简要综述。  相似文献   

9.

Background

Nitrogen-containing bisphosphonates are the elected drugs for the treatment of diseases in which excessive bone resorption occurs, for example, osteoporosis and cancer-induced bone diseases. The only known target of nitrogen-containing bisphosphonates is farnesyl pyrophosphate synthase, which ensures prenylation of prosurvival proteins, such as Ras. However, it is likely that the action of nitrogen-containing bisphosphonates involves additional unknown mechanisms. To identify novel targets of nitrogen-containing bisphosphonates, we used a genome-wide high-throughput screening in which 5,936 Saccharomyces cerevisiae heterozygote barcoded mutants were grown competitively in the presence of sub-lethal doses of three nitrogen-containing bisphosphonates (risedronate, alendronate and ibandronate). Strains carrying deletions in genes encoding potential drug targets show a variation of the intensity of their corresponding barcodes on the hybridization array over the time.

Results

With this approach, we identified novel targets of nitrogen-containing bisphosphonates, such as tubulin cofactor B and ASK/DBF4 (Activator of S-phase kinase). The up-regulation of tubulin cofactor B may explain some previously unknown effects of nitrogen-containing bisphosphonates on microtubule dynamics and organization. As nitrogen-containing bisphosphonates induce extensive DNA damage, we also document the role of DBF4 as a key player in nitrogen-containing bisphosphonate-induced cytotoxicity, thus explaining the effects on the cell-cycle.

Conclusions

The dataset obtained from the yeast screen was validated in a mammalian system, allowing the discovery of new biological processes involved in the cellular response to nitrogen-containing bisphosphonates and opening up opportunities for development of new anticancer drugs.  相似文献   

10.

Background

Nitrogen-containing bisphosphonates are the elected drugs for the treatment of diseases in which excessive bone resorption occurs, for example, osteoporosis and cancer-induced bone diseases. The only known target of nitrogen-containing bisphosphonates is farnesyl pyrophosphate synthase, which ensures prenylation of prosurvival proteins, such as Ras. However, it is likely that the action of nitrogen-containing bisphosphonates involves additional unknown mechanisms. To identify novel targets of nitrogen-containing bisphosphonates, we used a genome-wide high-throughput screening in which 5,936 Saccharomyces cerevisiae heterozygote barcoded mutants were grown competitively in the presence of sub-lethal doses of three nitrogen-containing bisphosphonates (risedronate, alendronate and ibandronate). Strains carrying deletions in genes encoding potential drug targets show a variation of the intensity of their corresponding barcodes on the hybridization array over the time.

Results

With this approach, we identified novel targets of nitrogen-containing bisphosphonates, such as tubulin cofactor B and ASK/DBF4 (Activator of S-phase kinase). The up-regulation of tubulin cofactor B may explain some previously unknown effects of nitrogen-containing bisphosphonates on microtubule dynamics and organization. As nitrogen-containing bisphosphonates induce extensive DNA damage, we also document the role of DBF4 as a key player in nitrogen-containing bisphosphonate-induced cytotoxicity, thus explaining the effects on the cell-cycle.

Conclusions

The dataset obtained from the yeast screen was validated in a mammalian system, allowing the discovery of new biological processes involved in the cellular response to nitrogen-containing bisphosphonates and opening up opportunities for development of new anticancer drugs.  相似文献   

11.
Geranylgeranyl diphosphate synthase (GGDPS) inhibitors are of potential therapeutic interest as a consequence of their activity against the bone marrow cancer multiple myeloma. A series of bisphosphonates linked to an isoprenoid tail through an amide linkage has been prepared and tested for the ability to inhibit GGDPS in enzyme and cell-based assays. The amides were designed as analogues to triazole-based GGDPS inhibitors. Several of the new compounds show GGDPS inhibitory activity in both enzyme and cell assays, with potency dependent on chain length and olefin stereochemistry.  相似文献   

12.
Bisphosphonates, synthetic compounds which suppress bone resorption, are used in the treatment of skeletal disorders. Their mode of action and intracellular targets have not yet been identified. Recent evidence suggested that enzymes of the mevalonate pathway are the potential targets. In this study, we examined the effect of four potent nitrogen (N)-containing bisphosphonates, clodronate and NH2-olpadronate, an inactive analogue of olpadronate, on isopentenyl pyrophosphate isomerase/farnesyl pyrophosphate synthase, geranylgeranyl pyrophosphate synthase, and protein geranylgeranyl transferase I activity. We found that all N-containing bisphosphonates inhibited isopentenyl pyrophosphate isomerase/farnesyl pyrophosphate synthase activity dose dependently with relative potencies corresponding to their antiresorptive potencies in vitro and in vivo, whereas clodronate and NH2-olpadronate had no effect. Furthermore, none of the bisphosphonates tested affected geranylgeranyl pyrophosphate synthase or geranylgeranyl transferase I activity. Our study reveals for the first time the intracellular target of N-containing bisphosphonates and supports the view that all bisphosphonates do not share the same molecular mechanism of action.  相似文献   

13.
Macrophages (MPs) are present in many tissues and have been implicated in the excessive bone resorption seen in patients with skeletal disorders. Our previous studies showed that macrophage-like cells influenced osteoblasts (OB) in co-culture, as number and activity of osteoblasts were decreased in co-cultures compared with controls. Macrophages are probable precursors of osteoblasts which have been shown to be inhibited by bisphosphonates (BPs). Bisphosphonates also modulate macrophage and osteoblasts activity. This study investigated whether addition of bisphosphonates to co-cultures of osteoblast and macrophages could reduce or block the adverse effects of macrophages on osteoblasts. The results showed that, compared to controls, fewer osteoblasts were present over time in macrophage/osteoblast co-cultures (at day 12, 15.5 x 10(4) and 8.8 x 10(4); P<0.0001) and that addition of bisphosphonates (10(-9)-10(-5)M) to the co-cultures prevented this reduction (P<0.001). Bisphosphonates also elicited an increase in numbers of osteoblast (82%) and restored alkaline phosphatase (ALP) activity, which was reduced by 15% (P approximately equal to 0.05) compared to control levels. The number of macrophages in co-cultures was reduced when bisphosphonates were added (P<0.001) and release of lactate dehydrogenase (LDH) was seen, which was not detectable in control cultures. It therefore, appears that bisphosphonates initiated macrophage death. These results demonstrated that the inhibitory effect of macrophages on osteoblasts in vitro could be overcome by the action of bisphosphonates. These findings have implications for the treatment of skeletal conditions where macrophage-derived cytokines are important, such as arthritis and implant loosening, although it is clearly important to distinguish between those bisphosphonates which enhance synthesis of pro-inflammatory cytokines and those which inhibit such synthesis.  相似文献   

14.
15.
We report the cloning and sequencing of a gene encoding the farnesyl pyrophosphate synthase (FPPS) of Trypanosoma brucei. The protein (TbFPPS) is an attractive target for drug development because the growth of T. brucei has been shown to be inhibited by analogs of its substrates, the nitrogen containing bisphosphonates currently in use in bone resorption therapy. The protein predicted from the nucleotide sequence of the gene has 367 amino acids and a molecular mass of 42 kDa. Several sequence motifs found in other FPPSs are present in TbFPPS, including an 11-mer peptide insertion present also in the Trypanosoma cruzi FPPS. Heterologous expression of TbFPPS in Escherichia coli produced a functional enzyme that was inhibited by several nitrogen-containing bisphosphonates, such as pamidronate and risedronate. Risedronate was active in vivo against T. brucei infection in mice (giving a 60% survival rate), but pamidronate was not effective. The essential nature of TbFPPS was studied using RNA interference (RNAi) to inhibit the expression of the gene. Expression of TbFPPS double-stranded RNA in procyclic trypomastigotes caused specific degradation of mRNA. After 4 days of RNAi, the parasite growth rate declined and the cells subsequently died. Similar results were obtained with bloodstream form trypomastigotes, except that the RNAi system in this case was leaky and mRNA levels and parasites recovered with time. Molecular modeling and structure-activity investigations of enzyme and in vitro growth inhibition data resulted in similar pharmacophores, further validating TbFPPS as the target for bisphosphonates. These results establish that FPPS is essential for parasite viability and validate this enzyme as a target for drug development.  相似文献   

16.
Geminal bisphosphonates display varied biological activity depending on the nature of the substituents on the central carbon atom. For example, the nitrogenous bisphosphonates zoledronate and risedronate inhibit the enzyme farnesyl diphosphate synthase while digeranyl bisphosphonate has been shown to inhibit the enzyme geranylgeranyl diphosphate synthase. We now have synthesized isoprenoid bisphosphonates where an aromatic ring has been used to replace one of the isoprenoid olefins in an isoprenoid bisphosphonate and investigated the ability of these new compounds to impair protein geranylgeranylation within cells. Several of these new compounds are potent inhibitors of the enzyme geranylgeranyl diphosphate synthase.  相似文献   

17.
本文对双磷酸盐、狄诺塞麦、Sagopilone等特异性靶向药物在乳腺癌骨转移靶向治疗中的作用机制、临床应用、临床疗效等方面的相关研究进展情况进行了简要阐述。双磷酸盐在抑制骨转移和非骨转移中发挥作用,狄诺塞麦可能成为双磷酸盐的合理替代物,尤其在双磷酸盐治疗效果不佳的病人中,而新型抗癌药物Sagopilone、骨唾液酸蛋白抑制剂亦可通过多种机制参与乳腺癌转移过程,具有抑制骨转移的巨大潜力。  相似文献   

18.
Methylenebisphosphonate and its monofluoro-, difluoro- and dichloro- derivatives inhibited growth of amoebae of Dictyostelium discoideum. Dichloromethylenebisphosphonate was the most potent inhibitor of amoebal growth whereas difluoromethylenebisphosphonate was the least potent inhibitor. Each of the bisphosphonates was taken up by the amoebae and incorporated into the corresponding beta, gamma-methylene analogue of adenosine triphosphate. Two of the bisphosphonates were also incorporated into the corresponding analogues of diadenosyl tetraphosphate. No correlation was found between the ability of the bisphosphonates to inhibit amoebal growth and the extent to which they were metabolised.  相似文献   

19.
The farnesyl diphosphate synthase (FPPS) has previously been characterized in trypanosomes as an essential enzyme for their survival and as the target for bisphosphonates, drugs that are effective both in vitro and in vivo against these parasites. Enzymes from the isoprenoid pathway have been assigned to different compartments in eukaryotes, including trypanosomatids. We here report that FPPS localizes to the cytoplasm of both Trypanosoma cruzi and T. brucei, and is not present in other organelles such as the mitochondria and glycosomes.  相似文献   

20.
Nitrogenous bisphosphonates are used clinically to reduce bone resorption associated with osteoporosis or metastatic bone disease, and are recognized as inhibitors of farnesyl diphosphate synthase. Inhibition of this enzyme decreases cellular levels of both farnesyl diphosphate and geranylgeranyl diphosphate which results in a variety of downstream biological effects including inhibition of protein geranylgeranylation. Our lab recently has prepared several isoprenoid bisphosphonates that inhibit protein geranylgeranylation and showed that one selectively inhibits geranylgeranyl diphosphate synthase. This results in depletion of intracellular geranylgeranyl diphosphate and impacts protein geranylgeranylation but does not affect protein farnesylation. To clarify the structural features of isoprenoid bisphosphonates that account for their geranylgeranyl diphosphate synthase inhibition, we have prepared a new group of isoprenoid bisphosphonates. The complete set of compounds has been tested for in vitro inhibition of human recombinant geranylgeranyl diphosphate synthase and cellular inhibition of protein geranylgeranylation. These results show some surprising relationships between in vitro and cellular activity, and will guide development of clinical agents directed at geranylgeranyl diphosphate synthase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号