首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 34 毫秒
1.
Citrullinemia is an autosomal recessive disease caused by a genetic deficiency of argininosuccinate synthetase. In order to characterize mutations in Japanese patients with classical citrullinemia, RNA isolated from 10 unrelated patients was reverse-transcribed, and cDNA amplified by PCR was cloned and sequenced. The 10 mutations identified included 6 missense mutations (A118T, A192V, R272C, G280R, R304W, and R363L), 2 mutations associated with an absence of an exon 7 or exon 13, 1 mutation with a deletion of the first 7 bp in exon 16 (which might be caused by abnormal splicing), and 1 mutation with an insertion of 37 bp within exons 15 and 16 in cDNA. The insertion mutation and the five missense mutations (R304W being excluded) are new mutations described in the present paper. These are in addition to 14 mutations (9 missense mutations, 4 mutations associated with an absence of an exon in mRNA, and 1 splicing mutation) that we identified previously in mainly American patients with neonatal citrullinemia. Two of these 20 mutations, a deletion of exon 13 sequence and a 7-bp deletion in exon 16, were common to Japanese and American populations from different ethnic backgrounds; however, other mutations were unique to each population. Furthermore, the presence of a frequent mutation--the exon 7 deletion mutation in mRNA, which accounts for 10 of 23 affected alleles--was demonstrated in Japanese citrullinemia. This differs from the situation in the United States, where there was far greater heterogeneity of mutations.  相似文献   

2.
Vestibular schwannomas (VSs) are common benign tumors of Schwann cell origin and are frequently found in patients with neurofibromatosis type 2 (NF2). We analyzed 15 sporadic VSs for mutations in the NF2 gene. We detected mutations in three of the tumors, two of which contained loss of heterozygosity (LOH). One of the tumors contained a novel mutation, a 19-bp deletion in exon 4. The two other tumors contained an identical mutation, a complete exon 4 deletion. The exon 4 deletion represents the second most frequently reported mutation of the NF2 gene in VSs.  相似文献   

3.
4.
Nine novel mutations have been characterized as the result of screening exon 16 of the human NF1 gene in 465 unrelated neurofibromatosis type 1 patients. These lesions include three nonsense and two missense mutations, two deletions, one duplication, and one mutation in the 5′ splice site of intron 16. Although exon 16 is the largest NF1 exon, no mutations have so far been reported in this region. This apparent paucity of lesions may be due either to a reduced functional importance of exon 16 or a screening bias or both. However, consideration of the mutability of exon 16 in comparison with other exons suggests that, at least for single base pair substitutions, no such factors need be invoked. Any previous lack of exon 16 mutations in this category would be explicable in terms of a lower propensity to mutate for codons in this gene region. Received: 1 November 1996 / Revised: 5 December 1996  相似文献   

5.
Mutations identified in the hypoxanthine phosphoribosyltransferase (HPRT) gene of patients with Lesch-Nyhan (LN) syndrome are dominated by simple base substitutions. Few hotspot positions have been identified, and only three large genomic rearrangements have been characterized at the molecular level. We have identified one novel mutation, two tentative hot spot mutations, and two deletions by direct sequencing of HPRT cDNA or genomic DNA from fibroblasts or T-lymphocytes from LN patients in five unrelated families. One is a missense mutation caused by a 610C→T transition of the first base of HPRT exon 9. This mutation has not been described previously in an LN patient. A nonsense mutation caused by a 508C→T transition at a CpG site in HPRT exon 7 in the second patient and his younger brother is the fifth mutation of this kind among LN patients. Another tentative hotspot mutation in the third patient, a frame shift caused by a G nucleotide insertion in a monotonous repeat of six Gs in HPRT exon 3, has been reported previously in three other LN patients. The fourth patient had a tandem deletion: a 57-bp deletion in an internally repeated Alu-sequence of intron 1 was separated by 14 bp from a 627-bp deletion that included HPRT exon 2 and was flanked by a 4-bp repeat. This complex mutation is probably caused by a combination of homologous recombination and replication slippage. Another large genomic deletion of 2969 bp in the fifth patient extended from one Alu-sequence in the promoter region to another Alu-sequence of intron 1, deleting the whole of HPRT exon 1. The breakpoints were located within two 39-bp homologous sequences, one of which overlapped with a well-conserved 26-bp Alu-core sequence previously suggested as promoting recombination. These results contribute to the establishment of a molecular spectrum of LN mutations, support previous data indicating possible mutational hotspots, and provide evidence for the involvement of Alu-mediated recombination in HPRT deletion mutagenesis. Received: 21 April 1998 / Accepted: 16 July 1998  相似文献   

6.
Spinal neurofibromatosis (SNF) is considered to be an alternative form of neurofibromatosis, showing multiple spinal tumors and café-au-lait macules. Involvement of the neurofibromatosis type 1 (NF1) locus has been demonstrated, by linkage analysis, for three families with SNF. In one of them, a cosegregating frameshift mutation in exon 46 of the NF1 gene was identified. In the present study, we report four individuals from two families who carry NF1 null mutations that would be expected to cause NF1. Three patients have multiple spinal tumors and no café-au-lait macules, and the fourth has no clinical signs of NF1. In the first family, a missense mutation (Leu2067Pro) in NF1 exon 33 was found, and, in the second, a splice-site mutation (IVS31-5A-->G) enlarging exon 32 by 4 bp at the 5' end was found. The latter mutation has also been observed in an unrelated patient with classical NF1. Both NF1 mutations cause a reduction in neurofibromin of approximately 50%, with no truncated protein present in the cells. This demonstrates that typical NF1 null mutations can result in a phenotype that is distinct from classical NF1, showing only a small spectrum of the NF1 symptoms, such as multiple spinal tumors, but not completely fitting the current clinical criteria for SNF. We speculate that this phenotype is caused by an unknown modifying gene that compensates for some, but not all, of the effects caused by neurofibromin deficiency.  相似文献   

7.
Autoimmune polyglandular syndrome type 1 (APS1), also known as autoimmune polyendocrinopathy candidiasis ectodermal dystrophy (APECED), is an autosomal recessive disorder characterized by the failure of several endocrine glands as well as nonendocrine organs. The autoimmune regulator (AIRE) gene responsible for APS1 on chromosome 21q22.3 has recently been identified. Here, we have characterized mutations in the AIRE gene by direct DNA sequencing in 16 unrelated APS1 families ascertained mainly from the USA. Our analyses identified four different mutations (a 13-bp deletion, a 2-bp insertion, one nonsense mutation, and one potential splice/donor site mutation) that are likely to be pathogenic. Fifty-six percent (9/16) of the patients contained at least one copy of a 13-bp deletion (1094–1106del) in exon 8 (seven homozygotes and two compound heterozygotes). A nonsense mutation (R257X) in exon 6 was also found in 31.3% (5/16) of the USA patients. These data are important for genetic diagnosis and counseling for families with autoimmune endocrine syndromes. Received: 24 August 1998 / Accepted: 29 September 1998  相似文献   

8.
Mutation screening in 90 unrelated ADPKD1 patients was carried out on some of the exons in the single copy area (37, 38, 39, 44, 45) using genomic PCR and SSCP. Four novel mutations were found: a 15 bp in-frame deletion in exon 39 [nt11449 (del 15)], a 2 bp deletion in exon 44 [nt12252 (del 2)], a G insertion in exon 44 [nt12290 (Ins G)], and a GTT in-frame deletion in exon 45 [nt12601 (del 3)].  相似文献   

9.
Neurofibromatosis 2 (NF2) features bilateral vestibular schwannomas, other benign neural tumors, and cataracts. Patients in some families develop many tumors at an early age and have rapid clinical progression, whereas in other families, patients may not have symptoms until much later and vestibular schwannomas may be the only tumors. The NF2 gene has been cloned from chromosome 22q; most identified germ-line mutations result in a truncated protein and severe NF2. To look for additional mutations and clinical correlations, we used SSCP analysis to screen DNA from 32 unrelated patients. We identified 20 different mutations in 21 patients (66%): 10 nonsense mutations, 2 frameshifts, 7 splice-site mutations, and 1 large in-frame deletion. Clinical information on 47 patients from the 21 families included ages at onset and at diagnosis, numbers of meningiomas, spinal and skin tumors, and presence of cataracts and retinal abnormalities. We compared clinical findings in patients with nonsense or frameshift mutations to those with splice-site mutations. When each patient was considered as an independent random event, the two groups differed (P < or = .05) for nearly every variable. Patients with nonsense or frameshift mutations were younger at onset and at diagnosis and had a higher frequency and mean number of tumors, supporting the correlation between nonsense and frameshift mutations and severe NF2. When each family was considered as an independent random event, statistically significant differences between the two groups were observed only for mean ages at onset and at diagnosis. A larger data set is needed to resolve these discrepancies. We observed retinal hamartomas and/or epiretinal membranes in nine patients from five families with four different nonsense mutations. This finding, which may represent a new genotype-phenotype correlation, merits further study.  相似文献   

10.
Neurofibromatosis 2 (NF2) is an autosomal inherited disorder that predisposes carriers to nervous system tumors. To examine genotype-phenotype correlations in NF2, we performed mutation analyses and gadolinium-enhanced magnetic resonance imaging of the head and full spine in 59 unrelated NF2 patients. In patients with vestibular schwannomas (VSs) or identified NF2 mutations, the mild phenotype was defined as <2 other intracranial tumors and ≤ 4 spinal tumors, and the severe phenotype as either ≥ 2 other intracranial tumors or > 4 spinal tumors. Nineteen mutations were found in 20 (34%) of the patients and were distributed in 12 of the 17 exons of the NF2 gene, including intron-exon boundaries. Seven mutations were frameshift, six were nonsense, four were splice site, two were missense, and one was a 3-bp in frame deletion. The nonsense mutations included one codon 57 and two codon 262 C→T transitions in CpG dinucleotides. The frameshift and nonsense NF2 mutations occurred primarily in patients with severe phenotypes. The two missense mutations occurred in patients with mild phenotypes, and three of the four splice site mutations occurred in families with both mild and severe phenotypes. Truncating NF2 mutations are usually associated with severe phenotypes, but the association of some mutations with mild and severe phenotypes indicates that NF2 expression is influenced by stochastic, epigenetic, or environmental factors. Received: 4 July 1996  相似文献   

11.
X-linked ocular albinism (OA1), Nettleship-Falls type, is characterized by decreased ocular pigmentation, foveal hypoplasia, nystagmus, photodysphoria, and reduced visual acuity. Affected males usually demonstrate melanin macroglobules on skin biopsy. We now report results of deletion and mutation screening of the full-length OA1 gene in 29 unrelated North American and Australian X-linked ocular albinism (OA) probands, including five with additional, nonocular phenotypic abnormalities (Schnur et al. 1994). We detected 13 intragenic gene deletions, including 3 of exon 1, 2 of exon 2, 2 of exon 4, and 6 others, which span exons 2-8. Eight new missense mutations were identified, which cluster within exons 1, 2, 3, and 6 in conserved and/or putative transmembrane domains of the protein. There was also a splice acceptor-site mutation, a nonsense mutation, a single base deletion, and a previously reported 17-bp exon 1 deletion. All patients with nonocular phenotypic abnormalities had detectable mutations. In summary, 26 (approximately 90%) of 29 probands had detectable alterations of OA1, thus confirming that OA1 is the major locus for X-linked OA.  相似文献   

12.
13.
The major mutation in the cystic fibrosis (CF) gene is a 3-bp deletion (delta F508) in exon 10. About 50% of the CF chromosomes in Southern Europe carry this mutation, while other previously described mutations account for less than 4%. To identify other common mutations in CF patients from the Mediterranean area, we have sequenced, exon by exon, 16 chromosomes that did not show the delta F508 deletion from a selected panel of eight unrelated CF patients. We describe here one missense and one nonsense mutation, and four sequence polymorphisms. We have also found two previously reported mutations in three chromosomes. Overall, these mutations may account for about 20% of CF alleles in the Italian and Spanish populations. No other mutations were detected in 10 out of 16 CF chromosomes after analyzing about 90% of the coding region of the CF gene, and 39 out of 54 intron/exon boundaries. Therefore, about 26% of CF mutations remain to be identified. In addition we provide the intron/exon boundary sequences for exons 4 to 9. These results together with previously reported linkage data suggest that in the Mediterranean populations further mutations may lie in the promoter region, or in intron sequences not yet analyzed.  相似文献   

14.
Neurofibromatosis type 1 (NF1) is characterized by cafe-au-lait spots, skinfold freckling, and cutaneous neurofibromas. No obvious relationships between small mutations (<20 bp) of the NF1 gene and a specific phenotype have previously been demonstrated, which suggests that interaction with either unlinked modifying genes and/or the normal NF1 allele may be involved in the development of the particular clinical features associated with NF1. We identified 21 unrelated probands with NF1 (14 familial and 7 sporadic cases) who were all found to have the same c.2970-2972 delAAT (p.990delM) mutation but no cutaneous neurofibromas or clinically obvious plexiform neurofibromas. Molecular analysis identified the same 3-bp inframe deletion (c.2970-2972 delAAT) in exon 17 of the NF1 gene in all affected subjects. The Delta AAT mutation is predicted to result in the loss of one of two adjacent methionines (codon 991 or 992) ( Delta Met991), in conjunction with silent ACA-->ACG change of codon 990. These two methionine residues are located in a highly conserved region of neurofibromin and are expected, therefore, to have a functional role in the protein. Our data represent results from the first study to correlate a specific small mutation of the NF1 gene to the expression of a particular clinical phenotype. The biological mechanism that relates this specific mutation to the suppression of cutaneous neurofibroma development is unknown.  相似文献   

15.
The molecular basis of familial chylomicronemia (type I hyperlipoproteinemia), a rare autosomal recessive trait, was investigated in six unrelated individuals (five of Spanish descent and one of Northern European extraction). DNA amplification by polymerase chain reaction (PCR) followed by single strand conformation polymorphism (SSCP) analysis allowed rapid identification of the underlying mutations. Six different mutant alleles (three of which are previously undescribed) of the gene encoding lipoprotein lipase (LPL) were discovered in the five LPL-deficient patients. These included an 11 bp deletion in exon 2, and five missense mutations: Trp 86 Arg (exon 3), His 136 Arg (exon 4), Gly 188 Glu (exon 5), Ile 194 Thr (exon 5), and Ile 205 Ser (exon 5). The Trp 86 Arg mutation is the only known missense mutation in exon 3. The other missense mutations lie in the highly conserved "central homology region" in close proximity with the catalytic site of LPL. These and other previously reported missense mutations provide insight into structure/function relationships in the lipase family. The missense mutations point to the important role of particular highly conserved helices and beta-strands in proper folding of the LPL molecule, and of certain connecting loops in the catalytic process. A nonsense mutation (Arg 19 Term) in the gene encoding apolipoprotein C-II (apoC-II), the cofactor of LPL, was found to underlie chylomicronemia in the sixth patient who had normal LPL but was apoC-II-deficient.  相似文献   

16.
S Akli  J Chelly  J M Lacorte  L Poenaru  A Kahn 《Genomics》1991,11(1):124-134
Total RNA was isolated from cultured fibroblasts from 12 unrelated patients with Tay-Sachs disease, an autosomal recessive disorder due to beta-hexosaminidase A deficiency. beta-Hexosaminidase mRNA was amplified by cDNA-PCR in four overlapping segments spanning the entire coding sequence. In two patients, abnormal size cDNA-PCR fragments in which exons were removed resulted from splicing mutations that were characterized at the genomic DNA level: both were G to A transitions, at the first position of intron 2 and at the fifth position of intron 4. Five other mutations have been identified by cDNA-PCR chemical mismatch analysis and direct sequencing of an amplified fragment containing the mismatch site. One missense mutation alters the codon for Ser210 to Phe in exon 6 and the other one alters the codon for Arg504 to Cys in exon 13. A 3-bp deletion results in the deletion of a phenylalanine residue in exon 8. Two nonsense mutations in exon 3 (Arg137 to stop) and in exon 11 (Arg393 to stop) are associated with a marked decrease of mRNA abundance, probably because they result in mRNA instability. Three of the six single base mutations involve the conversion of a CpG dinucleotide in the sense strand to TpG. These results demonstrate the extreme molecular heterogeneity of mutations causing Tay-Sachs disease. The procedure described in this paper allows the rapid detection of any type of mutation, except those impairing the promoter function. Applicable even to patients with splicing or nonsense mutations and very low mRNA abundance, it has therefore a potentially broad application in human genetics, for both diagnostic and fundamental purposes.  相似文献   

17.
Neurofibromatosis type 1 (NF1) is a common autosomal dominant disorder. It is caused by mutations in the NF1 gene, which comprises 60 exons and is located on chromosome 17q11.2. A total of 170 unrelated NF1 patients were screened for mutations in four exons by temperature-gradient gel electrophoresis. Preparatory work revealed the presence of a previously uncharacterized intron (19a) in what was previously designated exon 19; this allowed us to develop assays for genomic mutation screening in the newly defined exons 19a and 19b. Two novel NF1 mutations were detected: a single-base insertion in exon 19a creating a frameshift, and a second mutation affecting the splice donor site of intron 20 and leading to skipping of exon 20. A novel BsaBI polymorphism was identified in intron 19a. Received: 11 August 1997 / Accepted: 13 November 1997  相似文献   

18.
The oculocerebrorenal syndrome of Lowe (OCRL) is an X-linked disorder characterized by major abnormalities of eyes, nervous system, and kidneys. Mutations in the OCRL1 gene have been associated with the disease. OCRL1 encodes a phosphatidylinositol 4, 5-biphosphate (PtdIns[4,5]P2) 5-phosphatase. We have examined the OCRL1 gene in eight unrelated patients with OCRL and have found seven new mutations and one recurrent in-frame deletion. Among the new mutations, two nonsense mutations (R317X and E558X) and three other frameshift mutations caused premature termination of the protein. A missense mutation, R483G, was located in the highly conserved PtdIns(4,5)P2 5-phosphatase domain. Finally, one frameshift mutation, 2799delC, modifies the C-terminal part of OCRL1, with an extension of six amino acids. Altogether, 70% of missense mutations are located in exon 15, and 52% of all mutations cluster in exons 11-15. We also identified two new microsatellite markers for the OCRL1 locus, and we detected a germline mosaicism in one family. This observation has direct implications for genetic counseling of Lowe syndrome families.  相似文献   

19.
Propionyl-CoA carboxylase (PCC) is a mitochondrial biotin-dependent enzyme composed of an equal number of alpha and beta subunits. Mutations in the PCCA (alpha subunit) or PCCB (beta subunit) gene can cause the inherited metabolic disease propionic acidemia (PA), which can be life threatening in the neonatal period. Lack of data on the genomic structure of PCCB has been a significant impediment to full characterization of PCCB mutant chromosomes. In this study, we describe the genomic organization of the coding sequence of the human PCCB gene and the characterization of mutations causing PA in a total of 29 unrelated patients-21 from Spain and 8 from Latin America. The implementation of long-distance PCR has allowed us to amplify the regions encompassing the exon/intron boundaries and all the exons. The gene consists of 15 exons of 57-183 bp in size. All splice sites are consistent with the gt/ag rule. The availability of the intron sequences flanking each exon has provided the basis for implementation of screening for mutations in the PCCB gene. A total of 56/58 mutant chromosomes studied have been defined, with a total of 16 different mutations detected. The mutation spectrum includes one insertion/deletion, two insertions, 10 missense mutations, one nonsense mutation, and two splicing defects. Thirteen of these mutations correspond to those not described yet in other populations. The mutation profile found in the chromosomes from the Latin American patients basically resembles that of the Spanish patients.  相似文献   

20.
X-linked immunodeficiency with hyper-IgM (HIGMX-1) is a rare disorder caused by defective expression of the CD40 ligand (CD40L) by activated T lymphocytes, resulting in inefficient T-B cell cooperation and failure of B cells to undergo immunoglobulin isotype switch. In the present work, we describe nine patients of various ancestry who bear different mutations in the X chromosome–specific CD40L gene. Two of the mutations were nonsense mutations, one each resulting in premature stop codons at amino acid residues 39 and 140. Three patients had single point missense mutations, one each at codons 126, 140, and 144. Another patient had a 4-bp genomic deletion in exon 2, resulting in a frameshift and premature termination. Three patients showed insertions, one each of 1, 2, and 4 nt, probably because of polymerase slippage, resulting in frameshift mutation and premature termination. Overall, these observations confirm the heterogeneity of mutations in HIGMX-1. However, the identification of two patients whose mutation involves codon 140 (previously shown to be altered in two other unrelated subjects) suggests that this may be a hotspot of mutation in HIGMX-1. In two additional patients with clinical and immunological features indistinguishable from canonical HIGMX-1, no mutation was detected in the coding sequence, in the 5' flanking region, or in the 3' UTR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号