首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Changes in electrical potential difference and sodium-potassium ATPase activity of rectal mucosa in dogs were examined before and after jejunal-ileal bypass surgery. The potential difference in the postoperative period was significantly higher (P less than 0.05) than the preoperative value. The potential difference increased by 160% at the 3rd day after the surgery, and then gradually declined with prolonged recovery periods. Ouabain-sensitive sodium-potassium ATPase activity also increased at the 3rd day (160%) and at the 10th day (86%) after the surgery. Fourteen days after the surgery the sodium-potassium ATPase activity returned almost to the preoperative value. These results indicated a close correlation between changes in transmucosal potential difference and sodium-potassium ATPase activity of rectal mucosa, suggesting a significant participation of sodium-potassium ATPase in changes of potential difference induced by jejunal-ileal bypass surgery.  相似文献   

2.
3.
M Une  K Yamanaga  E H Mosbach  S Kuroki  T Hoshita 《Steroids》1989,53(1-2):97-105
This paper describes a method for the preparation of 7-alkylated chenodeoxycholic acids from 3 alpha-hydroxy-7-oxo-5 beta-cholanoic acid. The synthetic procedure is based upon a Grignard reaction between the keto bile acid and an alkyl magnesium halide. Under the conditions employed, the introduction of alkyl groups is highly stereoselective. Only 7 beta-alkylated epimers are obtained. The overall yield is several-fold higher than that obtained by the previous method, which involved the preparation of an oxazoline intermediate.  相似文献   

4.
5.
We have prepared a new panel of 23 BA derivatives of DCA, chenodeoxycholic acid (CDCA) and lithocholic acid (LCA) in order to study the effect of dual substitution with 3-azido and 24-amidation, features individually associated with cytotoxicity in our previous work. The effect of the compounds on cell viability of HT-1080 and Caco-2 was studied using the 3-[4,5-dimethylthizol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay. Compounds with high potency towards reduction of cell viability were further studied using flow cytometry in order to understand the mechanism of cell death. Several compounds were identified with low micromolar IC50 values for reducing cell viability in the Caco-2 and HT1080 cell lines, making them among the most potent BA apoptotic agents reported to date. There was no evidence of relationship between overall hydrophobicity and cytotoxicity supporting the idea that cell death induction by BAs may be structure–specific. Compounds derived from DCA caused cell death through apoptosis. There was some evidence of selectivity between the two cell lines studied which may be due to differing expression of CD95/FAS. The more toxic compounds increased ROS production in Caco-2 cells, and co-incubation with the antioxidant N-acetyl cysteine blunted pro-apoptotic effects. The properties these compounds suggest that there may be specific mechanism(s) mediating BA induced cell death. Compound 8 could be useful for investigating this phenomenon.  相似文献   

6.
Giving clofibrate 2 g daily to seven patients significantly increased the biliary cholesterol concentration while the proportion of bile acids fell. Five patients on established clofibrate treatment were given 750 mg of chenodeoxycholic acid (CDCA) daily for one month. Biliary lipid analysis after the CDCA treatment showed a significant fall in the proportion of cholesterol and a rise in that of bile acids. The serum lipid concentrations, which had already been reduced by diet and clofibrate, showed a further significant reduction after the introduction of CDCA. This study suggests that CDCA may be usefully combined with clofibrate to reverse the tendency towards cholesterol saturation of bile and enhance the effect of lowering serum lipid concentrations.  相似文献   

7.
In this study the relative ionic permeabilities of the cell membranes of Necturus gallbladder epithelium have been determined by means of simultaneous measurement of transmural and transmucosal membrane potential differences (PD) and by ionic substitution experiments with sodium, potassium and chloride ions. It is shown that the mucosal membrane is permeable to sodium and to potassium ions. The baso-lateral membrane PD is only sensitive to potassium ions. In both membranes chloride conductance is negligible or absent. The ratio of the resistances of the mucosal and baso-lateral membranes, RM/RS, increases upon reducing the sodium concentration in the mucosal solution. The same ratio decreases when sodium is replaced by potassium which implies a greater potassium than sodium conductance in the mucosal membrane. The relative permeability of the shunt for potassium, sodium and chloride ions is: PK/PNa/PCl=1.81:1.00:0.32. From the results obtained in this study a value for the PK/PNa ratio of the mucosal membrane could be evaluated. This ratio is 2.7. From the same data the magnitude of the electromotive forces generated across the cell membranes could be calculated. The EMF's are -15mV across the mucosal membrane and -81mV across the baso-lateral one. Due to the presence of the low resistance shunt the transmucosal membrane PD is -53.2mV (cell inside negative) and the transmural PD is +2.6mV (serosal side positive). The change in potential profile brought about by the low resistance shunt favors passive entry of Na ions into the cell across the mucosal membrane. Calculations show that this passive Na influx is maximally 64% of the net Na flux estimated from fluid transport measurements. The C-1 conductive of the baso-lateral membrane is too small to allow electrogenic coupling of C1 with Na transport across this membrane. Experiments with rabbit gallbladder epithelium indicate that the membrane properties in this tissue are qualitatively similar to those of Necturus gallbladder epithelium.  相似文献   

8.
H Igimi 《Life sciences》1976,18(9):993-999
Bile acid composition was investigated in normal gallbladder-bile collected from the Japanese patients suffering from the diseases other than hepatobiliary tracts.In addition to cholate, chenodeoxycholate, deoxycholate and lithocholate, ursodeoxycholate was detected as a predominant bile acid in all cases tested and its quantity was higher than that of lithocholate in most cases.A simplified method has been developed for the quantitative determination of bile acids. They were derived to their methyl ester-trimethylsilyl ethers and determined by gas-liquid chromatography on a column of 3% poly-phenyldiethanol amine succinate-80-100 mesh Chromosorb WHP. Average recoveries of added amounts of standard bile acids were found to range from 97 to 100%.  相似文献   

9.
Guinea pig gallbladder bile contains chenodeoxycholic acid (62 +/- 5%), ursodeoxycholic acid (8 +/- 5%), and 7-ketolithocholic acid (30 +/- 5%). All three bile acids became labeled to the same specific activity within 30 min after [3H]cholesterol was injected into bile fistula guinea pigs. When a mixture of [3H]ursodeoxycholic acid and [14C]chenodeoxycholic acid was infused into another bile fistula guinea pig, little 3H could be detected in either chenodeoxycholic acid or 7-ketolithocholic acid. But, 14C was efficiently incorporated into ursodeoxycholic and 7-ketolithocholic acids. Monohydroxylated bile acids make up 51% and ursodeoxycholic acid 38% of fecal bile acids. After 3 weeks of antibiotic therapy, lithocholic acid was reduced to 6% of the total, but ursodeoxycholic acid (5-11%) and 7-ketolithocholic (15-21%) acid persisted in bile. Lathosterol constituted 19% of skin sterols and was detected in the feces of an antibiotic-fed animal. After one bile fistula guinea pig suffered a partial biliary obstruction, ursodeoxycholic and 7-ketolithocholic acids increased to 46% and 22% of total bile acids, respectively. These results demonstrate that chenodeoxycholic acid, ursodeoxycholic acid, and 7-ketolithocholic acid can all be made in the liver of the guinea pig.  相似文献   

10.
The effect of dietary 7 beta-methyl-cholic acid [0.075% in rodent chow (6.4 mg/animal per day)] on cholesterol and bile acid metabolism was studied and compared with that of cholic acid in the hamster. Following oral administration of 7 beta-methyl-cholic acid for 3 weeks, the glycine-conjugated bile acid analog became a major constituent of gallbladder bile. Biliary cholic acid concentration decreased significantly, while that of chenodeoxycholic acid remained unchanged. Serum and liver cholesterol levels were increased by dietary 7 beta-methyl-cholic acid and by cholic acid. Hepatic microsomal HMG-CoA reductase activity was inhibited (30% of the control value) by both bile acids; cholesterol 7 alpha-hydroxylase activity was not affected. In chow controls and cholic acid-fed animals, bacterial 7-dehydroxylation of [14C]chenodeoxycholic acid and [14C]cholic acid was nearly complete. In contrast, dietary 7 beta-methyl-cholic acid effectively prevented the 7-dehydroxylation of the two primary bile acids. These results show that dietary 7 beta-methyl-cholic acid is preserved in the enterohepatic circulation and has an effect on serum and liver cholesterol concentrations similar to those produced by the naturally occurring cholic acid. 7 beta-Methyl-cholic acid is an efficient inhibitor of the bacterial 7-dehydroxylation of the primary bile acids in the hamster.  相似文献   

11.
In patients with cerebrotendinous xanthomatosis (CTX), diminished cholic acid production is associated with incomplete oxidation of the cholesterol side chain and the excretion of C(25)-hydroxy bile alcohols. The aims of this investigation were 1) to provide quantitative information on the pool size and production rate of chenodeoxycholic acid by the isotope dilution technique; and 2) to investigate the possible existence of a block in chenodeoxycholic acid synthesis and explain the absence of chenodeoxycholic acid precursors in CTX. After the injection of [24-(14)C]chenodeoxycholic acid, measurements of chenodeoxycholic acid pool size and production rate in a CTX subject were, respectively, 1/20 and 1/6 as great as controls. Further, three potential precursors of chenodeoxycholic acid, namely [G-(3)H]7alpha-hydroxy-4-cholesten-3-one, [G-(3)H]5beta-cholestane-3alpha,7alpha,25-triol, and [G-(3)H]5beta-cholestane-3alpha,7alpha,26-triol, were administered to the CTX and control subjects and the specific activity curves of [G-(3)H]cholic acid and [G-(3)H]chenodeoxycholic acid were constructed and compared. In the control subjects, the two bile acids decayed exponentially, but in the CTX patient maximum specific activities were abnormally delayed, indicating the hindered transformation of precursor into bile acid. These results show that chenodeoxycholic acid synthesis is small in CTX and that the conversion of 7alpha-hydroxy-4-cholesten-3-one, 5beta-cholestane-3alpha,7alpha,25-triol, and 5beta-cholestane-3alpha,7alpha,26-triol to both chenodeoxycholic acid and cholic acid were similarly impaired.  相似文献   

12.
The plasma concentrations of 3 beta-hydroxy-5-cholestenoic acid, 3 beta,7 alpha-dihydroxy-5-cholestenoic acid and 7 alpha-hydroxy-3-oxo-4-cholestenoic acid have been compared with that of 7 alpha-hydroxy-4-cholesten-3-one in healthy subjects and in patients with an expected decrease or increase of the bile acid production. In controls and patients with liver disease, the level of 7 alpha-hydroxy-3-oxo-4-cholestenoic acid was positively correlated to that of 3 beta,7 alpha-dihydroxy-5-cholestenoic acid and not to that of 7 alpha-hydroxy-4-cholesten-3-one. In patients with stimulated bile acid formation the levels of the acids were not correlated to each other but there was a significant positive correlation between the levels of 7 alpha-hydroxy-3-oxo-4-cholestenoic acid and 7 alpha-hydroxy-4-cholesten-3-one. These findings indicate that the precursor of 7 alpha-hydroxy-3-oxo-4-cholestenoic acid differs depending on the activity of cholesterol 7 alpha-hydroxylase. Since the activity of this enzyme is reflected by the level of 7 alpha-hydroxy-4-cholesten-3-one in plasma the findings are compatible with a formation of 7 alpha-hydroxy-3-oxo-4-cholestenoic acid from 3 beta,7 alpha-dihydroxy-5-cholestenoic acid when the rate of bile acid formation is normal or reduced and from 7 alpha-hydroxy-4-cholesten-3-one under conditions of increased bile acid synthesis. In support of this interpretation, 7 alpha,26-dihydroxy-4-cholesten-3-one was identified at elevated levels in plasma from patients with ileal resection or treated with cholestyramine. The levels of 7 alpha,12 alpha-dihydroxy-4-cholesten-3-one were also higher than normal in these patients. Based on these findings and previous knowledge, a model is proposed for the biosynthesis of bile acids in man. Under normal conditions, two major pathways, one "neutral" and one "acidic" or "26-oxygenated", lead to the formation of cholic acid and chenodeoxycholic acid, respectively. These pathways are separately regulated. When the activity of cholesterol 7 alpha-hydroxylase is high, the "neutral" pathway is most important whereas the reverse is true when cholesterol 7 alpha-hydroxylase activity is low. In cases with enhanced activity of cholesterol 7 alpha-hydroxylase, the "neutral" pathway is connected to the "acidic" pathway via 7 alpha,26-dihydroxy-4-cholesten-3-one, whereas a flow from the acidic pathway to cholic acid appears to be of minor importance.  相似文献   

13.
14.
Large quantities of C27 bile alcohols hydroxylated at C-25 are excreted in the bile and urine of patients with cerebrotendinous xanthomatosis, a lipid storage disease that results from defective bile acid synthesis. The presence of both biliary and urinary bile alcohols reflects impaired bile acid synthesis. After treatment of samples with beta-glucuronidase, plasma bile alcohols were quantitated by gas-liquid chromatography-mass spectrometry. 5 beta-Cholestane-3 alpha,7 alpha,12 alpha,25-tetrol (334 micrograms/dl) was found to be the major bile alcohol, followed by 5 beta-cholestane-3 alpha,7 alpha,12 alpha,23R,25-pentol (65 micrograms/dl), and 5 beta-cholestane-3 alpha,7 alpha,12 alpha,24(R and S),25-pentols (62.5 micrograms/dl and 64.5 micrograms/dl, respectively) in the plasma of these patients. When compared to biliary and urinary bile alcohol excretions, the plasma pattern resembled bile where 5 beta-cholestane-3 alpha,7 alpha,12 alpha,25-tetrol glucuronide predominated. In contrast, urinary bile alcohols were composed chiefly of 5 beta-cholestanepentol glucuronides with only small amounts of 5 beta-cholestane-3 alpha,7 alpha,12 alpha,25-tetrol glucuronide. Treatment with chenodeoxycholic acid, which suppresses abnormal bile acid synthesis in these patients, reduced plasma bile alcohol concentrations dramatically. These results show that large quantities of bile alcohol glucuronides, particularly 5 beta-cholestane-3 alpha,7 alpha,12 alpha,25-tetrolglucuronide, circulate in plasma of patients with cerebrotendinous xanthomatosis. The plasma bile alcohols closely resemble biliary bile alcohols which indicates their hepatic origin. The large quantities of polyhydroxylated bile alcohols in the urine may suggest their formation, at least in part, from 5 beta-cholestane-3 alpha,7 alpha,12 alpha,25-tetrol by renal hydroxylating mechanisms.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Colorectal cancer (CRC) is one of the most common cancers worldwide. Epidemiological and experimental studies suggest that bile acids may play a role in CRC etiology. Our aim was to characterize the effect of the primary bile acid chenodeoxycholic acid (CDCA) upon(14) C-BT uptake in tumoral (Caco-2) and non-tumoral (IEC-6) intestinal epithelial cell lines. A 2-day exposure to CDCA markedly and concentration-dependently inhibited (14) C-BT uptake by IEC-6 cells (IC(50) = 120 μM), and, less potently, by Caco-2 cells (IC(50) = 402 μM). The inhibitory effect of CDCA upon (14) C-BT uptake did not result from a decrease in cell proliferation or viability. In IEC-6 cells: (1) uptake of (14) C-BT involves both a high-affinity and a low-affinity transporter, and CDCA acted as a competitive inhibitor of the high-affinity transporter; (2) CDCA inhibited both Na(+)-coupled monocarboxylate cotransporter 1 (SMCT1)- and H(+)-coupled monocarboxylate transporter 1 (MCT1)-mediated uptake of (14) C-BT; (3) CDCA significantly increased the mRNA expression level of SMCT1; (4) inhibition of (14) C-BT uptake by CDCA was dependent on CaM, MAP kinase (ERK1/2 and p38 pathways), and PKC activation, and reduced by a reactive oxygen species scavenger. Finally, BT (5 mM) decreased IEC-6 cell viability and increased IEC-6 cell differentiation, and CDCA (100 μM) reduced this effect. In conclusion, CDCA is an effective inhibitor of (14) C-BT uptake in tumoral and non-tumoral intestinal epithelial cells, through inhibition of both H(+) -coupled MCT1- and SMCT1-mediated transport. Given the role played by BT in the intestine, this mechanism may contribute to the procarcinogenic effect of CDCA at this level.  相似文献   

16.
17.
18.
19.
Summary When single-barrelled electrodes (5–60 M) were advanced under manual control from the mucosal side of the epithelium the mucosal membrane was on average indented by about 40 m before the microelectrode penetrated the cell. Since this dimpling was comparable with the total depth of the cell, which recovered its original shape within 0.5 sec, the steady intracellular potential was recorded only about 14 m from the basal (serosal) membrane. Fast recording of the associated change in potential revealed an abrupt drop to –26 mV at a mean rate of 84 V/sec, followed by a further slow drop to a steady value of about –50 mV at a mean rate of 0.28 V/sec. The initial level of –26 mV may be regarded as the potential difference across the mucosal membrane. This conclusion was confirmed by mounting the microelectrode on a piezoelectric probe, which delivered 3 m jabs in less than 0.5 msec. With this device in operation to prevent dimpling, the mean potential difference across the mucosal membrane was recorded as –29 mV. In all cases the potential across the basal membrane was recorded as –52 mV. Manual advance of the microelectrode tip within the cytoplasm yielded an intracellular potential gradient of 0.6 mV/m. The same potential profile and membrane potentials were demonstrated on penetrating the epithelium from the serosal side, and measurements with multibarrelled electrodes whose tips were staggered in depth gave roughly the same internal potential gradient. The resistivity of the cytoplasm was determined by a triple-barrelled microelectrode, and varied from 10 times that ofNecturus saline at the mucosal end of the cell to 4 times in the middle and 6 times at the serosal end.  相似文献   

20.
Chenodeoxycholic acid (300 mg + 14C) was administered orally to a bile fistula patient receiving a constant infusion of {3H}mevalonic acid. Suppression of endogenous cholic and chenodeoxycholic acid synthesis occurred within 2 to 4 hours and continued for the next 10 hours; synthesis returned to the baseline level after 18 hours. Incorporation of {3H}mevalonic acid into both bile acids was also greatly reduced during the first several hours after chenodeoxycholic acid, but almost recovered by 5 hours. The data suggest that multiple feedback sites are involved in the regulation of bile acid synthesis in man.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号