首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
肝癌细胞-胞外基质粘附性与粘附识别序列的相关性   总被引:1,自引:0,他引:1  
以微管吸吮技术研究了人肝癌细胞在IV型胶原/层粘连蛋白(LN)/纤维连结蛋白(FN)裱衬表面的粘附性。进一步,用四种人工合成肽精-甘-天冬-丝(RGDS)、甘-精-甘-天冬-苏-脯GRGDTP)、酪-异亮-甘-丝-精(YIGSR0和半胱-天冬-脯-甘-酪-异亮-甘-丝-精(CDPGYIGSR)研究了肝癌细胞粘附性对两种粘附识别序列RGD和YIGSR的依赖性。为了归纳和整理实验结果,根据竞争性抑制的  相似文献   

2.
The adhesion of HT29 human colon adenocarcinoma cells to different extracellular matrix components was studied. While treatment of the cells with sialidase had no detectable effect on binding to laminin and fibronectin, attachment to collagen IV was decreased. However, additional removal of beta-(1-4)-bound galactose led to significantly reduced binding to all of the substrates, including fibronectin and laminin. Tunicamycin treatment, monitored by lectin-induced aggregation, drastically diminished cell adhesion to laminin and fibronectin, whereas cell binding to collagen IV was not affected. Arg-Gly-Asp (RGD)-related peptides were used to study the adhesion to collagen IV. The results show that a serine-containing RGD-related peptide GRGDSP has virtually no effect on colon carcinoma cell adhesion to type IV collagen. In contrast, when serine was substituted for threonine (GRGDTP) adhesion to collagen IV was strongly inhibited. After incubation of sialidase-treated cells with the threonine-containing peptide adhesion was almost totally blocked. These results demonstrate the existence of both RGD-dependent and carbohydrate-based mechanisms for metastatic human HT29 cell binding to collagen IV.  相似文献   

3.
Adhesion to extracellular matrix (ECM) proteins plays a crucial role in invasive fungal diseases. ECM proteins bind to the surface of Paracoccidioides brasiliensis yeast cells in distinct qualitative patterns. Extracts from Pb18 strain, before (18a) and after animal inoculation (18b), exhibited differential adhesion to ECM components. Pb18b extract had a higher capacity for binding to ECM components than Pb18a. Laminin was the most adherent component for both samples, followed by type I collagen, fibronectin, and type IV collagen for Pb18b. A remarkable difference was seen in the interaction of the two extracts with fibronectin and their fragments. Pb18b extract interacted significantly with the 120-kDa fragment. Ligand affinity binding assays showed that type I collagen recognized two components (47 and 80kDa) and gp43 bound both fibronectin and laminin. The peptide 1 (NLGRDAKRHL) from gp43, with several positively charged amino acids, contributed most to the adhesion of P. brasiliensis to Vero cells. Synthetic peptides derived from peptide YIGRS of laminin or from RGD of both laminin and fibronectin showed the greatest inhibition of adhesion of gp43 to Vero cells. In conclusion, this work provided new molecular details on the interaction between P. brasiliensis and ECM components.  相似文献   

4.
Transduction of signals initiating motility by extracellular matrix (ECM) molecules differed depending on the type of matrix molecule and whether the ligand was in solution or bound to a substratum. Laminin, fibronectin, and type IV collagen stimulated both chemotaxis and haptotaxis of the A2058 human melanoma cell line. Peak chemotactic responses were reached at 50-200 nM for laminin, 50-100 nM for fibronectin, and 200-370 nM for type IV collagen. Checkerboard analysis of each attractant in solution demonstrated a predominantly directional (chemotactic) response, with a minor chemokinetic component. The cells also migrated in a concentration-dependent manner to insoluble step gradients of substratum-bound attractant (haptotaxis). The haptotactic responses reached maximal levels at coating concentrations of 20 nM for laminin and type IV collagen, and from 30 to 45 nM for fibronectin. Pretreatment of cells with the protein synthesis inhibitor, cycloheximide (5 micrograms/ml), resulted in a 5-30% inhibition of both chemotactic and haptotactic responses to each matrix protein, indicating that de novo protein synthesis was not required for a significant motility response. Pretreatment of cells with 50-500 micrograms/ml of synthetic peptides containing the fibronectin cell-recognition sequence GRGDS resulted in a concentration-dependent inhibition of fibronectin-mediated chemotaxis and haptotaxis (70-80% inhibition compared to control motility); negative control peptide GRGES had only a minimal effect. Neither GRGDS nor GRGES significantly inhibited motility to laminin or type IV collagen. Therefore, these results support a role for the RGD-directed integrin receptor in both types of motility response to fibronectin. After pretreatment with pertussis toxin (PT), chemotactic responses to laminin, fibronectin, and type IV collagen were distinctly different. Chemotaxis to laminin was intermediate in sensitivity; chemotaxis to fibronectin was completely insensitive; and chemotaxis to type IV collagen was profoundly inhibited by PT. In marked contrast to the inhibition of chemotaxis, the hepatotactic responses to all three ligands were unaffected by any of the tested concentrations of PT. High concentrations of cholera toxin (CT; 10 micrograms/ml) or the cAMP analogue, 8-Br-cAMP (0.5 mM), did not significantly affect chemotactic or haptotactic motility to any of the attractant proteins, ruling out the involvement of cAMP in the biochemical pathway initiating motility in these cells. The sensitivity of chemotaxis induced by laminin and type IV collagen, but not fibronectin, to PT indicates the involvement of a PT-sensitive G protein in transduction of the signals initiating motility to soluble laminin and type IV collagen.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
Bovine aortic and microvascular endothelial cells showed good adhesion with spreading on fibronectin or collagen IV and to a lower extent on laminin. Recognition of native laminin was due to its long arm fragment E8 and was mediated by alpha 6 integrins as demonstrated by antibody inhibition. A considerably stronger, RGD-dependent interaction was observed with the isolated laminin short arm fragment P1 previously shown to represent a cryptic cell-binding site. No adhesion was observed with the heparin-binding fragment E3. In contrast, murine microvascular endothelial cells transformed by the polyoma middle T oncogene showed preferential adherence and spreading on laminin via its E8 cell-binding site and also showed adhesion to fragment E3. Attachment to laminin fragment P1 and to collagen IV was low or negative and was never followed by spreading. These data show that the transformation of microvascular endothelial cells, which give them the property to form hemangiomas, also leads to changes in cell adhesion to extracellular matrix proteins, particularly to laminin fragments.  相似文献   

6.
Fluorometric cell attachment assays together with competitive inhibitors of adhesion were used to probe for the presence of integrins, a diverse family of heterodimeric cell-surface glycoproteins involved in cell-cell and cell-extracellular matrix adhesion, in the fibroblastic rainbow trout cell line, RTG-2. The adhesive properties of this cell line were evaluated. RTG-2 cells adhered poorly to TC plastic in the absence of serum but as little as 2.5% fetal bovine serum allowed over 75% of the cells to attach after 5 h. Surfaces coated with the extracellular matrix proteins collagen I, collagen IV, fibrin, fibrinogen, or fibronectin were able to support attachment of RTG-2 cells. Adhesion of RTG-2 cells to fibronectin varied linearly with fibronectin coating densities in the range 0 to 65 ng/mm(2). Oligopeptides containing the sequence Arg-Gly-Asp (RGD) caused dose-dependent inhibition of adhesion to microtiter plates coated with fibrin, fibrinogen, and fibronectin, whereas attachment to collagen I and collagen IV was less severely affected. In all cases, peptides containing Arg-Gly-Glu (RGE) or Asp-Gly-Arg (DGR) sequences caused no reduction of cell attachment. Since many integrins mediate adhesion by binding to RGD sequences in their target ligands, these results suggest the presence of integrin-like adhesion molecules on the surface of RTG-2 cells.  相似文献   

7.
《The Journal of cell biology》1984,99(4):1416-1423
MDW4, a wheat germ agglutinin-resistant nonmetastatic mutant of the highly metastatic murine tumor cell line called MDAY-D2 has previously been shown to attach to fibronectin and type IV collagen, whereas MDAY- D2 and phenotypic revertants of MDW4 attached poorly to these substrates. The increased adhesiveness of the mutant cells appeared to be closely related to a lesion in cell surface carbohydrate structures. In an effort to identify the carbohydrates involved in cell attachment, glycopeptides isolated from mutant and wild-type cells as well as from purified glycoproteins were tested for their ability to inhibit the attachment of MDW4 cells to plastic surfaces coated with fibronectin, laminin, or type IV collagen. The addition of mannose-terminating glycopeptide to the adhesion assay inhibited MDW4 cell attachment to type IV collagen. In contrast, a sialylated poly N-acetyllactosamine- containing glycopeptide, isolated from wheat germ agglutinin-sensitive MDAY-D2 cells but absent in MDW4 cells, inhibited MDW4 attachment to laminin. None of the glycopeptides used in this study inhibited attachment of MDW4 cells to fibronectin-coated plastic. Peptide N- glycosidase treatment of the cells to remove surface asparagine-linked oligosaccharides inhibited MDW4 adhesion to type IV collagen, but not to laminin, and the same treatment of the wheat germ agglutinin- sensitive cells enhanced attachment to laminin. Tumor cell attachment to, and detachment from, the sublaminal matrix protein laminin and type IV collagen are thought to be important events in the metastatic process. Our results indicate that tumor cell attachment to these proteins may be partially modulated by the expression of specific oligosaccharide structures associated with the cell surface.  相似文献   

8.
Previous studies have indicated the importance of basement membrane components both for cellular differentiation in general and for the barrier properties of cerebral microvascular endothelial cells in particular. Therefore, we have examined the expression of basement membrane proteins in primary capillary endothelial cell cultures from adult porcine brain. By indirect immunofluorescence, we could detect type IV collagen, fibronectin, and laminin both in vivo (basal lamina of cerebral capillaries) and in vitro (primary culture of cerebral capillary endothelial cells). In culture, these proteins were secreted at the subcellular matrix. Moreover, the interaction between basement membrane constituents and cerebral capillary endothelial cells was studied in adhesion assays. Type IV collagen, fibronectin, and laminin proved to be good adhesive substrata for these cells. Although the number of adherent cells did not differ significantly between the individual proteins, spreading on fibronectin was more pronounced than on type IV collagen or laminin. Our results suggest that type IV collagen, fibronectin, and laminin are not only major components of the cerebral microvascular basal lamina, but also assemble into a protein network, which resembles basement membrane, in cerebral capillary endothelial cell cultures.  相似文献   

9.
Synthetic peptides can specifically inhibit the function of certain adhesive glycoproteins in vitro and in vivo. We have compared the relative activities of a set of six variant synthetic peptides based on the sequence of fibronectin in terms of their ability to inhibit the interactions of fibroblasts with fibronectin, spreading factor/vitronectin, laminin, and native collagen gels. BHK (baby hamster kidney) and chick embryo fibroblasts spreading on these adhesive molecules displayed distinctive patterns of sensitivity to inhibition by this panel of peptides, which depended on the adhesive molecule rather than the cell type. For fibronectin, Gly-Arg-Gly-Asp-Ser was considerably more active than Arg-Gly-Asp-Ser, whereas these two peptides displayed little difference in activity in inhibiting cell adhesion to spreading factor. For both proteins, the inverted peptide sequence Ser-Asp-Gly-Arg was also moderately active, whereas closely related peptides containing a transposition, a deletion, or a single, conserved amino acid substitution were much less active. For inhibiting interactions with laminin or native type I collagen gels, Gly-Arg-Gly-Asp-Ser was only weakly active, but the inverted peptide Ser-Asp-Gly-Arg unexpectedly continued to display inhibitory activity for both attachment proteins in both cell types. Our results indicate that different adhesive processes depend on distinct peptide recognition events by a cell. However, there may be a possible common denominator among attachment proteins in a moderate sensitivity to Ser-Asp-Gly-Arg. Our study also underscores the importance of examining a full set of peptide analogs when these novel inhibitors are used to characterize biological processes.  相似文献   

10.
应用牵张刺激培养细胞的模型,观察原原、纤维连接蛋白、层粘连素对牵张刺激心肌细胞肥大的影响,探讨细胞外间质-融洽纱受体在超负荷心肌肥大的跨膜信号传导机制中的作用。发现,胶原、纤维连接蛋白、层粘连素明显有助于培养心肌细胞的贴壁、伸展。牵张刺激后,胶原、纤维连接蛋白基质组心肌细胞的^3H-亮氨酸掺入率和心肌细胞表面积均显著大于对照组,而层粘连素组无显著变化;可溶性纤维连接蛋白、RGD肽均可显著抑制牵张刺  相似文献   

11.
应用牵张刺激培养细胞的模型 ,观察胶原、纤维连接蛋白、层粘连素对牵张刺激心肌细胞肥大的影响 ,探讨细胞外间质 -整合素受体在超负荷心肌肥大的跨膜信号传导机制中的作用。结果发现 ,胶原、纤维连接蛋白、层粘连素明显有助于培养心肌细胞的贴壁、伸展。牵张刺激后 ,胶原、纤维连接蛋白基质组心肌细胞的 3H -亮氨酸掺入率和心肌细胞表面积均显著大于对照组 ,而层粘连素组无显著变化 ;可溶性纤维连接蛋白、RGD肽均可显著抑制牵张刺激诱导的培养心肌细胞 (胶原为粘附基质 )的3H -亮氨酸掺入率升高和心肌细胞表面积增大 ,而层粘连素无明显作用。结果表明 ,特异的细胞外间质 -整合素在超负荷心肌肥大机制中发挥了跨膜信号传导作用。  相似文献   

12.
Treatment of chick myoblasts with the glucosidase inhibitors bromoconduritol (BCD) or N-methyl-1-deoxynojirimycin (MDJN), but not the mannosidase I inhibitor 1-deoxymannojirimycin (ManDJN), decreased their rate of adhesion to fibronectin and laminin and increased their rate of adhesion to collagen types I and IV. The adhesion of chick myoblasts to fibronectin, collagen type IV, and laminin was predominantly mediated by beta 1-type integrin(s) as judged by inhibition of adhesion with the beta 1-specific monoclonal antibody JG22. Collagen binding in inhibitor-treated cells remained JG22-sensitive suggesting the inhibitors promote increased activity of a beta 1-type collagen-selective integrin. The effects of BCD, MDJN, and ManDJN on myoblast beta 1-integrin detectable at the myoblast cell surface with JG22 antibody correlated well with their effects on adhesion to fibronectin and laminin, and paralleled the previously reported effects of these agents on myogenesis. Interaction of integrin with the extracellular matrix appears to be required for myoblast terminal differentiation. We found that Mn2+ ions increased the adhesion of myoblasts to extracellular matrix proteins and antagonized the effect of BCD and MDJN on myoblast differentiation, supporting a role for cell-matrix interactions in myogenesis. Inhibition of myogenesis by BCD or MDJN was not reversed by growth under low serum conditions, suggesting these agents do not act by maintaining myoblast in a proliferative state.  相似文献   

13.
The effects of cell differentiation on cell adhesion to laminin were studied using the human colon tumor cell line, HT29. HT29 cells were induced to differentiate either by glucose deprivation (HT29glc- vs HT29glc+) or by 2 mM butyrate (HT29glc-+B+). Adhesion was assayed after incubating cell suspensions in microtiter wells previously coated with laminin or other substrates. HT29glc+ cells adhered preferentially to laminin over BSA, fibronectin, and ovalbumin. The adhesion to laminin was greater than 50% of maximum within 15 min. HT29glc- cell adhesion to laminin was consistently lower than that for HT29glc+ or HT29glc+B+ cells. alpha-Lactalbumin (ALA), a modifier of galactosyltransferase (GT) substrate specificity, caused a significant reduction (greater than 50%) in HT29glc+ cell adhesion to laminin when ALA was added to the adhesion incubation mixture. Addition of glucose+ALA to the suspension restored adhesion to laminin. Ovalbumin, a GT substrate, increased adhesion of HT29glc+ and HT29glc- cells to laminin, but lactose, a GT product, did not. The data show that undifferentiated HT29 cells adhere preferentially to laminin over fibronectin and collagen IV and that differentiation of HT29 cells reduces adhesion to laminin. In addition, the data imply that cell adhesion to laminin may be mediated by factors that also modify galactosyltransferase activity.  相似文献   

14.
The effect of retinoic acid treatment on cell attachment to plastic substrates precoated with fibronectin, gelatin, laminin, and type IV collagen was investigated. Both retinoic acid-treated and control cells attached efficiently to fibronectin or gelatin substrates without any significant difference. In contrast, retinoic acid-treated cells attached to laminin or type IV collagen substrates, while control cells showed little or no attachment. The minimal effective concentration of retinoic acid for pretreatment to yield a significant increase in the attachment assay was higher than 10(-8) M. The attachment of retinoic acid-treated cells to laminin substrates reached a maximum at 60 min, while that to type IV collagen substrates had a time lag and did not reach a maximum by 60 min. The effect of retinoic acid treatment reached a maximum at 2 days and was partly reversible. These results suggest that retinoic acid may increase NIH/3T3 cell adhesion through an effect on laminin receptors. Other mouse fibroblast lines, 3T3-Swiss, 3T6-Swiss, Balb/3T3, and Balb/3T12-3 (spontaneously transformed Balb/3T3), responded to retinoic acid treatment in a manner similar to that of NIH/3T3 cells. However, the virus-transformed Balb/3T3 lines, SV-T2 and M-MSV, showed significant attachment to laminin substrates without retinoic acid treatment, and retinoic acid did not affect or slightly decreased the cell attachment to laminin substrates.  相似文献   

15.
Previous studies have established that in response to wounding, the expression of amyloid precursor-like protein 2 (APLP2) in the basal cells of migrating corneal epithelium is greatly up-regulated. To further our understanding of the functional significance of APLP2 in wound healing, we have measured the migratory response of transfected Chinese hamster ovary (CHO) cells expressing APLP2 isoforms to a variety of extracellular matrix components including laminin, collagen types I, IV, and VII, fibronectin, and heparan sulfate proteoglycans (HSPGs). CHO cells overexpressing either of two APLP2 variants, differing in chondroitin sulfate (CS) attachment, exhibit a marked increase in chemotaxis toward type IV collagen and fibronectin but not to laminin, collagen types I and VII, and HSPGs. Cells overexpressing APLP2-751 (CS-modified) exhibited a greater migratory response to fibronectin and type IV collagen than their non-CS-attached counterparts (APLP2-763), suggesting that CS modification enhanced APLP2 effects on cell migration. Moreover, in the presence of chondroitin sulfate, transfectants overexpressing APLP2-751 failed to exhibit this enhanced migration toward fibronectin. The APLP2-ECM interactions were also explored by solid phase adhesion assays. While overexpression of APLP2 isoforms moderately enhanced CHO adhesion to laminin, collagen types I and VII, and HSPGs lines, especially those overexpressing APLP2-751, exhibited greatly increased adhesion to type IV collagen and fibronectin. These observations suggest that APLP2 contributes to re-epithelialization during wound healing by supporting epithelial cell adhesion to fibronectin and collagen IV, thus influencing their capacity to migrate over the wound bed. Furthermore, APLP2 interactions with fibronectin and collagen IV appear to be potentiated by the addition of a CS chain to the core proteins.  相似文献   

16.
Integrin-initiated extracellular signal-regulated kinase (ERK) activation by matrix adhesion may require focal adhesion kinase (FAK) or be FAK-independent via caveolin and Shc. This remains controversial for fibroblast and endothelial cell adhesion to fibronectin and is less understood for other matrix proteins and cells. We investigated Caco-2 intestinal epithelial cell ERK activation by collagen I and IV, laminin, and fibronectin. Collagens or laminin, but not fibronectin, stimulated tyrosine phosphorylation of FAK, paxillin, and p130(cas) and activated ERK1/2. Shc, tyrosine-phosphorylated by matrix adhesion in many cells, was not phosphorylated in Caco-2 cells in response to any matrix. Caveolin expression did not affect Caco-2 Shc phosphorylation in response to fibronectin. FAK, ERK, and p130(cas) tyrosine phosphorylation were activated after 10-min adhesion to collagen IV. FAK activity increased for 45 min after collagen IV adhesion and persisted for 2 h, while p130(cas) phosphorylation increased only slightly after 10 min. ERK activity peaked at 10 min, declined after 30 min, and returned to base line after 1 h. Transfection with FAK-related nonkinase, but not substrate domain deleted p130(cas), strongly inhibited ERK2 activation in response to collagen IV, indicating Caco-2 ERK activation is at least partly regulated by FAK.  相似文献   

17.
Streptococcus pyogenes grown in the presence of subinhibitory concentrations of sodium fluoride had a diminished ability, compared to control cells, to adhere to buccal cells, collagen, fibronectin, and laminin. In addition, sodium fluoride was a competitive inhibitor of streptococcal adhesion to collagen and fibronectin, but not laminin. It is suggested that sodium fluoride may be useful in therapy or prophylaxis in infections involving group A streptococci.  相似文献   

18.
The interaction of cells with extracellular matrix components such as fibronectin, vitronectin, and type I collagen has been shown to be mediated through a family of cell-surface receptors that specifically recognize an arginine-glycine-aspartic acid (RGD) amino acid sequence within each protein. Synthetic peptides containing the RGD sequence can inhibit these receptor-ligand interactions. Here, we use novel RGD-containing synthetic peptides with different inhibition properties to investigate the role of the various RGD receptors in tumor cell invasion. The RGD-containing peptides used include peptides that inhibit the attachment of cells to fibronectin and vitronectin, a peptide that inhibits attachment to fibronectin but not to vitronectin, a cyclic peptide with the opposite specificity, and a peptide, GRGDTP, that inhibits attachment to type I collagen in addition to inhibiting attachment to fibronectin and vitronectin. The penetration of two human melanoma cell lines and a glioblastoma cell line through the human amniotic basement membrane and its underlying stroma was inhibited by all of the RGD-containing peptides except for the one that inhibits only the vitronectin attachment. Various control peptides lacking RGD showed essentially no inhibition. This inhibitory effect on cell invasion was dose-dependent and nontoxic. A hexapeptide, GRGDTP, that inhibits the attachment of cells to type I collagen in addition to inhibiting fibronectin- and vitronectin-mediated attachment was more inhibitory than those RGD peptides that inhibit only fibronectin and vitronectin attachment. Analysis of the location of these cells that were prevented from invading indicated that they attached to the amniotic basement membrane but did not proceed further into the tissue. These results suggest that interactions between RGD-containing extracellular matrix adhesion proteins and cells are necessary for cell invasion through tissues and that fibronectin and type I collagen are important for this process.  相似文献   

19.
Fåhraeus R  Lane DP 《The EMBO journal》1999,18(8):2106-2118
Expression of full-length p16(INK4a) blocks alphavbeta3 integrin-dependent cell spreading on vitronectin but not collagen IV. Similarly, G1-associated cell cycle kinases (CDK) inhibitory (CKI) synthetic peptides derived from p16(INK4a), p18(INK4c) and p21(Cip1/Waf1), which can be delivered directly into cells from the tissue culture medium, do not affect non-alphavbeta3-dependent spreading on collagen IV, laminin and fibronectin at concentrations that inhibit cell cycle progression in late G1. The alphavbeta3 heterodimer remains intact after CKI peptide treatment but is immediately dissociated from the focal adhesion contacts. Treatment with phorbol 12-myristate 13-acetate (PMA) allows alphavbeta3 to locate to the focal adhesion contacts and the cells to spread on vitronectin in the presence of CKI peptides. The cdk6 protein is found to suppress p16(INK4a)-mediated inhibition of spreading and is also shown to localize to the ruffling edge of spreading cells, indicating a function for cdk6 in controlling matrix-dependent cell spreading. These results demonstrate a novel G1 CDK-associated integrin regulatory pathway that acts upstream of alphavbeta3-dependent activation of PKC as well as a novel function for the p16(INK4a) tumour suppressor protein in regulating matrix-dependent cell migration.  相似文献   

20.
We studied expression of laminin, fibronectin, and Type IV collagen in the testis by means of immunofluorescence and immunoblot analysis and also examined gene expression of fibronectin using the ribonuclease protection assay. By immunofluorescence on sections from 20-day-old rats, laminin, fibronectin, and Type IV collagen were found in the basement membrane of the seminiferous tubules and in the interstitial regions of the testis. No localization of any extracellular matrix components was found inside the sectioned cells. However, when Sertoli cells were cultured on glass coverslips, laminin and Type IV collagen were both found inside the cells, suggesting new synthesis. In cultured peritubular cells, Type IV collagen, laminin, and fibronectin were found within the cells. When examined by immunoblot analysis, freshly isolated Sertoli and peritubular cells from 20-day-old rats did not demonstrate production of laminin or fibronectin. After 5 days in culture, peritubular cells produced both laminin and fibronectin, whereas cultured Sertoli cells produced only laminin. In contrast, freshly isolated and cultured Sertoli and peritubular cells all produced Type IV collagen. Moreover, the ribonuclease protection assay indicated that the bulk of fibronectin gene expression occurs within the first 10 days of postnatal development, with lower maintenance levels occurring thereafter. These results indicate that in the testis the highest levels of expression of laminin and fibronectin occur during development and in primary cell culture, whereas expression of Type IV collagen is higher at later stages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号