首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Acetylcholine receptor clusters are associated with nuclei in rat myotubes   总被引:4,自引:0,他引:4  
Clustered and diffuse acetylcholine receptors are present in cultured myotubes. These clustered AChRs represent regions of myotube membrane containing high receptor density. We have studied the distribution of the AChR clusters and nuclei to determine whether there is an association in the distribution of nuclei beneath AChR clusters. AChR clusters were visualized with alpha-bungarotoxin conjugated to tetramethylrhodamine (alpha BTX-TMR) and the nuclei were stained with bisbenzimide which binds specifically to DNA. This double label procedure, and the computerized analysis of the data allowed us to determine the distribution of nuclei and AChR clusters in the same myotube. During early stages of myotube development the nuclei formed aggregates which were comprised of 4 to 10 nuclei in close apposition to one another. This association of AChR clusters with nuclear aggregates was greatest at Day 4 after plating. As the number of nuclear aggregates associated with clusters decreased the number of nuclei in the aggregates also decreased and the AChR clusters decreased in size as well as number. At all time points examined, the concentration of myotube nuclei in the cells was 3 to 12 times higher beneath areas of AChR clusters than away from clusters. Our computerized analysis shows that there is an association of the AChR clusters with the nuclear region during myotube development.  相似文献   

2.
The clustering of nicotinic acetylcholine receptors (AChRs) is one of the first events observed during formation of the neuromuscular junction. To determine the mechanism involved in AChR clustering, we established a nonmuscle cell line (mouse fibroblast L cells) that stably expresses just one muscle-specific gene product, the AChR. We have shown that when Torpedo californica AChRs are expressed in fibroblasts, their immunological, biochemical, and electrophysiological properties all indicate that fully functional cell surface AChRs are produced. In the present study, the cell surface distribution and stability of Torpedo AChRs expressed in fibroblasts (AChR-fibroblasts) were analyzed and shown to be similar to nonclustered AChRs expressed in muscle cells. AChR-fibroblasts incubated with antibodies directed against the AChR induced the formation of small AChR microclusters (less than 0.5 micron 2) and caused an increase in the internalization rate and degradation of surface AChRs (antigenic modulation) in a manner similar to that observed in muscle cells. Two disparate sources of AChR clustering factors, extracellular matrix isolated from Torpedo electric organ and conditioned media from a rodent neuroblastoma-glioma hybrid cell line, each induced large (1-3 microns 2), stable AChR clusters with no change in the level of surface AChR expression. By exploiting the temperature-sensitive nature of Torpedo AChR assembly, we were able to demonstrate that factor-induced clusters were produced by mobilization of preexisting surface AChRs, not by directed insertion of newly synthesized AChRs. AChR clusters were never observed in the absence of extracellular synaptic factors. Our results suggest that these factors can interact directly with the AChR.  相似文献   

3.
Nicotinic acetylcholine receptors (AChRs) are localized at high concentrations in the postsynaptic membrane of the neuromuscular junction. A peripheral membrane protein of Mr 43,000 (43K protein) is closely associated with AChRs and has been proposed to anchor receptors at postsynaptic sites. We have used the Xenopus oocyte expression system to test the idea that the 43K protein clusters AChRs. Mouse muscle AChRs expressed in oocytes after injection of RNA encoding receptor subunits are uniformly distributed in the surface membrane. Coinjection of AChR RNA and RNA encoding the mouse muscle 43K protein causes AChRs to form clusters of 0.5-1.5 microns diameter. AChR clustering is not a consequence of increased receptor expression in the surface membrane or nonspecific clustering of all membrane proteins. The 43K protein is colocalized with AChRs in clusters when the two proteins are expressed together and forms clusters of similar size even in the absence of AChRs. These results provide direct evidence that the 43K protein causes clustering of AChRs and suggest that regulation of 43K protein clustering may be a key step in neuromuscular synaptogenesis.  相似文献   

4.
We have investigated the sequential changes of acetylcholine receptor (AChR) distribution on identified Xenopus laevis muscle cells in culture before and after innervation. AChRs on muscle cells were stained with tetramethylrhodamine-conjugated alpha-bungarotoxin and the distribution of AChR clusters was examined on a fluorescence microscope using an image intensifier. Large receptor clusters were identified on muscle cells and their fate was followed afterward. In muscle cells cultured without neural tube cells, about one-half of the identified AChR clusters survived for 2 days. In nerve-muscle cocultures, preexisting AChR clusters survived longer on non-nerve-contacted muscle cells than on muscle cells cultured without nerve. However, in nerve-contacted muscle cells the great majority of preexisting AChR clusters dispersed within 2 days. The dispersal of preexisting AChR clusters preceded receptor accumulation along the path of nerve contact by about 12-16 hr. Therefore, an accelerated dispersal of receptor clusters in innervated muscle cells is not a consequence of receptor accumulation along the nerve. The preexisting AChR clusters located near and far from the nerve contact sites dispersed along a similar time course. Protease inhibitors, trasylol and leupeptin, reduced the nerve-induced dispersal of the preexisting AChR clusters in the period before AChR accumulation at the nerve contact sites but did not do so during the period when AChRs began to accumulate at nerve-muscle contact. The significance of the dispersal of preexisting receptor clusters is discussed with regard to neuromuscular junction formation.  相似文献   

5.
The high local concentration of acetylcholine receptors (AChRs) at the vertebrate neuromuscular junction results from their aggregation by the agrin/MuSK signaling pathway and their synthetic up-regulation by the neuregulin/ErbB pathway. Here, we show a novel role for the neuregulin/ErbB pathway, the inhibition of AChR aggregation on the muscle surface. Treatment of C2C12 myotubes with the neuregulin epidermal growth factor domain decreased the number of both spontaneous and agrin-induced AChR clusters, in part by increasing the rate of cluster disassembly. Upon cluster disassembly, AChRs were internalized into caveolae (as identified by caveolin-3). Time-lapse microscopy revealed that individual AChR clusters fragmented into puncta, and application of neuregulin accelerated the rate at which AChR clusters decreased in area without affecting the density of AChRs remaining in individual clusters (as measured by the fluorescence intensity/unit area). We propose that this novel action of neuregulin regulates synaptic competition at the developing neuromuscular junction.  相似文献   

6.
In order to determine the roles of nerves in the formation of clusters of acetylcholine receptors (AChRs) during synaptogenesis, we examined the distribution of AChRs in denervated, nerve-transplanted (neurotized) muscles and in regenerated skeletal muscles of adult chickens by fluorescence microscopy using curaremimetic toxins. In the denervated muscles, many extrajunctional clusters developed at the periphery of some of the muscle nuclei of a single muscle fiber and continued to be present for up to 3 months. The AChR accumulations originally present at the neuromuscular junctions disappeared within 3 weeks. In the neurotized muscles, line-shaped AChR clusters developed at 4 days after transection of the original nerve, but no change in the distribution of AChRs had occurred even at 2 months after implantation of the foreign nerve. The line-shaped AChR clusters were found to be newly formed junctional clusters as they were associated with nerve terminals of similar shape and size. Some of both the line-shaped and extrajunctional clusters were formed at least partly by the redistribution of preexisting AChRs. Finally, based on the above observations, the regenerating muscle fibers in normal muscles and in denervated muscles were examined: The extrajunctional clusters appeared in both kinds of muscles at 2 weeks after injury. Afterward, during the innervation process, the line-shaped AChR clusters developed while the extrajunctional clusters disappeared in the innervated muscles. In contrast with this, in the absence of innervation, only the extrajunctional clusters continued to be present for up to 3 months. These results demonstrate clearly that the nerve not only induces the formation of junctional clusters at the contact site, but also prevents the formation of clusters at the extrajunctional region during synaptogenesis.  相似文献   

7.
During the formation of the neuromuscular junction, the nerve induces the clustering of acetylcholine receptors (AChR) in the postsynaptic membrane. This process can be mimicked by treating cultured Xenopus myotomal muscle cells with basic polypeptide-coated latex beads. Using this bead-muscle coculture system, we examined the role of lateral migration of AChRs in the formation of the clusters. First, we studied the contributions of the preexisting and newly inserted AChRs. After the cluster formation was triggered by the addition of the beads, preexisting receptors were immediately recruited to the bead-muscle contacts and they remained to be the dominant contributor during the first 24 hr. New AChRs, which were inserted after the addition of the beads, appeared at the clusters after a 4-hr delay and, thereafter, there was a steady increase in their contribution. After 24-48 hr, newly inserted AChRs could be detected at the bead-induced clusters to the same extent as the preexisting AChRs. During this period, new receptors were continuously inserted into the plasma membrane, but there was no evidence of a local insertion at sites of new cluster formation. Concanavalin A (Con A) at a concentration of 100 micrograms/ml caused a fivefold decrease in the fraction of mobile AChRs and a large decrease in their diffusion coefficient. Pretreatment of cells with Con A suppressed clustering of preexisting AChRs, but left intact the contribution of the mobile newly inserted AChRs. Succinyl Con A, the divalent derivative of Con A which affected the mobility to a much less extent than Con A, had little effect on the clustering process. These results show that the formation of AChR clusters in Xenopus is mediated by lateral migration of AChRs within the plasma membrane and are consistent with the diffusion-trap hypothesis, which depicts freely diffusing AChR aggregating at the bead-muscle contacts where they bind to other localized molecular specializations induced by the beads.  相似文献   

8.
During the development of the neuromuscular junction, motor axons induce the clustering of acetylcholine receptors (AChRs) and increase their metabolic stability in the muscle membrane. Here, we asked whether the synaptic organizer agrin might regulate the metabolic stability and density of AChRs by promoting the recycling of internalized AChRs, which would otherwise be destined for degradation, into synaptic sites. We show that at nerve-free AChR clusters induced by agrin in extrasynaptic membrane, internalized AChRs are driven back into the ectopic synaptic clusters where they intermingle with pre-existing and new receptors. The extent of AChR recycling depended on the strength of the agrin stimulus, but not on the development of junctional folds, another hallmark of mature postsynaptic membranes. In chronically denervated muscles, in which both AChR stability and recycling are significantly decreased by muscle inactivity, agrin maintained the amount of recycled AChRs at agrin-induced clusters at a level similar to that at denervated original endplates. In contrast, AChRs did not recycle at agrin-induced clusters in C2C12 or primary myotubes. Thus, in muscles in vivo, but not in cultured myotubes, neural agrin promotes the recycling of AChRs and thereby increases their metabolic stability.  相似文献   

9.
We used the loose patch voltage clamp technique and rhodamine-conjugated alpha-bungarotoxin to study the regulation of Na channel (NaCh) and acetylcholine receptor (AChR) distribution on dissociated adult skeletal muscle fibers in culture. The aggregate of AChRs and NaChs normally found in the postsynaptic membrane of these cells gradually fragmented and dispersed from the synaptic region after several days in culture. This dispersal was the result of the collagenase treatment used to dissociate the cells, suggesting that a factor associated with the extracellular matrix was responsible for maintaining the high concentration of AchRs and NaChs at the neuromuscular junction. We tested whether the basal lamina protein agrin, which has been shown to induce the aggregation of AChRs on embryonic myotubes, could similarly influence the distribution of NaChs. By following identified fibers, we found that agrin accelerated both the fragmentation of the endplate AChR cluster into smaller patches as well as the appearance of new AChR clusters away from the endplate. AChR patches which were fragments of the original endplate retained a high density of NaChs, but no new NaCh hotspots were found elsewhere on the fiber, including sites of newly formed AChR clusters. The results are consistent with the hypothesis that extracellular signals regulate the distribution of AChRs and NaChs on skeletal muscle fibers. While agrin probably serves this function for the AChR, it does not appear to play a role in the regulation of the NaCh distribution.  相似文献   

10.
Proteoglycans have been implicated in the clustering of acetylcholine receptors (AChRs) on cultured myotubes and at the neuromuscular junction. We report that the presence of chondroitin sulfate is associated with the ability of cultured myotubes to form spontaneous clusters of AChRs. Three experimental manipulations of wild type C2 cells in culture were found to affect both glycosaminoglycans (GAGs) and AChR clustering in concert. Chlorate was found to have dose-dependent negative effects both on GAG sulfation and on the frequency of AChR clusters. When extracellular calcium was raised from 1.8 to 6.8 mM in cultures of wild-type C2 myotubes, increases were observed both in the level of cell layer-associated chondroitin sulfate and in the frequency of AChR clusters. Culture of wild-type C2 myotubes in the presence of chondroitinase ABC eliminated cell layer-associated chondroitin sulfate while leaving heparan sulfate intact and simultaneously prevented the formation of AChR clusters. Treatment with either chlorate or chondroitinase inhibited AChR clustering only if begun prior to the spontaneous formation of clusters. We propose that chondroitin sulfate plays an essential role in the initiation of AChR clustering and in the early events of synapse formation on muscle. © 1995 John Wiley & Sons, Inc.  相似文献   

11.
During the development of the neuromuscular junction, acetylcholine receptors (AChRs) become clustered in the postsynaptic membrane in response to innervation. In vitro, several non-neuronal stimuli can also induce the formation of AChR clusters. DC electric field (E field) is one of them. When cultured Xenopus muscle cells are exposed to an E field of 5-10 V/cm, AChRs become clustered along the cathode-facing edge of the cells within 2 h. Recent studies have suggested the involvement of tyrosine kinase activation in the action of several AChR clustering stimuli, including nerve, polymer beads, and agrin. We thus examined the role of tyrosine phosphorylation in E field-induced AChR clustering. An antibody against phosphotyrosine (PY) was used to examine the localization of PY-containing proteins in E field-treated muscle cells. We found that anti-PY staining was colocalized with AChR clusters along the cathodal edge of the cells. In fact, cathodal PY staining could be detected before the first appearance of AChR clusters. When cultures were subjected to E fields in the presence of a tyrosine kinase inhibitor, tyrphostin RG-50864, cathodal AChR clustering was abolished with a half maximal inhibitory dosage of 50 microM. An inactive form of tyrphostin (RG-50862) had no effect on the field-induced clustering. These data suggest that the activation of tyrosine kinases is an essential step in E field-induced AChR clustering. Thus, the actions of several disparate stimuli for AChR clustering seem to converge to a common signal transduction mechanism based on tyrosine phosphorylation at the molecular level.  相似文献   

12.
Agrin is a proteoglycan secreted by the motor neuron's growing axon terminal upon contact with the muscle during embryonic development. It was long thought that agrin's role was to trigger the clustering of acetylcholine receptors (AChRs) to nascent synapse sites. However, agrin-predating, protosynaptic AChR clusters are present well before innervation in the embryo and in myotube cultures, yet no role has been conclusively ascribed to agrin. We used a microfluidic device to focally deliver agrin to protosynaptic AChR clusters in micropatterned myotube cultures. The distribution of AChRs labeled with fluorescent bungarotoxin was imaged at various time points over >24 h. We find that a 4-h focal application of agrin (100 nM) preferentially reduces AChR loss at agrin-exposed clusters by 17% relative to the agrin-deprived clusters on the same myotube. In addition, the focal application increases the addition of AChRs preferentially at the clusters by 10% relative to the agrin-exposed, noncluster areas. Taken together, these findings suggest that a focal agrin stimulus can play a key stabilizing role in the aggregation of AChRs at the early stages of synapse formation. This methodology is generally applicable to various developmental processes and cell types, including neurons and stem cells.  相似文献   

13.
We have investigated the role of acetylcholine receptors (AChRs) in an early step of postsynaptic assembly at the neuromuscular synapse, the clustering of postsynaptic proteins induced by nerve-released agrin. To achieve this, we used two variants of C2 myotubes virtually lacking AChRs and C2 cells in which surface AChRs were down-regulated by AChR antibodies. In all cases, agrin caused normal clustering of the agrin receptor component MuSK, alpha-dystrobrevin and utrophin, but failed to aggregate AChRs, alpha- and beta-dystroglycan, syntrophin isoforms and rapsyn, an AChR-anchoring protein necessary for postsynaptic assembly and AChR clustering. In C2 variants, the stability of rapsyn was decreased, whereas in antibody-treated cells, rapsyn efficiently co-localized with remaining AChRs in microaggregates. Upon ectopic injection into myofibers in vivo, rapsyn did not form clusters in the absence of AChRs. These results show that AChRs and rapsyn are interdependent components of a pre-assembled protein complex that is required for agrin-induced clustering of a full set of postsynaptic proteins, thus providing evidence for an active role of AChRs in postsynaptic assembly.  相似文献   

14.
Madhavan R  Peng HB 《IUBMB life》2005,57(11):719-730
The neuromuscular junction (NMJ) is a synapse that develops between a motor neuron and a muscle fiber. A defining feature of NMJ development in vertebrates is the re-distribution of muscle acetylcholine (ACh) receptors (AChRs) following innervation, which generates high-density AChR clusters at the postsynaptic membrane and disperses aneural AChR clusters formed in muscle before innervation. This process in vivo requires MuSK, a muscle-specific receptor tyrosine kinase that triggers AChR re-distribution when activated; rapsyn, a muscle protein that binds and clusters AChRs; agrin, a nerve-secreted heparan-sulfate proteoglycan that activates MuSK; and ACh, a neurotransmitter that stimulates muscle and also disperses aneural AChR clusters. Moreover, in cultured muscle cells, several additional muscle- and nerve-derived molecules induce, mediate or participate in AChR clustering and dispersal. In this review we discuss how regulation of AChR re-distribution by multiple factors ensures aggregation of AChRs exclusively at NMJs.  相似文献   

15.
The formation of acetylcholine receptor (AChR) clusters at the neuromuscular junction was investigated by observing the sequential changes in AChR cluster distribution on cultured Xenopus muscle cells. AChRs were labeled with tetramethylrhodamine-conjugated alpha-bungarotoxin (TMR-alpha BT). Before innervation AChRs were distributed over the entire surface of muscle cells with occasional spots of high density (hot spots). When the nerve contacted the muscle cell, the large existing hot spots disappeared and small AChR clusters (less than 1 micron in diameter) initially emerged from the background along the area of nerve contact. They grew in size, increased in number, and fused to form larger clusters over a period of 1 or 2 days. Receptor clusters did not migrate as a whole as observed during "cap" formation in B lymphocytes. The rate of recruitment of AChRs at the nerve-muscle junction varied from less than 50 binding sites to 1000 sites/hr for alpha BT. In this study the diffusion-trap mechanism was tested for the nerve-induced receptor accumulation. The diffusion coefficient of diffusely distributed AChRs was measured using the fluorescence photobleaching recovery method and found to be 2.45 X 10(-10) cm2/sec at 22 degrees C. There was no significant difference in these values among the muscle cells cultured without nerve, the non-nerve-contacted muscle cells in nerve-muscle cultures, and the nerve-contacted muscle cells. It was found that the diffusion of receptors in the membrane is not rate-limiting for AChR accumulation.  相似文献   

16.
The acetylcholine receptor (AChR) synthesis, insertion and degradation rates are regulated by numerous intracellular and extracellular agents. Recent studies have shown that Ca2+ and Ca2+ ionophores have a profound regulatory effect on the appearance of AChR clusters and AChR synthesis. These regulatory effects may be mediated through the activation of calcium and phospholipid-dependent protein kinases by agents such as phorbol esters. In this study, we have utilized 4-beta-phorbol-12-myristate-13-acetate (PMA) in order to determine whether the activation of protein kinase C exerts a regulatory effect on the expression of AChRs in cultured chick myotubes. Our results show that 4-beta-phorbol-12-myristate-13-acetate decreased intracellular AChRs and suppressed AChR synthesis without affecting the turnover rate. Control and PMA treated cells labeled with [35S] methionine and immunoprecipitated with a monoclonal antibody to the alpha subunit of AChRs (mAb35) revealed a significant decrease in radioactivity precipitated after exposure to PMA. Polyacrylamide gel electrophoresis revealed no major changes in protein patterns, or in newly synthesized proteins as determined by [35S] methionine incorporation and autoradiography. Other enzymes important in muscle metabolism were not affected by PMA treatment. Our results indicate that activation of protein kinase C results in the suppression of AChRs synthesis and dispersal of AChR clusters.  相似文献   

17.
We have used interference reflection and fluorescence microscopy to investigate the relationship between cell-substrate contact and the location of clusters of acetylcholine receptors (AChRs) in cultures of rat myotubes. We have found that AChR clusters on the ventral myotube surfaces are always located within broad regions of close cell-substrate contact. Detailed analysis of the fine structure of the AChR cluster and its associated contact region showed that AChRs within a cluster are concentrated between the points of closest cell-substrate apposition. Vinculin, a recently discovered intracellular smooth muscle protein, is also concentrated in broad regions of close contact, interdigitating with AChRs within the clusters.  相似文献   

18.
The effects of energy metabolism inhibitors on the distribution of acetylcholine receptors (AChRs) in the surface membranes of non-innervated, cultured rat myotubes were studied by visualizing the AChRs with monotetramethylrhodamine-alpha-bungarotoxin. Incubation of myotubes with inhibitors of energy metabolism causes a large decrease in the fraction of myotubes displaying clusters of AChR. This decrease is reversible, and is dependent on temperature, the concentration of inhibitor, and the duration of treatment. Cluster dispersal is probably not the result of secondary effects on Ca++ or cyclic nucleotide metabolism, membrane potential, cytoskeletal elements, or protein synthesis. Sequential observations of identified cells treated with sodium azide showed that clusters appear to disperse by movements of receptors within the sarcolemma without accompanying changes in cell shape. AChR clusters dispersed by pretreating cells with sodium azide rapidly reform upon removal of the inhibitor. Reclustering involves the formation of small aggregates of AChR, which act as foci for further aggregation and which appear to be precursors of large AChR clusters. Small AChR aggregates also appear to be precursors of clusters which form on myotubes never exposed to azide. Reclustering after azide treatment does not necessarily occur at the same sites occupied by clusters before dispersal, nor does it employ only receptors which had previously been in clusters. Cluster reformation can be blocked by cycloheximide, colchicine, and drugs which alter the intracellular cation composition.  相似文献   

19.
Development of rat soleus endplate membrane following denervation at birth   总被引:1,自引:0,他引:1  
Rat soleus endplates develop some of their characteristic features before birth and others after birth. Specializations appearing before birth include a localized cluster of acetylcholine receptors (AChRs), an accumulation of acetylcholinesterase (AChE) in the synaptic basal lamina, and a cluster of nuclei near the endplate membrane. In contrast, postsynaptic membrane folds are elaborated during the first three weeks after birth. We denervated soleus muscles on postnatal day 1, before folds had appeared, and followed the subsequent development of endplate regions with light and electron microscopy. We found that the denervated endplates initiated fold formation on schedule and maintained their accumulations of AChRs, AChE, and endplate nuclei. However, the endplates stopped fold formation prematurely and eventually lost their rudimentary folds. At about the same time, the junctional AChR clusters were joined by ectopic patches of AChRs. The former endplate regions also became unusually elongated, possibly as a consequence of the lack of membrane folds. Apparently, endplate membranes have only a limited capacity for further development in the absence of both the nerve and muscle activity.  相似文献   

20.
The maintenance of a high density of postsynaptic receptors is essential for proper synaptic function. At the neuromuscular junction, acetylcholine receptor (AChR) aggregation is induced by nerve-clustering factors and mediated by scaffolding proteins. Although the mechanisms underlying AChR clustering have been extensively studied, the role that the receptors themselves play in the clustering process and how they are organized with scaffolding proteins is not well understood. Here, we report that the exposure of AChRs labeled with Alexa 594 conjugates to relatively low-powered laser light caused an effect similar to chromaphore-assisted light inactivation (CALI) , which resulted in the unexpected dissipation of the illuminated AChRs from clusters on cultured myotubes. This technique enabled us to demonstrate that AChR removal from illuminated regions induced the removal of scaffolding proteins and prevented the accumulation of new AChRs and associated scaffolding proteins. Further, the dissipation of clustered AChRs and scaffold was spatially restricted to the illuminated region and had no effect on neighboring nonilluminated AChRs. These results provide direct evidence that AChRs are essential for the local maintenance and accumulation of intracellular scaffolding proteins and suggest that the scaffold is organized into distinct modular units at AChR clusters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号