首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The purpose of the present study was to compare the physiological responses of oxygen uptake (VO(2)) and energy expenditure (EE) in two different aquatic resistance training protocols performed with three sets of 20 seconds (3 × 20) and six sets of 10 seconds (6 × 10) and with and without Speedo Resistance Equipment. Ten young healthy women volunteers, familiar with exercises in an aquatic environment, participated in this study. The four separate protocols were randomly selected and performed at a 48-hour interval by the same instructor. The total time of the 3 × 20 protocol was 34 minutes and that of the 6 × 10 protocol was 43 minutes, and all exercises were performed at maximal speed and amplitude. Although the protocols had different total times, they included one minute of stimulus per muscle group and the same time intervals. EE(gross) and EE(net) values were higher in the 6 × 10 protocol than in the 3 × 20 one. The variables VO(2) and EE(min) did not present significant difference between the protocols. VO(2), EE(gross), EE(net) and EE(min) values were higher when the equipment was used (W situation) than when it was not (WO situation). In the postexercise analysis, the W situation also showed higher VO(2) and EE(gross) values than the WO situation. Therefore, this study suggests the use of Speedo Resistance Equipment to increase VO(2) and EE, and it also suggests lengthier aquatic resistance training to obtain greater EE values per session.  相似文献   

2.
The objective of this study was to estimate the oxygen uptake (&OV0312;O2) in elite youth soccer players using measures of heart rate (HR) and ratings of perceived exertion (RPEs). Forty-six regional-level male youth soccer players (~13 years) participated in 2 VO(2)max tests. Data for HR, RPE, and VO(2) were simultaneously recorded during the VO(2)max tests with incremental running speed. Regression equations were derived from the first VO(2)max test. Two weeks later, all players performed the same VO(2)max test to validate the developed regression equations. There were no significant differences between the estimated values in the first test and actual values in the second test. During the continuous endurance exercise, the combination of percentage of maximal HR (%HRmax) and RPE measures gave similar estimation of %VO(2)max (R = 83%) in comparison to %HRmax alone (R = 81%). However, the estimation of VO(2) using combined %HRmax and RPE was not satisfactory (R = 45-46%). Therefore, the use of %HRmax (without RPE) to estimate %VO(2)max could be a useful tool in young soccer players during field-based continuous endurance testing and training. Specifically, coaches can use the %HRmax to quantify internal loads (%VO(2)max) and subsequently implement continuous endurance training at appropriate intensities. Furthermore, it seems that RPE is more useful as a measure of internal load during noncontinuous (e.g., intermittent and sprint) exercises but not to estimate %VO(2)max during continuous aerobic exercise (R = 59%).  相似文献   

3.
ABSTRACT: K?klü, Y, Ers?z, G, Alemdaro?lu, U, A???, A, and ?zkan, A. Physiological responses and time-motion characteristics of 4-A-side small-sided game in young soccer players: The influence of different team formation methods. J Strength Cond Res 26(11): 3118-3123, 2012-The purpose of this study was to examine the influence of different team formation methods on the physiological responses to and time-motion characteristics of 4-a-side small-sided games (SSG4) in young soccer players. Thirty-two young soccer players (age 16.2 ± 0.7 years; height 172.9 ± 6.1 cm; body mass 64.1 ± 7.7 kg) voluntarily participated in this study. Anthropometric measurements, technical tests, and maximum oxygen uptake (V[Combining Dot Above]O2max) tests were carried out on the players. The SSG4 teams were then created using 4 different methods: according to the coaches' subjective evaluation (CE), technical scores (TS), V[Combining Dot Above]O2max (AP), and V[Combining Dot Above]O2max multiplied by TSs (CG). The teams thus created played 4 bouts of SSG4 at 2-day intervals. During the SSG4, heart rate (HR) responses, distance covered, and time spent in HRmax zones were recorded. In addition, rating of perceived exertion (RPE) and blood lactate level (La) were determined at the end of the last bout of each SSG4. Percent of HRmax (%HRmax), La, and RPE responses during SSG4 were significantly higher for teams chosen according to AP and CG compared with that according to CE and TS (p < 0.05). In addition, teams chosen by AP and CG spent significantly more time in zone 4 (>90% HRmax ) and covered a greater distance in the high-intensity running zone (>18 km·h) than did teams formed according to TS. Moreover, AP teams covered significantly greater total distance than TS teams did (p < 0.05). In conclusion, to spend more time in both the high-intensity HR zone and the high-intensity running zone, the teams in SSG4 should be formed according to the players' V[Combining Dot Above]O2max values or the values calculated using both the V[Combining Dot Above]O2max and technique scores.  相似文献   

4.
The purpose of this study was to compare the blood lactate (La-), heart rate (HR) and percentage of maximum HR (%HRmax) responses among the small-sided games (SSGs) in elite young soccer players. Sixteen players (average age 15.7 6 0.4 years; height 176.8 6 4.6 cm; body mass 65.5 6 5.6 kg; VO2max 53.1 6 5.9 ml · kg(-1) · min(-1); HRmax 195.9 6 7.4 b · min(-1)) volunteered to perform the YoYo intermittent recovery test and 6 bouts of soccer drills including 1-a-side, 2-a-side, 3-a-side, and 4-a-side games without a goalkeeper in random order at 2-day intervals. The differences in La-, HR and%HRmax either among the SSGs or among the bouts were identified using 4 x 6 (games x exercise bouts) 2-way analysis of variance with repeated measures. Significant differences were found on La-, HR, and %HRmax among the bouts (p ≤ 0.05). The 3-a-side and 4-a-side games were significantly higher than 1-a-side and 2-a-side games on HR and %HRmax (p ≤ 0.05), whereas the 1-a-side game significantly resulted in higher La- responses compared to other SSGs. This study demonstrated that physiological responses during the 1-a-side and 2-a-side games were different compared to 3-a-side and 4-a-side games. Therefore, it can be concluded that a decreased number of players results in increased intensity during SSGs including 6 bouts. These results suggest that coaches should pay attention on choosing the SSG type and the number of bouts to improve desired physical conditioning of elite young soccer players in soccer training.  相似文献   

5.
Recent evidence supports the use of certain soccer drills for combined technical and physical training. Therefore, it is important to be able to accurately monitor training intensity during soccer drills intended for physical development to allow the optimization of training parameters. Twenty-eight professional soccer players were assessed for heart rate (HR) and rating of perceived exertion (RPE) responses to 5 commonly used soccer training drills (2v2 to 8v8 drills). The responses of both HR and RPE differed significantly (p < 0.05) between the drills, generally showing an elevated response to drills involving lower player numbers. However, the 2v2 drill showed a significantly (p < 0.05) lower HR response (mean +/- SD: 88.7 +/- 1.2% HRmax) than 3v3 (91.2 +/- 1.3% HRmax) and 4v4 drills (90.2 +/- 1.6% HRmax). There was no significant correlation between the HR and RPE responses to the various drills (r = 0.60, p = 0.200). This poor relationship is probably because during the 2v2 drill, RPE was higher than during any of the other 6 drills, whereas HR was only fourth highest of the 6 drills. This demonstrates that HR and RPE are only poorly related during the intense drills used in this study, and that HR underestimates the intensity of the 2v2 drill. Heart rate demonstrated lower intersubject variability (1.3-2.2%) than RPE (5.1-9.9%). However, unlike HR, Borg 15-point RPE appears to be a valid marker of exercise intensity over a wide range of soccer training drills by maintaining validity in all drills and demonstrating acceptable intersubject variability. A combination of both HR- and RPE-based training load calculations appears optimal for use in soccer training.  相似文献   

6.
Firefighters are required to perform a variety of strenuous occupational tasks that require high levels of both aerobic and anaerobic fitness. Thus, it is critical that firefighters train at an appropriate intensity to develop adequate levels of aerobic and anaerobic fitness. Circuit training is a unique training method that stresses both energy systems and therefore may be a viable training method to enhance firefighter preparedness. Thus, the purpose of this study was to compare the aerobic and anaerobic intensities of a circuit-based workout to physiological data previously reported on firefighters performing fire suppression and rescue tasks. Twenty career firefighters performed a workout that included 2 rotations of 12 exercises that stressed all major muscle groups. Heart rate was recorded at the completion of each exercise. Blood lactate was measured before and approximately 5 minutes after the workout. The workout heart rate and post-workout blood lactate responses were statistically compared to data reported on firefighters performing fire suppression and rescue tasks. The mean circuit-training heart rate was similar to previously reported heart rate responses from firefighters performing simulated smoke-diving tasks (79 ± 5 vs. 79 ± 6% maximum heart rate [HRmax], p = 0.741), but lower than previously reported heart rate responses from firefighters performing fire suppression tasks (79 ± 5 vs. 88 ± 6% HRmax, p < 0.001). The workout produced a similar peak blood lactate compared to that when performing firefighting tasks (12 ± 3 vs. 13 ± 3 mmol·L(-1), p = 0.084). In general, the circuit-based workout produced a lower cardiovascular stress but a similar anaerobic stress as compared to performing firefighting tasks. Therefore, firefighters should supplement low-intensity circuit-training programs with high-intensity cardiovascular and resistance training (e.g., ≥85% 1-repetition maximum) exercises to adequately prepare for the variable physical demands of firefighting.  相似文献   

7.
8.
The thermic effect of food (TEF) is an important physiological determinant of total daily energy expenditure (EE) and energy balance. TEF is believed to be mediated in part by sympathetic nervous system activation and consequent beta-adrenergic receptor (beta-AR) stimulation of metabolism. TEF is greater in habitually exercising than in sedentary adults, despite similar postprandial sympathetic nervous system activation. We determined whether augmented TEF in habitually exercising adults is associated with enhanced peripheral thermogenic responsiveness to beta-AR stimulation. In separate experiments in 22 sedentary and 29 habitually exercising adults, we measured the increase in EE (indirect calorimetry, ventilated hood) during beta-AR stimulation (intravenous isoproterenol: 6, 12, and 24 ng x kg fat-free mass(-1) x min(-1)) and EE before and after a liquid meal (40% of resting EE; 53% carbohydrate, 32% fat, 15% protein). The increase in EE during incremental isoproterenol administration was greater (P = 0.01) in habitual exercisers (0.34 +/- 0.03, 0.54 +/- 0.04, 0.81 +/- 0.05 kJ/min; means +/- SE) than in sedentary adults (0.26 +/- 0.03, 0.40 +/- 0.03, 0.64 +/- 0.04 kJ/min). The area under the TEF response curve was also greater (P = 0.04) in habitual exercisers (160 +/- 9 kJ) than in sedentary adults (130 +/- 11 kJ) and was positively related to beta-AR thermogenic responsiveness (r = 0.32, P = 0.02). We conclude that TEF is related to beta-AR thermogenic responsiveness and that the greater TEF in habitual exercisers is attributable in part to their augmented beta-AR thermogenic responsiveness. Our results also suggest that peripheral thermogenic responsiveness to beta-AR stimulation is a physiological determinant of TEF and hence energy balance in healthy adult humans.  相似文献   

9.
The aim of the present study was to examine whether the workload, expressed in oxygen uptake and heart rate, during dance class and rehearsal prepared the dancer for performance. Previous research on the demands of class and performance has been affected by equipment limitations and could only provide limited insight into the physiological demands placed on the dancer. The present study noted that dance performance had significantly greater mean oxygen uptake and heart rate than noted in both class and rehearsal (p < 0.05). Further analysis noted that, during class and rehearsal, heart rates were rarely within the aerobic training zone (60-90%HRmax, where HRmax is the maximum heart rate). Dance performance placed a greater demand on the aerobic and anaerobic glycolytic energy systems than seen during class and rehearsal, which placed a greater emphasis on the adenosine triphosphate-creatine phosphate system. Practical implications suggest the need to supplement training within dance companies to overcome this deficit in training demand.  相似文献   

10.
The purpose of this study was to examine the physiological effects of different sprint repetition protocols on professional footballers. Of particular interest were the abilities of repeated sprint protocols to induce fatigue to an extent observed during competitive soccer. Six professional soccer players were assessed for fatigue rate and physiological responses of heart rate (HR), blood lactate (BLa), and rating of perceived exertion (RPE) during the performance of 4 repeated sprint drills, each totaling a sprint distance of 600 m. The 4 drills used 15- or 40-m sprints with 1:4 or 1:6 exercise: rest ratios. The 15-m sprint drill with 1:4 exercise:rest ratio induced the greatest fatigue (final sprint time 15% greater than initial sprint time) and greatest physiological responses. The 40-m sprint drill using a 1:4 exercise:rest ratio produced similar BLa and HR responses to the 15-m drill (13-14 mmol.L(-1) and 89% HRmax, respectively) but significantly lower RPE (mean +/- SD: 17.1 +/- 0.4 vs. 18.8 +/- 0.4, p < 0.05) and fatigue rates (11.1 vs. 15.0%, p < 0.01). Both sprint distance and exercise:rest ratio independently influenced fatigue rate, with the 15-m sprint distance and the 1:4 exercise:rest ratio inducing significantly (p < 0.01) greater fatigue than the 40-m sprint distance and the 1:6 exercise:rest ratio. The magnitude of fatigue during the 40- x 15-m sprint drill using a 1:6 exercise:rest ratio was 7.5%, which is close to the fatigue rate previously reported during actual soccer play. The present study is the first to examine both variations in sprint distances and rest ratios simultaneously, and the findings may aid the design of repeated sprint training for soccer.  相似文献   

11.
The purpose of this study was to examine whether and how cycle time duration affects energy expenditure and substrate utilization during whole-body vibration (WBV). Nine men performed 3 squatting exercises in execution frequency cycles of 6, 4, and 2 seconds to 90 degrees knee flexion with vibration (Vb+) (frequency was set at 30 Hz and the amplitude of vibration was 4 mm) and without vibration (Vb-) during 3 minutes, each with an additional load of 30% of the subject's body weight. A 2-way analysis of variance for VO2 revealed a significant vibration condition main effect (p < 0.001) and a cycle time duration effect (p < 0.001). When differences were analyzed by Fisher's LSD test, cycle time duration of 2 seconds was significantly different from 4 and 6 seconds, both in Vb+ and Vb-. Total energy expenditure (EE(tot)), carbohydrate oxidation rate (EE(cho)), and fat oxidation rate (EE(fat)) demonstrated a significant vibration condition main effect (EE(tot): p < 0.01; EE(cho): p < 0.001; EE(fat): p < 0.001) and cycle time duration main effect (EE(tot) and EE(cho): p < 0.001; EE(fat): p < 0.01). EE(tot), EE(cho), and EE(fat) post hoc comparisons indicated that values for the 2-second test significantly differed from 4 and 6 seconds when compared in the same vibration condition. VO2 and EE values were greater in Vb+ than in Vb- conditions with the same cycle time duration. Our study confirms that squatting at a greater frequency helps to maximize energy expenditure during exercise with or without vibration. Therefore, cycle time duration must be controlled when vibration exercise is prescribed.  相似文献   

12.
13.
The purpose of this study was to identify the variation of heart rate (HR), rating of perceived exertion (RPE), and technical actions between 2 soccer small-sided games (SSGs; 3 × 3 and 4 × 4) in 3 game type constraints (when playing only offense [OFF], playing only defense [DEF], and both situations [GAME]). Sixteen high-level young male players were analyzed (age 15.75 ± 0.45 years; height 172.4 ± 4.83 cm; body mass 64.5 ± 6.44 kg; HRmax199.1 ± 9.08 b·min(-1); and 8.06 ± 1.98 years of soccer practice). All tasks were performed in 4 periods of 4 minutes interspersed with 2 minutes of active recovery. The HR was measured continuously and then analyzed by the time spent into 4 training zones according to individual %HRmax (zone 1 <75%; zone 2 75-84.9%; zone 3 85-89.9%; and zone 4 ≥90%). Results identified that players were most frequently in zones 2 and 3. The 3 × 3 SSGs elicited higher HR and RPE and the most intense situation was GAME. Despite the known higher frequencies from technical actions in SSGs with fewer players, player effectiveness in 3 × 3 and 4 × 4 was identical. The use of GAME, OFF, and DEF game type constraints should be carefully planned. Using the 3 × 3 format seems more adequate when aiming for aerobic performance optimal effects; however, DEF situations should only be used to promote aerobic recovery effects. The inclusion of an additional player in SSGs had different interactions in game type constraints, and only GAME presented adequate intensity.  相似文献   

14.
Eccentric and concentric force and median frequency of the EMG power spectrum were measured during and immediately after maximal eccentric (EE) and concentric (CE) exercise and during the recovery period of 1 week. Eight male subjects performed EE and CE consisting of 100 maximal eccentric and concentric actions with elbow flexors during two separate exercise sessions. When comparing maximal eccentric and concentric actions before the exercises, the average force was higher (P<0.001) in eccentric than in concentric but the average rectified EMG (aEMG) values were the same with the two types of action. The average eccentric force decreased 53.3% after EE and 30.6% after CE, while the average concentric force decreased 49.9% after CE and 38.4% after EE. The recovery was slower after EE. The median frequency (MF) of biceps brachii (BB) in eccentric action decreased during both EE (P<0.01) and CE (P<0.05). It recovered within 2 days of the exercises but was lower again (P<0.01) 7 days after EE. In concentric action MF of BB decreased during CE (P<0.01), while no changes were observed in EE. Blood lactate concentration increased (P<0.001) in both exercises and serum creatine kinase (CK) activity increased in EE only, being significantly higher (P<0.001) 7 days after than before the eccentric exercise. In the absolute scale, the eccentric force in EE decreased more than the concentric force in CE (P<0.01). Fatigue response was action type specific as seen in the greater reduction in the force of the exercise type. MF decreased immediately after both exercises, which may be at least partly related to elevated blood lactate concentration. Eccentric actions led to possible muscle damage as indicated by elevated serum CK and muscle soreness, and therefore to longer recovery as compared to concentric actions. Decreased MF after EE may be indicative of selective damage of the fast twitch fibers in this type of exercise.  相似文献   

15.
The aim of this study was to examine the relationship between the playing level in soccer (i.e., amateur vs. professional players) and the physiological impact, perceptual responses, time-motion characteristics, and technical activities during various small-sided games (SSGs). Twenty international players (27.4 ± 1.5 years and 17.4 ± 0.8 km·h(-1) of vVO(2)max) and 20 amateur players of the fourth French division (26.3 ± 2.2 years and 17.0 ± 1.2 km·h(-1) of vVO(2)max) played 9 SSGs (i.e., 2 vs. 2, 3 vs. 3, and 4 vs. 4) in which the number of ball touches authorized by possession varied (1 ball touch authorized = 1T, 2 ball touches authorized = 2T, and Free Play = FP). Heart rate (HR), blood lactate ([La]), subjective perception of effort (rating of perceived exertion [RPE]), physical performance, and technical performance of all players were analyzed during all SSGs. Across the various SSGs, amateurs completed a lower percent of successful passes (p < 0.01), recorded higher RPE and [La] values, lost a greater amount of ball possessions (p < 0.001), and covered less total distance with respect to sprinting and high-intensity running (HIR). The HR responses, however, were similar when expressed as %HRmax and %HRreserve. The comparison of the professional and amateur soccer players' activities during SSGs showed that the playing level influenced the physiological responses, physical and technical activities. Consequently, this study has shown that the main differences between elite and amateur players within SSGs concerned their capacity to perform high-intensity actions (HIR and sprints) and execute various technical abilities (in particular number of ball lost per possession and percentage of successful passes).  相似文献   

16.
The purpose of the present study was to examine the effects of competitive level and team tactic on game demands in men's basketball. Sixteen international-level male basketball players (INPs) and 22 national-level male basketball players (NLPs) were studied during 6 games. Time-motion analysis was performed to track game activities. Game physiological demands were assessed by monitoring heart rate (HR) and blood-lactate concentration. Results showed that INPs sprinted significantly more and performed more high-intensity shuffling than did NLPs (p < 0.05). Game-activity changes and frequency of high-intensity bouts were similar in man-to-man and zone-marking games (1,053 vs. 1,056 and 253 vs. 224, respectively, p > 0.05). Time spent in the maximal (>95% of HRmax) and high-intensity zone (85-95% of HRmax) was greater in the INPs than in the NLPs (17.8 vs. 15.2%, p < 0.01 and 59.1 vs. 54.4%, p < 0.05, respectively). No significant differences in mean HR were evident between man-to-man and zone-marking games (93.3 ± 2.1 vs. 92.8 ± 1.8% of HRmax, p > 0.05). Blood-lactate concentration was higher in the INPs than in the NLPs (6.60 ± 1.22 vs. 5.66 ± 1.19 mmol·L?1 at halftime and 5.65 ± 1.21 vs. 4.43 ± 1.43 mmol·L?1 at full time, p < 0.05). No mean or peak blood-lactate concentration differences resulted between man-to-man and zone-marking games (5.15 ± 1.32 vs. 5.83 ± 1.10 and 5.90 ± 1.25 vs. 6.30 ± 1.27 mmol·L?1, respectively, p > 0.05). These results suggest an effect of competitive level over game demands in men's basketball. No marking strategy effect was evident. Basketball coaches and fitness trainers should develop the ability to repeatedly perform high-intensity activity during the game. Repeated sprinting and high-intensity shuffling ability should be trained to successfully play man-to-man and zone defense, respectively.  相似文献   

17.
The relative influences of the supine posture and of immersion on the renin-aldosterone system (RAS) were studied at rest and during moderate exercise in five healthy men. When supine, resting or immersion to the neck for 20 min in a thermoneutral environment both induced a decrease in plasma renin activity (PRA) when compared with the levels measured after 15 min sitting at rest (resting: -44%, p less than 0.05. Immersion: -45%, p less than 0.05). There was no significant difference in PRA decrease between the two situations. Aldosterone (ALDO) values were lower after supine rest or immersion than those observed after sitting at rest, but the difference was not significant. Two types of exercise at a constant relative work load (40-50% maximal oxygen uptake), namely cycling on an ergocycle in the supine position and free-style swimming, induced increases in PRA and ALDO when compared with the levels measured after 15 min rest when sitting (respectively, PRA = +35%, p less than 0.05, and +45%, p less than 0.05, ALDO = +32%, p less than 0.01 and +35%, p less than 0.05). Increases in PRA and ALDO did not differ between the two exercises. Thus inhibitory effects on RAS of change in external pressure are negligible during water immersion to the neck in the supine position and during swimming at moderate intensity.  相似文献   

18.
The purpose of this study was to compare a kayak ergometer protocol with an arm crank protocol for determining peak oxygen consumption (V(.-)O2). On separate days in random order, 10 men and 5 women (16-24 years old) with kayaking experience completed the kayak ergometer protocol and a standardized arm crank protocol. The kayak protocol began at 70 strokes per minute and increased by 10 strokes per minute every 2 minutes until volitional fatigue. The arm crank protocol consisted of a crank rate of 70 revolutions per minute, initial loading of 35 W and subsequent increases of 35 W every 2 minutes until volitional fatigue. The results showed a significant difference (p < 0.01) between the kayak ergometer and the arm crank protocols for relative peak V(.-)O2 (47.5 +/- 3.9 ml x kg(-1) x min(-1) vs. 44.2 +/- 6.2 ml x kg(-1) x min(-1)) and absolute peak V(.-)O2 (3.38 L x min(-1) +/- 0.53 vs. 3.14 +/- 0.64 L x min(-1)). The correlation between kayak and arm crank protocol was 0.79 and 0.90, for relative and absolute V(.-)O2 peak, respectively (both p < 0.01). The higher peak V(.-)O2 on the kayak ergometer may be due to the greater muscle mass involved compared to the arm crank ergometer. The kayak ergometer protocol may therefore be more specific to the sport of kayaking than an arm crank protocol.  相似文献   

19.
Between-set rest intervals (RIs) may influence accumulated fatigue, work volume, and therefore oxygen uptake (VO2) and energy expenditure (EE) during resistance training. The study investigated the effects of different RIs on VO2 and EE in resistance exercises performed with multiple sets and recruiting large and small-muscle mass. Ten healthy men performed 4 randomized protocols (5 sets of 10 repetitions with 15 repetition maximum workloads in either horizontal leg press [LP] or chest fly [CF] with an RI of 1 and 3 minutes). The VO2 was measured at rest, within sets, and during 90-minute postexercise recovery (excess postexercise oxygen consumption [EPOC]). The EE was estimated from VO2net (total VO2 - rest VO2). The VO2 increased in all protocols, being higher within the exercises and during EPOC in the LP than in the CF regardless of the RI. The 1-minute RI induced higher accumulated VO2 during LP (p < 0.05) but not during CF. The EPOC lasted approximately 40 minutes after LP1, LP3, and CF1, being longer than after CF3 (20 minutes, p < 0.05). Total EE was mainly influenced by muscle mass (p < 0.001) (LP3 = 91.1 ± 13.5 kcal ~ LP1 = 88.7 ± 18.4 kcal > CF1 = 50.3 ± 14.4 kcal ~ CF3 = 54.1 ± 12.0 kcal). In conclusion, total VO2 was always higher in LP than in CF. Shortening RI enhanced the accumulated fatigue throughout sets only in LP and increased VO2 in the initial few minutes of EPOC, whereas it did not influence total VO2 and EE in both exercises. Therefore, (a) the role of RI in preventing early fatigue seems to be more important when large-muscle groups are recruited; (b) resistance exercises recruiting large-muscle mass induce higher EE because of a greater EPOC magnitude.  相似文献   

20.
The aim of this study was to compare: i) the physiological and perceptual responses of low-load exercise [(moderate intensity exercise (MI)] with different levels of blood flow restriction (BFR), and ii) MI with BFR on the bike with high intensity (HI) exercise without BFR. The protocol involved large muscle mass exercise at different levels of BFR, and this differentiates our study from others. Twenty-one moderately trained males (age: 24.6 ± 2.4 years; VO2peak: 47.2 ± 7.0 ml.kg-1.min-1, mean ± sd) performed one maximal graded exercise test and seven 5-min constant-load cycling bouts. Six bouts were at MI [40% peak power (Ppeak), 60%VO2peak], one without BFR and five with different levels of BFR (40%, 50%, 60%, 70%, 80% of estimated arterial occlusion pressure). The HI bout (70%Ppeak, 90%VO2peak) was without BFR. Oxygen uptake (VO2), heart rate (HR), blood lactate (BLa), rate of perceived exertion (RPE), and tissue oxygen saturation (TSI) were recorded. Regardless of pressure, HR, BLa and RPE during MI-BFR were higher compared to MI (p < 0.05, ES: moderate to very large), and TSI reduction was greater in MI-BFR than MI (p < 0.05, ES: moderate to large). The responses of VO2, HR, BLa, RPE and TSI induced by the different levels of BFR in MI-BFR were similar. Regardless of pressure, the responses of VO2, HR, BLa and RPE induced by MI-BFR were lower than HI (p < 0.05), except for TSI. TSI change was similar between MI-BFR and HI. It appears that BFR equal to 40% of arterial occlusion pressure is sufficient to reduce TSI when exercising with a large muscle mass.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号