首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Specific amino acid binding by aminoacyl-tRNA synthetases (aaRS) is necessary for correct translation of the genetic code. Engineering a modified specificity into aminoacyl-tRNA synthetases has been proposed as a means to incorporate artificial amino acid residues into proteins in vivo. In a previous paper, the binding to aspartyl-tRNA synthetase of the substrate Asp and the analogue Asn were compared by molecular dynamics free energy simulations. Molecular dynamics combined with Poisson-Boltzmann free energy calculations represent a less expensive approach, suitable for examining multiple active site mutations in an engineering effort. Here, Poisson-Boltzmann free energy calculations for aspartyl-tRNA synthetase are first validated by their ability to reproduce selected molecular dynamics binding free energy differences, then used to examine the possibility of Asn binding to native and mutant aspartyl-tRNA synthetase. A component analysis of the Poisson-Boltzmann free energies is employed to identify specific interactions that determine the binding affinities. The combined use of molecular dynamics free energy simulations to study one binding process thoroughly, followed by molecular dynamics and Poisson-Boltzmann free energy calculations to study a series of related ligands or mutations is proposed as a paradigm for protein or ligand design.The binding of Asn in an alternate, "head-to-tail" orientation observed in the homologous asparagine synthetase is analyzed, and found to be more stable than the "Asp-like" orientation studied earlier. The new orientation is probably unsuitable for catalysis. A conserved active site lysine (Lys198 in Escherichia coli) that recognizes the Asp side-chain is changed to a leucine residue, found at the corresponding position in asparaginyl-tRNA synthetase. It is interesting that the binding of Asp is calculated to increase slightly (rather than to decrease), while that of Asn is calculated, as expected, to increase strongly, to the same level as Asp binding. Insight into the origin of these changes is provided by the component analyses. The double mutation (K198L,D233E) has a similar effect, while the triple mutation (K198L,Q199E,D233E) reduces Asp binding strongly. No binding measurements are available, but the three mutants are known to have no ability to adenylate Asn, despite the "Asp-like" binding affinities calculated here. In molecular dynamics simulations of all three mutants, the Asn ligand backbone shifts by 1-2 A compared to the experimental Asp:AspRS complex, and significant side-chain rearrangements occur around the pocket. These could reduce the ATP binding constant and/or the adenylation reaction rate, explaining the lack of catalytic activity in these complexes. Finally, Asn binding to AspRS with neutral K198 or charged H449 is considered, and shown to be less favorable than with the charged K198 and neutral H449 used in the analysis.  相似文献   

2.
The complete amino acid sequence of the β-subunit of protocatechuate 3,4-dioxygenase was determined. The β-subunit contained four methionine residues. Thus, five peptides were obtained after cleavage of the carboxymethylated β-subunit with cyanogen bromide, and were isolated on Sephadex G-75 column chromatography. The amino acid sequences of the cyanogen bromide peptides were established by characterization of the peptides obtained after digestion with trypsin, chymotrypsin, thermolysin, or Staphylococcus aureus protease. The major sequencing techniques used were automated and manual Edman degradations. The five cyanogen bromide peptides were aligned by means of the amino acid sequences of the peptides containing methionine purified from the tryptic hydrolysate of the carboxymethylated β-subunit. The amino acid sequence of all the 238 residues was as follows: ProAlaGlnAspAsnSerArgPheValIleArgAsp ArgAsnTrpHis ProLysAlaLeuThrPro-Asp — TyrLysThrSerIleAlaArg SerProArgGlnAla LeuValSerIleProGlnSer — IleSerGluThrThrGly ProAsnPheSerHisLeu GlyPheGlyAlaHisAsp-His — AspLeuLeuLeuAsnPheAsn AsnGlyGlyLeu ProIleGlyGluArgIle-Ile — ValAlaGlyArgValValAsp GlnTyrGlyLysPro ValProAsnThrLeuValGluMet — TrpGlnAlaAsnAla GlyGlyArgTyrArg HisLysAsnAspArgTyrLeuAlaPro — LeuAspProAsn PheGlyGlyValGly ArgCysLeuThrAspSerAspGlyTyrTyr — SerPheArg ThrIleLysProGlyPro TyrProTrpArgAsnGlyProAsnAsp — TrpArgProAla HisIleHisPheGlyIle SerGlyProSerIleAlaThr-Lys — LeuIleThrGlnLeuTyr PheGluGlyAspPro LeuIleProMetCysProIleVal — LysSerIleAlaAsn ProGluAlaValGlnGln LeuIleAlaLysLeuAspMetAsnAsn — AlaAsnProMet AsnCysLeuAlaTyr ArgPheAspIleValLeuArgGlyGlnArgLysThrHis PheGluAsnCys. The sequence published earlier in summary form (Iwaki et al., 1979, J. Biochem.86, 1159–1162) contained a few errors which are pointed out in this paper.  相似文献   

3.
Molecular recognition between the aminoacyl-tRNA synthetase enzymes and their cognate amino acid ligands is essential for the faithful translation of the genetic code. In aspartyl-tRNA synthetase (AspRS), the co-substrate ATP binds preferentially with three associated Mg2+ cations in an unusual, bent geometry. The Mg2+ cations play a structural role and are thought to also participate catalytically in the enzyme reaction. Co-binding of the ATP x Mg3(2+) complex was shown recently to increase the Asp/Asn binding free energy difference, indicating that amino acid discrimination is substrate-assisted. Here, we used molecular dynamics free energy simulations and continuum electrostatic calculations to resolve two related questions. First, we showed that if one of the Mg2+ cations is removed, the Asp/Asn binding specificity is strongly reduced. Second, we computed the relative stabilities of the three-cation complex and the 2-cation complexes. We found that the 3-cation complex is overwhelmingly favored at ordinary magnesium concentrations, so that the protein is protected against the 2-cation state. In the homologous LysRS, the 3-cation complex was also strongly favored, but the third cation did not affect Lys binding. In tRNA-bound AspRS, the single remaining Mg2+ cation strongly favored the Asp-adenylate substrate relative to Asn-adenylate. Thus, in addition to their structural and catalytic roles, the Mg2+ cations contribute to specificity in AspRS through long range electrostatic interactions with the Asp side chain in both the pre- and post-adenylation states.  相似文献   

4.
Bovine and camel chymosins are aspartic proteases that are used in dairy food manufacturing. Both enzymes catalyze proteolysis of a milk protein, κ‐casein, which helps to initiate milk coagulation. Surprisingly, camel chymosin shows a 70% higher clotting activity than bovine chymosin for bovine milk, while exhibiting only 20% of the unspecific proteolytic activity. By contrast, bovine chymosin is a poor coagulant for camel milk. Although both enzymes are marketed commercially, the disparity in their catalytic activity is not yet well understood at a molecular level, due in part to a lack of atomistic resolution data about the chymosin—κ‐casein complexes. Here, we report computational alanine scanning calculations of all four chymosin—κ‐casein complexes, allowing us to elucidate the influence that individual residues have on binding thermodynamics. Of the 12 sequence differences in the binding sites of bovine and camel chymosin, eight are shown to be particularly important for understanding differences in the binding thermodynamics (Asp112Glu, Lys221Val, Gln242Arg, Gln278Lys. Glu290Asp, His292Asn, Gln294Glu, and Lys295Leu. Residue in bovine chymosin written first). The relative binding free energies of single‐point mutants of chymosin are calculated using the molecular mechanics three dimensional reference interaction site model (MM‐3DRISM). Visualization of the solvent density functions calculated by 3DRISM reveals the difference in solvation of the binding sites of chymosin mutants.  相似文献   

5.
An octapeptide and decapeptide which are not derived from proenkephalin were isolated from ovine adrenal chromaffin granules. Their sequences are AsnLeuAspProLysLeuAsp Leu and ValAlaGluLeuAspGlnLeuLeuHisTyr. These two peptides were found to be derived from a single precursor peptide which has also been isolated and sequenced. The proteolytic cleavage occurs at a Lys-Arg site typical of prohormone to hormone cleavages.  相似文献   

6.
Asp13 and His41 are essential residues of adenylosuccinate synthetase, putatively catalyzing the formation of adenylosuccinate from an intermediate of 6-phosphoryl-IMP. Wild-type adenylosuccinate synthetase and three mutant synthetases (Arg143 --> Leu, Lys16 --> Gln, and Arg303 --> Leu) from Eschericha coli have been crystallized in the presence of IMP, hadacidin (an analogue of L-aspartate), Mg2+, and GTP. The active site of each complex contains 6-phosphoryl-IMP, Mg2+, GDP, and hadacidin, except for the Arg303 --> Leu mutant, which does not bind hadacidin. In response to the formation of 6-phosphoryl-IMP, Asp13 enters the inner coordination sphere of the active site Mg2+. His41 hydrogen bonds with 6-phosphoryl-IMP, except in the Arg303 --> Leu complex, where it remains bound to the guanine nucleotide. Hence, recognition of the active site Mg2+ by Asp13 evidently occurs after the formation of 6-phosphoryl-IMP, but recognition of the intermediate by His41 may require the association of L-aspartate with the active site. Structures reported here support a mechanism in which Asp13 and His41 act as the catalytic base and acid, respectively, in the formation of 6-phosphoryl-IMP, and then act together as catalytic acids in the subsequent formation of adenylosuccinate.  相似文献   

7.
The amino acid sequences of both the alpha and beta subunits of human chorionic gonadotropin have been determined. The amino acid sequence of the alpha subunit is: Ala - Asp - Val - Gln - Asp - Cys - Pro - Glu - Cys-10 - Thr - Leu - Gln - Asp - Pro - Phe - Ser - Gln-20 - Pro - Gly - Ala - Pro - Ile - Leu - Gln - Cys - Met - Gly-30 - Cys - Cys - Phe - Ser - Arg - Ala - Tyr - Pro - Thr - Pro-40 - Leu - Arg - Ser - Lys - Lys - Thr - Met - Leu - Val - Gln-50 - Lys - Asn - Val - Thr - Ser - Glu - Ser - Thr - Cys - Cys-60 - Val - Ala - Lys - Ser - Thr - Asn - Arg - Val - Thr - Val-70 - Met - Gly - Gly - Phe - Lys - Val - Glu - Asn - His - Thr-80 - Ala - Cys - His - Cys - Ser - Thr - Cys - Tyr - Tyr - His-90 - Lys - Ser. Oligosaccharide side chains are attached at residues 52 and 78. In the preparations studied approximately 10 and 30% of the chains lack the initial 2 and 3 NH2-terminal residues, respectively. This sequence is almost identical with that of human luteinizing hormone (Sairam, M. R., Papkoff, H., and Li, C. H. (1972) Biochem. Biophys. Res. Commun. 48, 530-537). The amino acid sequence of the beta subunit is: Ser - Lys - Glu - Pro - Leu - Arg - Pro - Arg - Cys - Arg-10 - Pro - Ile - Asn - Ala - Thr - Leu - Ala - Val - Glu - Lys-20 - Glu - Gly - Cys - Pro - Val - Cys - Ile - Thr - Val - Asn-30 - Thr - Thr - Ile - Cys - Ala - Gly - Tyr - Cys - Pro - Thr-40 - Met - Thr - Arg - Val - Leu - Gln - Gly - Val - Leu - Pro-50 - Ala - Leu - Pro - Gin - Val - Val - Cys - Asn - Tyr - Arg-60 - Asp - Val - Arg - Phe - Glu - Ser - Ile - Arg - Leu - Pro-70 - Gly - Cys - Pro - Arg - Gly - Val - Asn - Pro - Val - Val-80 - Ser - Tyr - Ala - Val - Ala - Leu - Ser - Cys - Gln - Cys-90 - Ala - Leu - Cys - Arg - Arg - Ser - Thr - Thr - Asp - Cys-100 - Gly - Gly - Pro - Lys - Asp - His - Pro - Leu - Thr - Cys-110 - Asp - Asp - Pro - Arg - Phe - Gln - Asp - Ser - Ser - Ser - Ser - Lys - Ala - Pro - Pro - Pro - Ser - Leu - Pro - Ser-130 - Pro - Ser - Arg - Leu - Pro - Gly - Pro - Ser - Asp - Thr-140 - Pro - Ile - Leu - Pro - Gln. Oligosaccharide side chains are found at residues 13, 30, 121, 127, 132, and 138. The proteolytic enzyme, thrombin, which appears to cleave a limited number of arginyl bonds, proved helpful in the determination of the beta sequence.  相似文献   

8.
The three-dimensional structure of bovine carbonic anhydrase III (BCA III) from red skeletal muscle cells has been determined by molecular replacement methods. The structure has been refined at 2.0 Å resolution by both constrained and restrained structure-factor least squares refinement. The current crystallographic R-value is 19.2% and 121 solvent molecules have so far been found associated with the protein. The structure is highly similar to the refined structure of human carbonic anhydrase II. Some differences in amino acid sequence and structure between the two isoenzymes are discussed. In BCA III, Lys 64 and Arg 91 (His 64 and Ile 91 in HCA II) are both pointing out from the active site cavity forming salt bridges with Glu 4 and Asp 72 (His 4 and Asp 72 in HCA II), respectively. However, Arg 67 and Phe 198 (Asn 67 and Leu 198 in HCA II) are oriented towards the zinc ion and significantly reduce the volume of the active site cavity. Phe 198 particularly reduces the size of the substrate binding region at the “deep water” position at the bottom of the cavity and we sugest that this is one of the major reasons for the differences in catalytic properties of isoenzyme III as compared to isozyme II. © 1993 Wiley-Liss, Inc.  相似文献   

9.
Singh RP  Brooks BR  Klauda JB 《Proteins》2009,75(2):468-477
Sterols have been shown experimentally to bind to the Osh4 protein (a homolog of the oxysterol binding proteins) of Saccharomyces cerevisiae within a binding tunnel, which consists of antiparallel beta-sheets that resemble a beta-barrel and three alpha-helices of the N-terminus. This and other Osh proteins are essential for intracellular transport of sterols and ultimately cell life. Molecular dynamics (MD) simulations are used to study the binding of cholesterol to Osh4 at the atomic level. The structure of the protein is stable during the course of all MD simulations and has little deviation from the experimental crystal structure. The conformational stability of cholesterol within the binding tunnel is aided in part by direct or water-mediated interactions between the 3-hydroxyl (3-OH) group of cholesterol and Trp(46), Gln(96), Tyr(97), Asn(165), and/or Gln(181) as well as dispersive interactions with Phe(42), Leu(24), Leu(39), Ile(167), and Ile(203). These residues along with other nonpolar residues in the binding tunnel and lid contribute nearly 75% to the total binding energy. The strongest and most populated interaction is between Gln(96) and 3-OH with a cholesterol/Gln(96) interaction energy of -4.5 +/- 1.0 kcal/mol. Phe(42) has a similar level of attraction to cholesterol with -4.1 +/- 0.3 kcal/mol. A MD simulation without the N-terminus lid that covers the binding tunnel resulted in similar binding conformations and binding energies when compared with simulations with the full-length protein. Steered MD was used to determine details of the mechanism used by Osh4 to release cholesterol to the cytoplasm. Phe(42), Gln(96), Asn(165), Gln(181), Pro(211), and Ile(206) are found to direct the cholesterol as it exits the binding tunnel as well as Lys(109). The mechanism of sterol release is conceptualized as a molecular ladder with the rungs being amino acids or water-mediated amino acids that interact with 3-OH.  相似文献   

10.
Site-directed mutagenesis of the ecoRII gene has been used to search for the active site of the EcoRII restriction endonuclease. Plasmids with point mutations in ecoRII gene resulting in substitutions of amino acid residues in the Asp110-Glu112 region of the EcoRII endonuclease (Asp110 --> Lys, Asn, Thr, Val, or Ile; Pro111 --> Arg, His, Ala, or Leu; Glu112 --> Lys, Gln, or Asp) have been constructed. When expressed in E. coli, all these plasmids displayed EcoRII endonuclease activity. We also constructed a plasmid containing a mutant ecoRII gene with deletion of the sequence coding the Gln109-Pro111 region of the protein. This mutant protein had no EcoRII endonuclease activity. The data suggest that Asp110, Pro111, and Glu112 residues do not participate in the formation of the EcoRII active site. However, this region seems to be relevant for the formation of the tertiary structure of the EcoRII endonuclease.  相似文献   

11.
D-amino acids are largely excluded from protein synthesis, yet they are of great interest in biotechnology. Aspartyl-tRNA synthetase (AspRS) can misacylate tRNA(Asp) with D-aspartate instead of its usual substrate, L-Asp. We investigate how the preference for L-Asp arises, using molecular dynamics simulations. Asp presents a special problem, having pseudosymmetry broken only by its ammonium group, and AspRS must protect not only against D-Asp, but against an "inverted" orientation where the two substrate carboxylates are swapped. We compare L-Asp and D-Asp, in both orientations, and succinate, where the ammonium group is removed and the ligand has an additional negative charge. All possible ammonium positions on the ligand are thus scanned, providing information on electrostatic interactions. As controls, we simulate a Q199E mutation, obtaining a reduction in binding free energy in agreement with experiment, and we simulate TyrRS, which can misacylate tRNA(Tyr) with D-Tyr. For both TyrRS and AspRS, we obtain a moderate binding free energy difference DeltaDeltaG between the L- and D-amino acids, in agreement with their known ability to misacylate their tRNAs. In contrast, we predict that AspRS is strongly protected against inverted L-Asp binding. For succinate, kinetic measurements reveal a DeltaDeltaG of over 5 kcal/mol, favoring L-Asp. The simulations show how chiral discriminations arises from the structures, with two AspRS conformations acting in different ways and proton uptake by nearby histidines playing a role. A complex network of charges protects AspRS against most binding errors, making the engineering of its specificity a difficult challenge.  相似文献   

12.
Asp187 and Gln190 were predicted as conserved and closely located at the Na(+) binding site in a topology and homology model structure of Na(+)/proline symporter (PutP) of Escherichia coli. The replacement of Asp187 with Ala or Leu did not affect proline transport activity; whereas, change to Gln abolished the active transport. The binding affinity for Na(+) or proline of these mutants was similar to that of wild-type (WT) PutP. This result indicates Asp187 to be responsible for active transport of proline without affecting the binding. Replacement of Gln190 with Ala, Asn, Asp, Leu and Glu had no effect on transport or binding, suggesting that it may not have a role in the transport. However, in the negative D187Q mutant, a second mutation, of Gln190 to Glu or Leu, restored 46 or 7% of the transport activity of WT, respectively, while mutation to Ala, Asn or Asp had no effect. Thus, side chain at position 190 has a crucial role in suppressing the functional defect of the D187Q mutant. We conclude that Asp187 is responsible for transport activity instead of coupling-ion binding by constituting the translocation pathway of the ion and Gln190 provides a suppressing mutation site to regain PutP functional activity.  相似文献   

13.
Chinese hamster ovary cells grown in cell culture were broken and fractionated by differential centrifugation. Four principal fractions: nuclear and membrane, microsomal, postribosomal, and supernatant were obtained. The distribution of aminoacyl-tRNA synthetases in these four fractions was determined for all twenty amino acids.It was shown that there is a differential distribution of synthetases. Activities specific for eight amino acids: Ala, Ser, Gly, Cys, His, Arg, Thr and Pro were found mainly in the supernatant fraction. Activities specific for eleven amino acids: Asp, Asn, Glu, Gln, Ile, Leu, Lys, Met, Phe, Tyr and Val were found mainly in the postribosomal fraction. Four activities were found at significant levels in the microsomal fraction: Asp, Phe, Lys and Pro. The nuclear and membrane fraction contained activity for Lys, His, Asp and Thr.Changes in aminoacyl-tRNA synthetase activities in various fractions from preparations made by breaking cells with a membrane-dissociating detergent showed that some of the aminoacyl-tRNA synthetase activities may be membrane bound.  相似文献   

14.
Farnesyltransferase (FT) inhibitors can suppress tumor cell proliferation without substantially interfering with normal cell growth, thus holding promise for cancer treatment. A structure-based approach to the design of improved FT inhibitors relies on knowledge of the conformational flexibility of the zinc-containing active site of FT. Although several X-ray structures of FT have been reported, detailed information regarding the active site conformational flexibility of the enzyme is still not available. Molecular dynamics (MD) simulations of FT can offer the requisite information, but have not been applied due to a lack of effective methods for simulating the four-ligand coordination of zinc in proteins. Here, we report in detail the problems that occurred in the conventional MD simulations of the zinc-bound FT and a solution to these problems by employing a simple method that uses cationic dummy atoms to impose orientational requirement for zinc ligands. A successful 1.0 ns (1.0 fs time step) MD simulation of zinc-bound FT suggests that nine conserved residues (Asn127alpha, Gln162alpha, Asn165alpha, Gln195alpha, His248beta, Lys294beta, Leu295beta, Lys353beta, and Ser357beta) in the active site of mammalian FT are relatively mobile. Some of these residues might be involved in the ligand-induced active site conformational rearrangement upon binding and deserve attention in screening and design of improved FT inhibitors for cancer chemotherapy.  相似文献   

15.
Chuawong P  Hendrickson TL 《Biochemistry》2006,45(26):8079-8087
Divergent tRNA substrate recognition patterns distinguish the two distinct forms of aspartyl-tRNA synthetase (AspRS) that exist in different bacteria. In some cases, a canonical, discriminating AspRS (D-AspRS) specifically generates Asp-tRNA(Asp) and usually coexists with asparaginyl-tRNA synthetase (AsnRS). In other bacteria, particularly those that lack AsnRS, AspRS is nondiscriminating (ND-AspRS) and generates both Asp-tRNA(Asp) and the noncanonical, misacylated Asp-tRNA(Asn); this misacylated tRNA is subsequently repaired by the glutamine-dependent Asp-tRNA(Asn)/Glu-tRNA(Gln) amidotransferase (Asp/Glu-Adt). The molecular features that distinguish the closely related bacterial D-AspRS and ND-AspRS are not well-understood. Here, we report the first characterization of the ND-AspRS from the human pathogen Helicobacter pylori (H. pylori or Hp). This enzyme is toxic when heterologously overexpressed in Escherichia coli. This toxicity is rescued upon coexpression of the Hp Asp/Glu-Adt, indicating that Hp Asp/Glu-Adt can utilize E. coli Asp-tRNA(Asn) as a substrate. Finally, mutations in the anticodon-binding domain of Hp ND-AspRS reduce this enzyme's ability to misacylate tRNA(Asn), in a manner that correlates with the toxicity of the enzyme in E. coli.  相似文献   

16.
The amino acid sequence of a protease inhibitor isolated from the hemolymph of Sarcophaga bullata larvae was determined by tandem mass spectrometry. Homology considerations with respect to other protease inhibitors with known primary structures assisted in the choice of the procedure followed in the sequence determination and in the alignment of the various peptides obtained from specific chemical cleavage at cysteines and enzyme digests of the S. bullata protease inhibitor. The resulting sequence of 57 residues is as follows: Val Asp Lys Ser Ala Cys Leu Gln Pro Lys Glu Val Gly Pro Cys Arg Lys Ser Asp Phe Val Phe Phe Tyr Asn Ala Asp Thr Lys Ala Cys Glu Glu Phe Leu Tyr Gly Gly Cys Arg Gly Asn Asp Asn Arg Phe Asn Thr Lys Glu Glu Cys Glu Lys Leu Cys Leu.  相似文献   

17.
Prolyl 4-hydroxylase (EC 1.14.11.2), an alpha2beta2 tetramer, catalyzes the formation of 4-hydroxyproline in collagens. We converted 16 residues in the human alpha subunit individually to other amino acids, and expressed the mutant polypeptides together with the wild-type beta subunit in insect cells. Asp414Ala and Asp414Asn inactivated the enzyme completely, whereas Asp414Glu increased the K(m) for Fe2+ 15-fold and that for 2-oxoglutarate 5-fold. His412Glu, His483Glu and His483Arg inactivated the tetramer completely, as did Lys493Ala and Lys493His, whereas Lys493Arg increased the K(m) for 2-oxoglutarate 15-fold. His501Arg, His501Lys, His501Asn and His501Gln reduced the enzyme activity by 85-95%; all these mutations increased the K(m) for 2-oxoglutarate 2- to 3-fold and enhanced the rate of uncoupled decarboxylation of 2-oxoglutarate as a percentage of the rate of the complete reaction up to 12-fold. These and other data indicate that His412, Asp414 and His483 provide the three ligands required for the binding of Fe2+ to a catalytic site, while Lys493 provides the residue required for binding of the C-5 carboxyl group of 2-oxoglutarate. His501 is an additional critical residue at the catalytic site, probably being involved in both the binding of the C-1 carboxyl group of 2-oxoglutarate and the decarboxylation of this cosubstrate.  相似文献   

18.
We examined the effects of orally administrated amino acids on myfibrillar proteolysis in food-deprived chicks. Plasma N(tau)-methylhistidine concentration, as an index of myofibrillar proteolysis, was decreased by the administration of Glu, Gly, Ala, Leu, Ile, Ser, Thr, Met, Trp, Asn, Gln, Pro, Lys and Arg but not by Asp, Val, Phe, Tyr or His to chicks. Orally administrated Cys was fatal to chicks. These results indicate that oral Glu, Gly, Ala, Leu, Ile, Ser, Thr, Met, Trp, Asn, Gln, Pro, Lys and Arg administration suppressed myofibrillar proteolysis in chicks.  相似文献   

19.
Site-directed mutagenesis was carried out on the active site of water-soluble PQQ glucose dehydrogenase (PQQGDH-B) to improve its substrate specificity. Amino acid substitution of His168 resulted in a drastic decrease in the enzyme's catalytic activity, consistent with its putative catalytic role. Substitutions were also carried out in neighboring residues, Lys166, Asp167, and Gln169, in an attempt to alter the enzyme's substrate binding site. Lys166 and Gln169 mutants showed only minor changes in substrate specificity profiles. In sharp contrast, mutants of Asp167 showed considerably altered specificity profiles. Of the numerous Asp167 mutants characterized, Asp167Glu showed the best substrate specificity profile, while retaining most of its catalytic activity for glucose and stability. We also investigated the cumulative effect of combining the Asp167Glu substitution with the previously reported Asn452Thr mutation. Interpretation of the effect of the replacement of Asp167 to Glu on the alteration of substrate specificity in relation with the predicted 3D model of PQQGDH-B is also discussed.  相似文献   

20.
The Hsp70 and Hsp40 chaperone machine plays critical roles in protein folding, membrane translocation, and protein degradation by binding and releasing protein substrates in a process that utilizes ATP. The activities of the Hsp70 family of chaperones are recruited and stimulated by the J domains of Hsp40 chaperones. However, structural information on the Hsp40–Hsp70 complex is lacking, and the molecular details of this interaction are yet to be elucidated. Here we used steered molecular dynamics (SMD) simulations to investigate the molecular interactions that occur during the dissociation of the auxilin J domain from the Hsc70 nucleotide-binding domain (NBD). The changes in energy observed during the SMD simulation suggest that electrostatic interactions are the dominant type of interaction. Additionally, we found that Hsp70 mainly interacts with auxilin through the surface residues Tyr866, Arg867, and Lys868 of helix II, His874, Asp876, Lys877, Thr879, and Gln881 of the HPD loop, and Phe891, Asn895, Asp896, and Asn903 of helix III. The conservative residues Tyr866, Arg867, Lys868, His874, Asp876, Lys877, and Phe891 were also found in a previous study to be indispensable to the catalytic activity of the DnaJ J domain and the binding of it with the NBD of DnaK. The in silico identification of the importance of auxilin residues Asn895, Asp896, and Asn903 agrees with previous mutagenesis and NMR data suggesting that helix III of the J domain of the T antigen interacts with Hsp70. Furthermore, our data indicate that Thr879 and Gln881 from the HPD loop are also important as they mediate the interaction between the bovine auxilin J domain and Hsc70.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号