首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The capacity of urocanic acid to interact with peroxyl radicals has been evaluated in several systems: oxidation in the presence of a free radical source (2,2'-azobis(2-amidinopropane; AAPH), protection of phycocyanin bleaching elicited by peroxyl radicals, and Cu(II)- and AAPH-promoted LDL oxidation. The results indicate that both isomers (cis and trans) are mild peroxyl radical scavengers. For example, trans-urocanic acid is nearly 400 times less efficient than Trolox in the protection of the peroxyl radical promoted bleaching of phycocyanin. Regarding the removal of urocanic acid by peroxyl radicals, nearly 100 muM trans-urocanic acid is required to trap half of the produced radicals under the employed conditions (10 mM AAPH, 37 degrees C). Competitive experiments show that the cis-isomer traps peroxyl radicals 30% less efficiently than the trans-isomer. Given the high concentrations that trans-urocanic acid reaches in skin, its capacity to trap peroxyl radicals could contribute to the protection of the tissue towards ROS-mediated processes. Furthermore, both isomers, and particularly the cis-isomer, protect LDL from Cu(II)-induced oxidation.  相似文献   

2.
Kawai S  Nakagawa M  Ohashi H 《FEBS letters》1999,446(2-3):355-358
The novel cleavage products, 2,3-dihydroxy-1-(4-ethoxy-3-methoxyphenyl)-1-formyloxypropane (II) and 1-(4-ethoxy-3-methoxyphenyl)-1,2,3-trihydroxypropane-2,3-cyclic carbonate (III) were identified as products of a non-phenolic beta-O-4 lignin model dimer, 1,3-dihydroxy-2-(2,6-dimethoxylphenoxy)-1-(4-ethoxy-3-methoxypheny l)propane (I), by a Trametes versicolor laccase in the presence of 1-hydroxybenzotriazole (1-HBT). An isotopic experiment with a 13C-labeled lignin model dimer, 1,3-dihydroxy-2-(2,6-[U-ring-13C] dimethoxyphenoxy)-1-(4-ethoxy-3-methoxyphenyl)propane (I-13C) indicated that the formyl and carbonate carbons of products II and III were derived from the beta-phenoxy group of beta-O-4 lignin model dimer I as aromatic ring cleavage fragments. These results show that the laccase-1-HBT couple could catalyze the aromatic ring cleavage of non-phenolic beta-O-4 lignin model dimer in addition to the beta-ether cleavage, Calpha-Cbeta cleavage, and Calpha-oxidation.  相似文献   

3.
The extracellular enzyme manganese peroxidase is believed to degrade lignin by a hydrogen peroxide-dependent oxidation of Mn(II) to the reactive species Mn(III) that attacks the lignin. However, Mn(III) is not able to directly oxidise the non-phenolic lignin structures that predominate in native lignin. We show here that pretreatment of a non-phenolic lignin model compound with another extracellular fungal enzyme, cellobiose dehydrogenase, allows the manganese peroxidase system to oxidise this molecule. The mechanism behind this effect is demethoxylation and/or hydroxylation, i.e. conversion of a non-phenolic structure to a phenolic one, mediated by hydroxyl radicals generated by cellobiose dehydrogenase. This suggests that cellobiose dehydrogenase and manganese peroxidase may act in an extracellular pathway in fungal lignin biodegradation. Analytical techniques used in this paper are reverse-phase high-pressure liquid chromatography, gas chromatography connected to mass spectroscopy and UV-visible spectroscopy.  相似文献   

4.
High-molecular-weight lignin was methylated with diazomethane. The lignin (i.e., phenolic lignin) and methylated lignin (i.e., non-phenolic lignin) were mixed with fully bleached softwood pulp. Degradation of the lignin preparations by the white rot fungus Pycnoporus cinnabarinus was studied. After a 3-month incubation with the fungus, over 40% of the non-phenolic lignin and about 70% the phenolic lignin were degraded. The presence of phenolic hydroxyl groups in lignin greatly enhanced the degradation rate of lignin. This study reveals that P. cinnabarinus, an exclusively laccase-producing fungus, is capable of oxidatively degrading both phenolic and non-phenolic lignins. The ability of the fungus to degrade non-phenolic lignin suggests that a laccase/mediator system is involved in the complete degradation of lignin. After the fungal degradation of lignins, the content of carboxylic acids substantially increased for both phenolic and non-phenolic lignins.  相似文献   

5.
Summary Numerous single-ring, aromatic, phenolic and non-phenolic compounds were tested as substrates of Streptomyces viridosporus T7A extracellular lignin peroxidase. Oxidations were monitored by spectroscopy, with and without 4-aminoantipyrine (4-AAP) as a color-forming reagent. The oxidation of phenols containing one or no carbon groups in the para position resulted in coupling with 4-AAP to form a red color. Thin layer chromatography and mass spectroscopy showed that the oxidation of vanillic acid (4-hydroxy-3-methoxybenzoic acid) and syringic acid (4-hydroxy-3,5-dimethoxybenzoic acid) resulted in a direct coupling between 4-AAP and the phenol ring to form a quinone structure. In the reaction with vanillyl acetone (4-(4-hydroxy-3-methoxyphenyl)-3-buten-2-one) and 4-AAP, 4-AAP coupled to Á-carbon of vanillyl acetone. As shown by UV-visible spectroscopy, S. viridosporus T7A peroxidase oxidized phenolic compounds, but was unable to oxidize non-phenolic ones.Paper no. 91 517 of the Idaho Agricultural Experiment Station Correspondence to: D. L. Crawford  相似文献   

6.
The influence of aromatic phenolic and non-phenolic acids on manganese peroxidase (MnP)-dependent peroxidation of linoleic acid, and oxidation of a non-phenolic lignin model compound (LMC) was studied. Phenolic compounds inhibited both the MnP-dependent lipid peroxidation (LPO) and non-phenolic LMC degradation in the system. The antioxidant activity of the aromatic compounds in the enzymatic system with MnP-dependent LPO depends on the presence of the phenolic hydroxyl groups attached to the aromatic ring structure, the methoxylation of the hydroxyl group in the ortho position in diphenolics, and number of carbon atoms in the side chain. Natural phenolic compounds inhibit the oxidation of non-phenolic lignin in the system based on MnP-mediated LPO, but do not prevent it. This result indicates that MnP-mediated LPO may play an important role in lignin degradation even in the presence of the phenolic antioxidant compounds, and supports the possibility of the involvement of LPO in the degradation of lignin in wood.  相似文献   

7.
Convincing evidence suggests that blood redox changes play a role in the development of various cardiovascular disorders including hypertension. Nutritional antioxidants have been suggested to play a role in cardiovascular disease prevention. In this study, we investigated in vivo changes in rat arterial blood pressure induced by acute exposition to an increased load of peroxyl radicals and by the administration of selected antioxidants after chemically induced oxidative stress. Hydrosoluble and liposoluble peroxyl radicals, generated by 2,2'-azobis-(2-amidinopropane) dihydrochloride and 2,2'-azobis 2,4-di-methylvaleronitrile, induced a dose-dependent decrease in rat blood pressure. All antioxidants tested (6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid, vitamin C, glutathione and dithiothreitol) returned peroxyl radical-induced hypotension to normal. Of the various antioxidants tested, glutathione was the most effective in restoring blood pressure after peroxyl radical generation. Treatment of rats with a thiol-chelating agent (N-ethylmaleimide) and an oxidizing agent (5,5'-dithiobis-2-nitrobenzoic) inhibited peroxyl radical-mediated hypotension. Our results suggest that acute exposition to peroxyl radicals have a hypotensive effect on blood pressure and that thiols play an active role in the redox regulation of blood pressure. Other experiments are needed to clarify the role played by oxidative potentials on blood pressure and the mechanism of action of nutritional antioxidants.  相似文献   

8.
Paul T  Young MJ  Hill IE  Ingold KU 《Biochemistry》2000,39(14):4129-4135
It is well established that the peroxyl radicals formed during the thermal decomposition of 2,2'-azobis(amidinopropane), ABAP, in oxygenated water can cleave double-stranded DNA, from which fact it has been concluded that peroxyl radicals, as a general class, can induce DNA strand scission. However, the ABAP-derived radicals are positively charged, and DNA is a negatively charged polyanion. Moreover, the relatively small and, therefore, free to diffuse peroxyl radicals likely to be formed in vivo will generally be negatively charged or neutral. Plasmid supercoiled DNA [pBR 322, 4361 base pairs (bp)] was reacted with known, equal fluxes of two positively charged peroxyl radicals, a negatively charged peroxyl radical, and a neutral peroxyl radical. The two positively charged peroxyl radicals degraded >/=80% of the supercoiled pBR 322 at a flux of 4 radicals/bp, but the negatively charged and neutral peroxyl radicals had no significant effect even at a flux as high as 24 radicals/bp. The same lack of effect on the DNA was also observed with high fluxes of superoxide/hydroperoxyl radicals. Similar results were obtained with another supercoiled DNA, pUC 19, except that pUC 19 is somewhat more sensitive to strand scission by positively charged peroxyl radicals than pBR 322. We conclude that most of the peroxyl radicals likely to be formed in vivo have little or no ability to induce DNA strand scission and that the potential role of electrostatics in radical/DNA reactions should always be considered.  相似文献   

9.
The oxidative formation of 8-hydroxy-2'-deoxyguanosine (8-OHdG) in DNA is closely associated with the induction of degenerative diseases, including cancer. However, the oxidant species participating in the formation of 8-OHdG has yet to be fully clarified. On the basis that peroxyl radicals are a strong candidate for this species, we employed 2,2'-azobis(2-amidinopropane) (AAPH) as a peroxyl radical generator. Exposure of calf thymus DNA to AAPH formed 8-OHdG, but the exposure of 2'-deoxyguanosine (dG) alone did not. From the exposure of various combinations of nucleotides, 8-OHdG was formed only in the presence of dG and thymidine (dT). A mix of dG with an oxidation product of dT, 5-(hydroperoxymethyl)-2'-deoxyuridine, produced 8-OHdG, but the amount formed was small. In contrast, 8-OHdG was produced abundantly by the addition of dG to peroxidized dT with AAPH. Thus, the formation of 8-OHdG was mediated by the peroxidized dT. Instead of artificial AAPH, endogenous peroxyl radicals are known to be lipid peroxides, which are probably the oxidant species for 8-OHdG formation mediated by thymidine in vivo.  相似文献   

10.
Summary The ability of a mixed bacterial culture to decompose two tetrameric lignin model com-pounds as a sole source of carbon and energy was investigated. The mixed bacterial culture con-sisted mainly of Gram negative rods. The tetram-ers contained two types of lignin substructures, namely the most abundant β-O-4 ether structure in lignin and also the 5-5 biphenyl structure. The tetramer (MW 638) containing two phe-nolic hydroxyls was decomposed readily; after 13 days of incubation, all intermediate products formed were almost totally decomposed. The non-phenolic tetramer (MW 666) was decom-posed much more slowly; after 53 days of incuba-tion, 5% of the substrate was unchanged. When both tetramers were degraded simultaneously, the non-phenolic tetramer was decomposed similarly to the phenolic tetramer. Determination of molecular weights of cata-bolic products showed that the degradation of the non-phenolic tetramer had proceeded at least to dimer level. SKF 525A, inhibitor of cytochrome P-450, caused one catabolic product to accumulate in the culture medium. This indicates involvement of cy-tochrome P-450 in the degradation pathway of the model compounds used. We conclude that this mixed bacterial culture was able to degrade the lignin model compounds used and that free phenolic groups seem to in-crease the biodegradability significantly.  相似文献   

11.
Radical scavenging activity and oxidative modification of citrus dehydrin.   总被引:20,自引:0,他引:20  
Dehydrins are ubiquitous proteins produced by plants in response to water stress. Their functions, however, are not fully understood. The overexpression of Citrus unshiu Marcov. dehydrin (CuCOR19) enhanced cold tolerance in transgenic plants by reducing lipid peroxidation promoted by cold stress, suggesting that the CuCOR19 protein directly scavenges radicals. In this paper, we report the radical scavenging activity and oxidative modification of CuCOR19. The hydroxyl radical generated by the Fe2+/H2O2 system and peroxyl radical generated from 2, 2'-azobis (2-amidinopropane) (AAPH) were scavenged by CuCOR19, but hydrogen peroxide and superoxide were not. The scavenging activity for the hydroxyl radical and peroxyl radical of CuCOR19 was more potent than that of mannitol, and approximately equal to that of serum albumin, which is known as an antioxidative protein in mammals. CuCOR19 was degraded by the hydroxyl radical and peroxyl radical in a time- and dose-dependent manner. Mannitol and thiourea inhibited the degradation. Analysis of the amino acid composition of CuCOR19 indicated that glycine, histidine, and lysine, which are major residues in many dehydrins, were targeted by the hydroxyl radical. These results suggest that CuCOR19 is a radical scavenging protein, and may reduce oxidative damage induced by water stress in plants.  相似文献   

12.
Antioxidant protection of human serum albumin by chitosan   总被引:1,自引:0,他引:1  
Inhibition of protein oxidation by reactive oxygen species (ROS) would confer benefit to living organisms exposed to oxidative stress, because oxidized proteins are associated with many diseases and can propagate ROS-induced damage. We measured the ability of 2800Da chitosan, D-glucosamine and N-acetyl glucosamine to protect human serum albumin from oxidation by peroxyl radicals derived from 2,2'-azobis(2-amidinopropane)dihydrochloride and N-centered radicals from 1,1'-diphenyl-2-picrylhydrazyl and from 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid). Comparison with the antioxidant action of vitamin C showed that, on a molar basis, chitosan was equally effective in preventing formation of carbonyl and hydroperoxide groups in human serum albumin exposed to peroxyl radicals. It was also a potent inhibitor of conformational changes in the protein, assessed by absorption spectrum and intrinsic fluorescence. D-glucosamine was much less effective and N-acetyl glucosamine was not a useful antioxidant. Protection of the albumin from peroxyl radicals was achieved by scavenging of peroxyl radical. Chitosan was also a good scavenger of N-centered radicals, with glucosamine and N-acetyl glucosamine much less effective. The results suggest that administration of low molecular weight chitosans may inhibit neutrophil activation and oxidation of serum albumin commonly observed in patients undergoing hemodialysis, resulting in reduction of oxidative stress associated with uremia.  相似文献   

13.
Demethoxylation reactions in the cultures of the brown-rot fungi Gloeophyllum trabeum and Poria placenta were studied by determining the evolution of (14)CO(2) from a non-phenolic lignin model, beta-O-4 dimer, [O(14)CH(3)]-labelled at position 4 in the A ring (model I), and from [O(14)CH(3)]-labelled vanillic acid (model II). The fungi were grown under oxygen or air atmosphere on an agar medium with or without spruce sapwood blocks. The dimeric model (I) was impregnated onto agar or wood block in cultures to clarify the possible effect of wood as growth substrate. In the case of vanillic acid (model II), birch wood was used. The effect of supplemented nutrient nitrogen (2 mM N) and glucose (0.1 or 1.0% w/v) on demethoxylation was also studied. G. trabeum enhanced the production of (14)CO(2) from the dimer in the presence of spruce wood blocks. It released (14)CO(2) from the methoxyl groups giving 30-60% of the applied activity in 8 weeks. P. placenta produced almost 30% (14)CO(2 )from vanillic acid (model II) in 9 weeks under oxygen, but from the methoxyl group of the dimer only 3% of (14)CO(2) was evolved in 4 weeks. The biomasses determined as ergosterol assay showed variation from 14 to 226 microg g(-1) dry weight of agar, and 2 to 9 microg g(-1 )of wood, but they did not correlate with the production of (14)CO(2). The results indicate that these brown-rot fungi possess different mechanisms for demethoxylation.  相似文献   

14.
Sonodynamic therapy, a promising new approach to cancer treatment, is based on synergistic cell killing by combination of certain drugs (sonosensitizers) and ultrasound. Although the mechanism of sonodynamic action is not understood, the role of free radicals produced from sonosensitizers by ultrasound is implicated. In this work, we studied formation of free radicals during the decomposition of several water-soluble azo compounds by 50 kHz ultrasound in aqueous solutions. Using the spin trap 3, 5-dibromo-4-nitrosobenzene sulfonate (DBNBS) tertiary carbon-centered radicals from 2, 2'-azobis (N,N'-dimethyl-eneisobutyramidine) dihydrochloride (VA-044), 2-(carbamoylazo)-isobutyronitrile (V-30), and 2, 2'-azobis (2-amidinopropane) dihydrochloride (AAPH) and CH3 radicals from 1, 1'-azobis (N,N'-dimethylformamide) (ADMF) were detected in argonsaturated solutions and the corresponding oxygen-centered radicals (alkoxyl and peroxyl) from VA-044, V-30, and AAPH were identified using the spin trap 5, 5'-dimethyl-l-pyrroline-N-oxide (DMPO) in aerated sonicated solutions. No free radicals from 4, 4'-dihydroxyazobenzene-3, 3'-dicarboxylic acid, disodium salt (DHAB) could be found in either system. While VA-044 and AAPH could also be readily decomposed by heat (42.5°C and 80°C), V-30 decomposition only occurred in the ultrasound-exposed solutions. The most likely mechanism of decomposition of azo compounds by ultrasound is their thermolysis in the heated shell of the liquid surrounding ca vita ting bubbles driven by ultrasound and/or by pyrolysis inside these bubbles. Experiments using scavengers of ·OH and ·H, which are produced by sonolysis in aqueous solutions, demonstrated that these radicals are not involved in the ultrasound-mediated radical production from the azo compounds. Due to the known cytotoxic potential of free radicals produced from azo compounds, the use of these compounds as ultrasound sensitizers appears to be a promising approach for sonodynamic cell killing.  相似文献   

15.
The enzyme laccase oxidises phenolic groups of lignin but not the non-phenolic ones. Redox mediators activate laccase towards the non-phenolic groups, particularly the benzyl alcohols. The oxidation step is performed by the oxidised form of the mediator, generated on its interaction with laccase. The oxidised mediator can follow an electron transfer, a radical hydrogen atom transfer or an ionic mechanism in the oxidation of the non-phenolic subunits. Support for these conclusions is provided by (i) investigating the product pattern with suitable probe substrates, (ii) measuring the intramolecular kinetic isotope effect. Determination of electrochemical properties and bond dissociation energies via semiempirical calculations enabled us to rationalise the origin of the different mechanistic behaviour of the mediators. Finally, a comparison of different laccase-mediator-systems (LMS), when applied to the delignification of wood pulp, indicates violuric acid as the most efficient mediator, in an oxidation that is selectively directed towards lignin only.  相似文献   

16.
The enzyme laccase oxidises phenolic groups of lignin but not the non-phenolic ones. Redox mediators activate laccase towards the non-phenolic groups, particularly the benzyl alcohols. The oxidation step is performed by the oxidised form of the mediator, generated on its interaction with laccase. The oxidised mediator can follow an electron transfer, a radical hydrogen atom transfer or an ionic mechanism in the oxidation of the non-phenolic subunits. Support for these conclusions is provided by (i) investigating the product pattern with suitable probe substrates, (ii) measuring the intramolecular kinetic isotope effect. Determination of electrochemical properties and bond dissociation energies via semiempirical calculations enabled us to rationalise the origin of the different mechanistic behaviour of the mediators. Finally, a comparison of different laccase-mediator-systems (LMS), when applied to the delignification of wood pulp, indicates violuric acid as the most efficient mediator, in an oxidation that is selectively directed towards lignin only.  相似文献   

17.
Cyanidin-3-glycosides (arabinoside, rutinoside, galactoside and glucoside) and delphinidin-3-rutinoside were examined for their ability to inhibit lipid peroxidation induced either by Fe(II) ions, UV irradiation or 2,2'-azobis(2-amidinopropane) dihydrochloride (AAPH) peroxyl radicals in a liposomal membrane system. The antioxidant abilities of anthocyanins were compared with a water-soluble tocopherol derivative, trolox. The antioxidant efficacies of these compounds were evaluated by their ability to inhibit the fluorescence intensity decay of the extrinsic probe 3-[p-(6-phenyl)-1,3,5,-hexatrienyl] phenylpropionic acid, caused by the free radicals generated during peroxidation. All the anthocyanins tested (at concentrations of 15-20 microM) exhibited higher antioxidant activities against Fe(II)-induced peroxidation than UV- and AAPH-induced peroxidation, suggesting that metal chelation may play an important role in determining the antioxidant potency of these compounds. It was also found that delphinidin-3-rutinoside had a higher antioxidant activity against Fe(II)-induced liposome oxidation than cyanidin-3-rutinoside, which indicates an important role of the OH group in the B ring of delphinidin-3-rutinoside in its antioxidant action. The antioxidant activity of all the anthocyanins studied was higher than that of trolox in the case of Fe(II)-induced liposome oxidation and was comparable with the action of trolox in the case of UV- and AAPH-induced liposome membrane oxidation.  相似文献   

18.
We examined microbial activity in the rumen to cleave benzyl ether bonds of lignin model compounds that fluoresced when the bonds were cleaved. 4-Methylumbelliferone veratryl ether dimer was degraded completely within 8 h even in the presence of fungicidal antibiotics, but no significant degradation occurred with bactericidal antibiotics. Degradation of a phenolic beta-O-4 trimer incorporating 4-methylumbelliferone by a benzyl ether linkage was stimulated by ruminal microbes, although its corresponding non-phenolic model compound, 1-(4-ethoxy-3-methoxyphenyl)-1-O-(4-methylumbelliferyl)-2-(2-methoxyp henoxy)-3-propanol, was not degraded. A coniferyl dehydrogenation polymer bearing fluorescent beta-O-4 benzyl ether that contains both phenolic and non-phenolic benzyl ether bonds was partially degraded (about 20%) in 48 h. These results suggest that ruminal microbes decompose benzyl ether linkages of lignin polymers under anaerobic conditions.  相似文献   

19.
Carnosine (beta-alanyl-L-histidine), homocarnosine (gamma-amino-butyryl-L-histidine) and anserine (beta-alanyl-1-methyl-L-histidine) have been proposed to act as anti-oxidants in vivo. The protective effects of carnosine and related compounds against the oxidative damage of human Cu,Zn-superoxide dismutase (SOD) by peroxyl radicals generated from 2,2'-azobis(2-amidinopropane) dihydrochloride (AAPH) were studied. The oxidative damage to Cu,Zn-SOD by AAPH-derived radicals led to protein fragmentation, which is associated with the inactivation of enzyme. Carnosine, homocarnosine and anserine significantly inhibited the fragmentation and inactivation of Cu,Zn-SOD by AAPH. All three compounds also inhibited the release of copper ions from the enzyme and the formation of carbonyl compounds in AAPH-treated Cu,Zn-SOD. These compounds inhibited the fragmentation of other protein without copper ion. The results suggest that carnosine and related compounds act as the copper chelator and peroxyl radical scavenger to protect the protein fragmentation. Oxidation of amino acid residues in Cu,Zn-SOD induced by AAPH were significantly inhibited by carnosine and related compounds. It is proposed that carnosine and related dipeptides might be explored as potential therapeutic agents for pathologies that involve Cu,Zn-SOD modification mediated by peroxyl radicals.  相似文献   

20.
Abstract: During screening of basidiomycetes for wheat straw delignification, considerable lignin degradation with a limited attack to cellulose was attained with Pleurotus eryngii . Straw solid-state fermentation (SSF) was optimized, and the enzymatic mechanisms for lignin degradation were investigated. No lignin peroxidase was detected under liquid or SSF conditions, but high laccase and aryl-alcohol oxidase levels were found. The latter enzyme has been fully characterized in PI. eryngii and it seems to be involved in a cyclic redox system for H202 generation from aromatic compounds. Results obtained using homoveratric acid suggest that Pleurotus laccase could be involved in degradation of phenolic and non-phenolic lignin moieties. Histological and ultrastructural studies provided some general morphological characteristics of the fungal attack on wheat straw. Whereas a simultaneous degradation pattern was observed in straw treated with Phanerochaete chrysosporium , PI. eryngii caused partial degradation of middle lamella and separation of individual sclerenchymatic fibers. When these straw samples were subjected to refining tests, energy saving after biological treatment was the highest in the case of straw treated with PI. eryngii , which also produced the lowest substrate loss. From these results, a correlation between preferential removal of lignin, separation of sclerenchymatic fibers and pulping properties was provided during fungal treatment of wheat straw.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号