首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The genetic variation and clonal diversity of two divergent types (grey-green and yellow-green) of clonal populations of Leymus chinensis Tzvel at 14 loci were compared. Total gene diversity (HT) and the coefficient of genetic differentiation (GST) were all higher for the yellow-green type (HT = 0.270; GST =0.186) than for the grey-green type (HT = 0.250; GST = 0.157) of L. chinensis. Rare alleles usually occurred as heterozygotes rather than homozygotes and significant deviations from Hardy-Weinberg equilibrium were found only at a few loci. This indicated that these two types of populations were mainly out-crossing. Clonal diversity, evenness of clones, and mean clone size were not significantly different between the two types. We found that differences between the clone size and genetic variation of the yellow-green type of populations occurred with different climate and habitat population groups. However, for the grey-green type of populations, these genetic variations decreased under conditions of different climate and habitat population groups.  相似文献   

2.
Ancient managed landscapes provide ideal opportunities to assess the consequences of habitat fragmentation on the patterns of genetic diversity and gene flow in long-lived plant species. Using amplified fragment length polymorphism (AFLP) and allozyme markers, we quantified seed-mediated gene flow and population genetic diversity and structure in 14 populations of Myrtus communis (myrtle), a common endozoochorous shrub species of forest patches in lowland agricultural Mediterranean areas. Overall, allozyme diversity for myrtle was low (P95   =   25%; A   =   1.411; He = 0.085) compared to other known populations, and a significant portion of populations (57%) had lower levels of allelic diversity and/or heterozygosity than expected at random, as shown by simulated resampling of the whole diversity of the landscape. We found significant correlations between allozyme variability and population size and patch isolation, but no significant inbreeding in any population. Genetic differentiation among populations for both allozyme and AFLP markers was significant (ΦST = 0.144 and ΦST = 0.142, respectively) but an isolation-by-distance pattern was not detected. Assignment tests on AFLP data indicated a high immigration rate in the populations ( ca. 20–22%), likely through effective seed dispersal across the landscape by birds and mammals. Our results suggest that genetic isolation is not the automatic outcome of habitat destruction since substantial levels of seed-mediated gene flow are currently detectable. However, even moderate rates of gene flow seem insufficient in this long-lived species to counteract the genetic erosion and differentiation imposed by chronic habitat destruction.  相似文献   

3.
Habitat fragmentation is one of the greatest threats to biodiversity. Despite their importance for conservation, the genetic consequences of small-scale habitat fragmentation for bat populations are largely unknown. In this study, we linked genetic with ecological and demographic data to assess the effects of habitat fragmentation on two species of phyllostomid bats ( Uroderma bilobatum and Carollia perspicillata ) that differ in their dispersal abilities and demographic response to fragmentation. We hypothesized that population differentiation and the effect of habitat fragmentation on levels of genetic diversity will be a function of the species' mobility. We sequenced mtDNA from 232 bats caught on 11 islands in Gatún Lake, Panamá, isolated from the mainland for ca 90 yr, and in adjacent, continuous forest on the mainland. Populations of both species showed significant genetic differentiation ( F ST). Consistent with our prediction, population subdivision was lower in the highly mobile U. bilobatum ( F ST= 0.01) compared to the less vagile C. perspicillata ( F ST= 0.06), and only the latter species showed a pattern indicative of isolation by distance and, in addition, an effect of fragmentation. Genetic erosion as a result of fragmentation was also only detectable in the less mobile species, C. perspicillata , where haplotype diversity was lower in island compared to mainland populations. Our results suggest that some Neotropical bat species are prone to loss of genetic variation in response to anthropogenic small-scale habitat fragmentation. In this context, our findings point toward mobility as a good predictor of a species' vulnerability to fragmentation and altered population genetic structure.  相似文献   

4.
河流是一个连续的、流动的、独特而完整的系统,研究河流生态系统中水生植物的多样性分布格局及其影响因素对河流生态学研究具有重要意义。本文通过野外调查,研究了新疆开都河流域水生植物多样性、主要水生植物群落特征及与环境因子之间的关系,并利用水分-能量动态假说和栖息地异质性假说对该流域水生植物物种多样性的地理格局进行解释。结果表明: 开都河流域共有水生植物71种,隶属于24科39属;聚类分析可将开都河流域水生植物群落划分为10个主要群落类型,其中芦苇群落物种丰富度最高,狭叶香蒲群落和金鱼藻群落物种丰富度最低;流域水生植物群落Shannon指数与pH呈显著负相关,Simpson指数与pH、经度呈显著负相关,与海拔呈显著正相关;流域水生植物群落类型主要受海拔、水深及水温的影响;流域水生植物物种多样性随经纬度无明显变化规律。水分-能量动态假说和栖息地异质性假说共解释开都河流域水生植物多样性格局变量的31.4%,表明这两个假说对于该流域水生植物多样性格局的解释力并不高。  相似文献   

5.
The lilioid herb, Anthericum ramosum , occurs in four geographically-isolated regions (Sjælland, Skåne, Öland and Gotland) in Denmark and southern Sweden. We investigated allozyme variation at nine polymorphic loci in A. ramosum from 16 sites (33 populations) in the four regions. There was no clear overall geographic pattern of differentiation between the regions, but the southernmost Gotland and the Öland populations had similar allele frequencies, suggesting that they have had a common history. The total genetic diversity (H10t) was 0.458 and the between-region, site- and population components of diversity accounted, respectively, for 13%, 10% and 2% of the total diversity. The species is restricted to grassland habitats. Such habitats have become increasingly rare in the Sjælland and Skåne regions, where A. ramosum now has a highly fragmented distribution. Within three of the regions (Sjælland, Skane and Öland) there was a negative relationship between the extent of grassland habitat and the between-site components of genetic diversity. Öland, with its extensive grassland habitats and low levels of population disjunction, showed litde allelic differentiation between sites and the lowest between-site component of diversity (3%), suggesting that there is (or has been) extensive gene flow between sites. The between-site components of diversity were higher within Skåne (7%) and Sjaelland (12%). The high within-region GST (25%) for the fourth region, Gotland, cannot be explained in terms of recent habitat disjunction but is, instead, interpreted in terms of the restricted distribution of limestone bedrock on Gotland and the fact that die southern and northern Godand populations appear to have had different origins.  相似文献   

6.
Abstract. The spatial heterogeneity hypothesis predicts a positive relationship between habitat complexity and species diversity: the greater the heterogeneity of a habitat, the greater the number of species in that habitat. On a regional scale, this hypothesis has been proposed to explain the increases in species diversity from the poles to the tropics: the tropics are more diverse because they contain more habitats. On the local scale, the spatial heterogeneity hypothesis suggests that the tropics are more diverse because they contain more microhabitats. The positive relationship between habitat heterogeneity and species diversity, on the local scale, is well documented. In this paper, we test whether habitat heterogeneity on the local scale can explain the latitudinal gradient of species diversity on the regional scale. We determined the latitudinal gradient of species diversity of 305 species of North American grasshoppers using published distribution maps. We compared the slope of this multihabitat (regional-scale) gradient with the slope of a within-habitat (local-scale) gradient in the prairie grasslands. Our results show no significant difference between the slopes at the two scales. We tested the generality of our results by comparing multi- and within-habitat latitudinal gradients of species diversity for ants, scorpions and mammals using data from the literature. These results are in accordance with those from grasshoppers. We can therefore reject the local-scale spatial heterogeneity hypothesis as a mechanism explaining the regional-scale latitudinal gradient of species diversity. We discuss alternative mechanisms that produce this gradient.  相似文献   

7.
Theories of the differentiation of ecological communities on landscapes have typically not considered evolutionary dynamics. Here we analytically study the expected differentiation among local communities in a large metacommunity, undergoing speciation, ecological drift and intercommunity dispersal, in the context of neutral theory. We demonstrate that heterogeneity in species diversity and abundance arises among communities when local communities are small and intercommunity migration is infrequent. We propose a new measure to describe community differentiation, defined as the average correlation or the average probability (Cst) that two randomly sampled individuals of the same species within local communities are from the same ancestor. The effects of driving forces (migration, mutation, and ecological drift) are incorporated into the two-level hierarchical community structure in a finite island model of neutral communities. Community differentiation can increase the effective metacommunity size or the Hubbell's fundamental species diversity in the metacommunity by a factor (1−Cst)−1. Significant community differentiation arises when Cst≠0. Intercommunity migration promotes species diversity in local communities but reduce species diversity in the metacommunity. In either the finite or infinite island case, one can estimate the number of intercommunity migrants by using multiple local community datasets when the speciation is negligible in the neutral local communities, or by using the metacommunity dataset when the speciation is included in the local neutral communities. These results highlight the significance of the evolutionary mechanisms in generating heterogeneous communities in the absence of complicated ecological processes on large landscapes.  相似文献   

8.
Determinants of avian species richness at different spatial scales   总被引:10,自引:1,他引:9  
ABSTRACT. Studies of factors influencing avian biodiversity yield very different results depending on the spatial scale at which species richness is calculated. Ecological studies at small spatial scales (plot size 0.0025–0.4 km2) emphasize the importance of habitat diversity, whereas biogeographical studies at large spatial scales (quadrat size 400–50,000 km2) emphasize variables related to available energy such as temperature. In order to bridge the gap between those two approaches the bird atlas data set of Lake Constance was used to study factors determining avian species diversity at the intermediate spatial scales of landscapes (quadrat size 4–36 km2). At these spatial scales bird species richness was influenced by habitat diversity and not by variables related to available energy probably because, at the landscape scale, variation in available energy is small. Changing quadrat size between 4 and 36 km2, but keeping the geographical extension of the study constant resulted in profound changes in the degree to which the amount of different habitat types was correlated with species richness. This suggests that high species diversity is achieved by different management regimes depending on the spatial scale at which species richness is calculated. However, generally, avian species diversity seems to be determined by spatial heterogeneity at the corresponding spatial scale. Thus, protecting the diversity of landscapes and ecosystems appears to ensure also high levels of species diversity.  相似文献   

9.
European agricultural landscapes are mosaics of intensively cultivated areas and semi-natural elements. Although comprising only a small fraction of the total area, semi-natural elements provide habitat for most of the landscape biodiversity. Agricultural intensification has increasingly fragmented semi-natural elements and species numbers are in decline. Insights into the effects of landscape structure on species’ distributions within and among semi-natural habitats are needed to conserve biodiversity in agricultural landscapes more effectively. We investigated the landscape- and habitat-specific diversity partitions of wild bees, true bugs, and carabid beetles in two differently structured agricultural landscapes in Switzerland. In each landscape, we partitioned the total species diversity (γ) into its additive components within (P) and among patches (βP) and among habitats (βH). In the landscape characterized by a patchy, isolated distribution of habitat elements, among-patch diversity (βP) explained 44% of the total species richness (γ) and was significantly higher than expected under a random distribution of samples among habitat patches; in the landscape with higher habitat connectivity, among-patch diversity (βP) comprised 32% of the total species richness (γ) and did not differ from the random expectation. Habitat-specific within-patch contributions to species richness were similarly low across habitat types (P=23–24%) in the patchy landscape, whereas in the more connected landscape within-patch partitions tended to be higher and differed among habitat types (P=22–38%). Functionally different groups of bees, true bugs, and carabids also responded differently to landscape structure in a manner that was consistent with known differences in resource specialization and dispersal ability. Differences in diversity partitions among landscapes and taxa indicate the need for flexible conservation strategies. Conservation of habitat-specific diversity may require more habitat patches in landscapes that have lower habitat connectivity and low within-patch diversity (P) than in landscapes with higher within-patch diversity (P).  相似文献   

10.
Californian vernal pools, a patchy, island-like habitat, are endangered as a result of habitat destruction. Conservation of the remaining vernal pool habitat is essential for the persistence of several endangered species. We present the first study examining DNA-level genetic diversity within and among populations of a vernal pool plant species. We investigated genetic variation across eight populations of the US federally endangered vernal pool endemic Lasthenia conjugens (Asteraceae) using intersimple sequence repeat (ISSR) markers. Genetic diversity within the species was high (Nei's gene diversity estimate was 0.37), with moderate differentiation among populations (Bayesian F ST analog of 0.124). Using an amova analysis, we found that the majority of the genetic variation (84%) was distributed within populations. There is a significant relationship between geographical distance and pairwise genetic differentiation as measured by the Bayesian estimate θB. The alternative hypotheses of historic geological processes within the Central Valley and contemporary gene flow are discussed as explanations of the data. Because of the vulnerability of the populations, we calculated a probability of loss for rare alleles (fragments) in the populations. Calculations show that sampling only one of the eight populations for ex-situ conservation or restoration will capture approximately 54% of the sampled rare fragments. We believe that one of the sampled populations has become extinct since it was sampled. When removing this population from the above-mentioned calculations, sampling one population will capture only 41.3% of the sampled rare fragments. We recommend sampling strategies for future conservation and restoration efforts of L. conjugens.  相似文献   

11.
Within-population gene diversity (HS) was estimated (using allozyme markers) for 16 populations of the perennial, outcrossing plant, Gypsophila fastigiata , on the Baltic island of Öland. The populations were characterized by data on extent, density, life-stages, and habitat diversity. Populations were classed as central or peripheral in relation to the distribution of "alvar" (habitats with shallow, calcareous soils on limestone bedrock) on southern Öland. Three minimal adequate models were used to explain HS and the proportions of juveniles and dead adults. In the first model, HS was significantly lower in peripheral populations and there were no significant additional effects of other explanatory variables. The lower diversity in peripheral populations can be explained by a combination of genetic drift (in populations that vary in size in response to habitat fragmentation) and lower levels of interpopulation gene flow than in central populations. In the two life-stage models, peripheral populations had significantly larger proportions of both juveniles and dead adults – indicating a greater demographic turnover than in the central populations. There were also significant effects of HS and species diversity on the proportion of juveniles. The central or peripheral position of populations is the strongest predictor of both within-population gene diversity and life-stage dynamics in Öland G. fastigiata .  相似文献   

12.
The lack of predictability in litter-mix studies may result from the low correlation between species number and the traits that drive the processes under observation. From the standpoint of litter-quality-dependent ecological processes, we propose that litter chemical qualities are functional traits and introduce a multivariate index of chemical diversity (CDQ) based on Rao's quadratic entropy to describe the compositional heterogeneity of litter and foliar mixtures. Using published data from temperate and tropical forest systems to illustrate the relationship between species richness and chemical diversity, we show the variation of chemical diversity based on profiles of total nutrient concentrations (N, P, K, Ca and Mg) with species richness. We discuss how this behavior may explain the idiosyncratic responses exhibited in litter-mix experiments and how it may contribute to the observed dominance of species identity over species diversity. As a summary of resource heterogeneity relevant to detritivore and microbial processes, the chemical diversity index is potentially a better predictor of diversity effects on nutrient dynamics than species richness. Finally, we propose the use of infrared spectroscopy techniques for a rapid and more comprehensive determination of foliar and litter chemical composition to provide a more information-rich index.  相似文献   

13.
G. Rowe  T. J. C. Beebee  T. Burke 《Oikos》2000,88(3):641-651
Although it is widely recognised that spatial subdivision of populations is common in nature, there is no consensus as to how metapopulation dynamics affect genetic diversity. We investigated the genetic differentiation of natterjack toads, Bufo calamita , in three regions of Britain where habitat continuity indicated the likely occurrence of extensive metapopulations. Our intention was to determine whether genetic analysis supported the existence of metapopulation structures, if so of what type, and to identify barriers to migration between subpopulations. Allele frequencies were determined across eight polymorphic microsatellite loci for a total of 24 toad subpopulations at three separate sites. Genetic differentiation was assessed using five measures of genetic distance, notably F ST , R ST , Nei's standard distance D s , Δμ2 and the Cavalli-Sforza chord distance D c . B. calamita exhibited small but significant levels of genetic differentiation between subpopulations in all three study areas, and genetic and geographic distance correlations indicated isolation-by-distance effects in all three cases. The effects on correlation strengths of compensation for positive (sea, rivers, urban development) and negative (pond clusters) barriers to toad migration between the subpopulations in each area were also determined. D c , a measure which assumes that differentiation is caused by drift with negligible mutation effect, yielded the most plausible interpretation of metapopulation structures. Overall the patterns of genetic variation suggested the existence of a mixed metapopulation model for this species, with high levels of gene flow compatible with one version of the classical model but often supported by particularly stable subpopulations as in the mainland-island model.  相似文献   

14.
The Dunes Sagebrush-Lizard (Sceloporus arenicolus) is a North American species endemic to sand-shinnery oak habitats of the Mescalero and Monahans sand dunes in eastern New Mexico and western Texas. This lizard is listed as Endangered in New Mexico and exhibits habitat specificity at several geographic scales. Dunes Sagebrush-Lizards are only found in topographically complex shinnery oak (Quercus havardii) dominated landscapes within their small geographic distribution and are not found in surrounding human-altered landscapes. Within suitable sand-shinnery oak habitat, individuals predominantly occupy non-vegetated sand dune blowouts and utilize blowouts with particular physical characteristics due to thermoregulatory, reproduction, and foraging requirements. Here, we examined historical and contemporary patterns of genetic differentiation with respect to the current distribution of suitable habitat at multiple spatial scales using mitochondrial DNA sequences and microsatellite data from individuals throughout the entire range. We found three genetic clusters of individuals generally concordant with geographic regions and low sequence divergence at mitochondrial loci suggesting a recent origin of these populations. We also found high levels of genetic structure at microsatellite loci among populations within each of these groups indicating restricted gene flow at intermediate scales. Despite high habitat specificity, we did not detect genetic structure among sand blowouts at finer spatial scales. Within each population, matrices comprised of both sand blowouts and vegetated shinnery oak patches are necessary for genetic connectivity, but the fine scale spatial arrangement of blowouts may not be as critical. We discuss our results with respect to the scale of landscape heterogeneity and habitat connectivity and consider the conservation implications for this threatened taxon.  相似文献   

15.
Abstract: The biennial Gentianella austriaca (A. & J. Kern.) Holub, representing a nutrient-poor grassland taxon of low competition power, is becoming rare in the lowlands of eastern Austria due to changes in land use. To estimate effects of isolation and decreasing population sizes, as well as evolutionary relationships, we investigated variation in isozymes and morphological characters within and between seven populations from the mountains, foothills, and lowlands. Additionally, data on reproduction, habitat, germination and population sizes were collected to examine possible causes of variation and differentiation. We found highest genetic diversity (va, vgo) in the lowland and foothill populations, and highest genetic differentiation (Dja, Djgo) (i.e., lowest genetic identity: Nei's I) in the lowland populations. The low diversity of the mountain populations might indicate that they are derived from lowland populations. Surprisingly, highest genetic diversity was found in the smallest population. This indicates that in small remnant populations of taxa with a mixed mating system, genetic diversity might be maintained even after many generations after reducing population size dramatically. We found some relationship between genetic diversity and high fitness (germination success) and (inversely) with seed size. Plant size and reproductive success are negatively correlated with altitude, whereas flower size and seed size seem to be subject to other forces of selection. Combining all morphometric, reproductive and genetic traits, the lowland populations are most strongly differentiated and therefore of highest conservation priority.  相似文献   

16.
Mexico has higher mammalian diversity than expected for its size and geographic position. High environmental hetero geneity throughout Mexico is hypothesized to promote high turnover rates (β‐diversity), thus contributing more to observed species richness and composition than within‐habitat (α) diversity. This is true if species are strongly associated with their environments, such that changes in environmental attributes will result in changes in species composition. Also, greater heterogeneity in an area will result in greater species richness. This hypothesis has been deemed false for bats, as their ability to fly would reduce opportunities for habitat specialization. If so, we would expect no significant relationships between 1) species composition and environmental variables, 2) species richness and environmental heterogeneity, 3) β‐diversity and environmental heterogeneity. We tested these predictions using 31 bat assemblages distributed across Mexico. Using variance partitioning we evaluated the relative contribution of vegetation, climate, elevation, horizontal heterogeneity (a variate including vegetation, climate, and elevational heterogeneity), spatial variation (lat‐long), and vertical hetero geneity (of vegetation strata) to variation in bat species composition and richness. Variation in vegetation explained 92% of the variation in species composition and was correlated with all other variables examined, indicating that bats respond directly to habitat composition and structure. Beta‐diversity and vegetational heterogeneity were significantly correlated. Bat species richness was significantly correlated with vertical, but not horizontal, heterogeneity. Nonetheless, neither horizontal nor vertical heterogeneity were random; both were related to latitude and to elevation. Variation in bat community composition and richness in Mexico were primarily explained by local landscape heterogeneity and environmental factors. Significant relationships between β‐diversity and environmental variation reveal differences in habitat specialization by bats, and explain their high diversity in Mexico. Understanding mechanisms acting along environmental or geographic gradients is as important for understanding spatial variation in community composition as studying mechanisms that operate at local scales.  相似文献   

17.
选择合适的物种多样性测度指标与多样性指数是进行群落多样性研究的基础工作。依据塔里木河上游荒漠河岸林样地调查资料,分别采用重要值、盖度和多度为测度指标比较了反映群落物种丰富度、多样性、均匀度和优势度12种多样性指数与异质生境群落多样性特征,并对多样性指数进行了相关分析与评价。结果表明,荒漠河岸林异质生境群落物种组成种类差异明显,轮南镇胡杨群落物种丰富度与多样性指数最高,水工三连灰胡杨群落多样性最低,土壤水盐的空间异质性是引起荒漠植被空间分布与群落多样性差异的主导因子。表征荒漠群落多样性以重要值和盖度为测度指标优于多度指标,其中以重要值为测度指标来反映群落多样性更为合理。相关与主成分分析表明,均匀度与多样性指数间的相关性高于丰富度与多样性指数,且多样性指数受均匀度、优势度指数受丰富度影响较大,反映出荒漠河岸林群落多样性主要决定于物种分布的均匀程度。12种多样性指数中Margalef丰富度指数(Ma)、Shannon-Weiner多样性指数(H)与Simpson多样性指数(D)能客观真实地反映异质生境荒漠植物群落多样性。同时,针对高度生境异质性的荒漠植物群落,还应综合考虑群落物种组成与生境特征,选择合适的多样性指数组合可更客观地反映荒漠河岸林群落多样性变化。  相似文献   

18.
This study aimed to better document the diversity and distribution patterns of vascular cryophilous species across major habitat types in a high-elevation Mediterranean system in central Italy. The research addressed the following questions: (a) whether different habitats support similar levels of biodiversity in terms of total vascular plants richness and cryophilous species richness, and (b) how each habitat contributes to the total cryophilous species diversity. A random stratified sampling approach based on a habitat map was applied to construct rarefaction curves for overall cryophilous species richness and habitat type-specific cryophilous richness. Rarefaction curves were also constructed for all-species and exclusive species. To determine whether the targeted species represented a constant proportion of all species, the ratio between the rarefaction curves of the cryophilous species and all species was also calculated. The results highlight the importance of the different habitat types in overall and cryophilous species conservation because these different habitat types had progressively higher richness values. At the regional scale, steep slopes had the highest species diversity, the greatest exclusive species richness and a steep rarefaction curve. The diversity pattern of cryophilous taxa was not related to the general pattern of total species richness, with these species being more common in three habitat types with extreme environmental conditions: ridges, cliffs, and screes. For the establishment of successful biodiversity conservation programs, it is imperative to include species-poor habitats containing a high proportion of cryophilous species, which are considered to be threatened by climate warming.  相似文献   

19.
We studied the relationship between genetic diversity of the subterranean Gansu zokor Myospalax cansus and habitat variability in the Loess Plateau, Qinghai Province, China. We used a combination of geographic information systems and molecular techniques to assess the impact of habitat composition and human activities on the genetic diversity of zokor populations in this semi-natural landscape. Although they occurred relatively infrequently in the landscape, woodland and high-coverage grassland habitats were the main positive contributors to the genetic diversity of zokor populations. Rural residential land, plain agricultural land and low-coverage grassland had a negative effect on genetic diversity. Hilly agricultural land and middle-coverage grassland had little impact on zokor genetic diversity. There were also interactions between some habitat types, that is, habitat types with relatively better quality together promoted conservation of genetic diversity, while the interaction between (among) bad habitat types made situations worse. Finally, habitat diversity, measured as patch richness and Shannon's diversity index, was positively correlated with the genetic diversity. These results demonstrated that: (1) different habitat types had different effects on the genetic diversity of zokor populations and (2) habitat quality and habitat heterogeneity were important in maintaining genetic diversity. Habitat composition was closely related to land use thus emphasizing the importance of human activities on the genetic diversity of subterranean rodent populations in this semi-natural landscape. Although the Gansu zokor was considered to be a pest species in the Loess Plateau, our study provides insights for the management and conservation of other subterranean rodent species.  相似文献   

20.
In the Southern Alps, the role of landscape context on meadows plant diversity was evaluated using a multi-model information theoretic approach and five competing hypotheses of landscape context factors: habitat quality (H1), matrix quality (H2), habitat change (H3), matrix quality change (H4) and topography-environmental conditions (H5)- measured at three spatial scales (125, 250 and 500 m). Shannon diversity index and species richness represented plant diversity obtained in 34 plots (100 m2 size). Landscape context affected plant diversity measures differently. Matrix quality change at larger scale (500 m) was the most supported hypothesis explaining Shannon diversity index, while species richness responded mostly to topography-environmental conditions in the immediate surroundings (125 m). No effects of present-day habitat and matrix quality (H1 and H2) were found. Matrix quality change affected positively Shannon diversity index through an effect of landscape neighbourhood context on farming management practices. Due to the importance of exposure and inclination of slopes, topography-environmental conditions influenced species richness mostly through energy-driven processes and farming management strategies. In terms of scale, matrix quality change was the strongest hypothesis explaining Shannon diversity index at all scales, while the underlying process affecting species richness changed with scale (H5 or H3). Overall, landscape context explained only 25–28 % of the variation in plant diversity, suggesting that landscape management may support biodiversity conservation when comprised in a global strategy including farming practices. In the study area, change in landscape diversity may be a good indicator for Shannon diversity index and south-eastern facing meadows should be preserved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号