首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Major hepatic resection in cirrhotic patients is associated with impaired liver regeneration and failure, leading to high peri-operative mortality. In this work, the causes of defective regeneration in cirrhotic liver and the utility of IL-6 treatment were investigated in an experimental model combining cirrhosis and partial hepatectomy in the rat. Relative to normal controls, decompensated cirrhotic animals showed decreased survival, while compensated cirrhotic animals showed similar survival but reduced hepatic DNA synthesis and newly regenerated liver mass amount. Defective liver regeneration was associated with a decrease in STAT3 and NF-kB activation, consistent with an increased accumulation of their respective inhibitors PIAS3 and IkBα, and with a decreased induction of Bcl-xL. Treatment with recombinant IL-6 enhanced survival of decompensated cirrhotic animals, while it did not affect survival of compensated cirrhotic animals but sustained liver regeneration, by restoring STAT3 and NF-kB activation and Bcl-xL induction to the levels found in normal controls. The pro-growth effects exerted by IL-6 treatment in cirrhotic liver were attained also at low, pharmacologically acceptable doses. In conclusion, our results suggest that IL-6 treatment may be therapeutic in major resection of cirrhotic liver.  相似文献   

3.
When hepatocyte proliferation is stimulated in the liver by partial hepatectomy, messenger RNAs coding for fibrinogen, actin, c-myc and topoisomerase I are rapidly accumulated. We distinguish an early phase of accumulation (0-3 h after partial hepatectomy) which is also observed after a sham operation for the four genes, and during inflammation produced by Freund's adjuvant in the case of fibrinogen and c-myc genes. The hepatic response to inflammation appears therefore to mimic events characteristic of the G0/G1 transition, such as the accumulation of the c-myc mRNA. The late phase of mRNA accumulation (beyond 3 h after partial hepatectomy) is typical of liver regeneration. The level of c-myc mRNA is transiently increased (20-fold over normal) 20 h after partial hepatectomy, that is, at the time of DNA synthesis. Topoisomerase-I mRNA level increases between 3 and 24 h after partial hepatectomy (5-10-fold over normal). These results suggest that accumulation of c-myc and topoisomerase-I mRNAs is associated with DNA replication in regenerating liver.  相似文献   

4.
Hepatic pit cells are a population of large granular lymphocytes that substantially contribute to hepatic immunity. Studies have proven that pit cells have a role in liver regeneration, but the details of the relationship between pit cells and liver regeneration is not clear at present. We subjected rats to a two-third hepatectomy; pit cells with high purity were obtained with Percoll density centrifugation and immunomagnetic bead methods, and the changes in mRNA levels in pit cells from the regenerating liver were monitored up to 168 h using a Rat Genome 230 2.0 Array composed of 25,020 distinct rat liver cDNA clones. Of the 25,020 genes analyzed, 612 known and 358 unknown genes were identified to be associated with liver regeneration. The 612 known genes are classified into up-regulation and down-regulation patterns based on the expression levels; they primarily participate in at least 23 biological activities based on gene ontology analysis. Together with gene function enrichment analysis, cytokines and a growth factor-mediated pathway in pit cells were activated at an early phase of liver regeneration; pit cell proliferation occurred from 24-72 h after liver hepatectomy; the machinery of pit cell differentiation commenced early and came into play late; an immune/inflammatory response was enhanced late. Expression pattern analysis of functionally classified genes in pit cells can give insights into the relationship between pit cells and liver regeneration.  相似文献   

5.
6.
Hepatocyte Growth Factor (HGF) is a potent complete mitogen for primary cultures of hepatocytes in vitro. There is strong evidence that this novel growth factor may mediate hepatocyte regeneration after liver damage. We have shown previously that the amount of immunoreactive HGF markedly increases in the serum of rats soon after partial hepatectomy or CCl4 administration. In the present paper, we demonstrate that the level of HGF mRNA in rat liver also dramatically increases from 3 to 6 hours post hepatectomy, peaks at 12 hr and gradually returns to undetectable levels by 72 to 96 hours post hepatectomy. In separate experiments, DNA synthesis (in vivo) was determined in rat liver remnants after partial hepatectomy. DNA synthesis peaked 24 hr after hepatectomy, 12 hr after the peak of HGF mRNA expression. These results suggest that HGF may be one of the major early signals that triggers hepatocyte proliferation during liver regeneration.  相似文献   

7.
8.
Using a titration procedure, we measured the proportion of alpha-fetoprotein (AFP) and albumin mRNA in normal, regenerating, and preneoplastic rat livers. AFP mRNA constitutes approximately 0.006% of the polysomal polyadenylated RNA of normal livers and this proportion increases only slightly before the onset of DNA synthesis in liver regeneration induced by partial hepatectomy or CCl4 injury. In either model of liver regeneration, the proportion of AFP mRNA in polysomal RNA is highest approximately 24 h after the peak of DNA synthesis. The increase in the proportion of AFP mRNA in polysomal RNA is relatively small during liver regeneration (2-4-fold) but is larger (30-50-fold) in preneoplastic livers of rats fed a choline-deficient diet containing 0.1% ethionine. In contrast to those changes in AFP mRNA, albumin mRNA levels remain unchanged during liver regeneration and double in preneoplastic livers. Our results indicate that the concept of "retrodifferentiation" as it applies to liver regeneration and certain types of hepatic neoplasia needs reevaluation.  相似文献   

9.
Liver regeneration in response to various forms of liver injury is a complex process, which ultimately results in restoration of the original liver mass and function. Because the underlying mechanisms that initiate this response are still incompletely defined, this study was aimed to identify novel factors. Liver genes that were up-regulated 6 h after 70% hepatectomy (PHx) in the rat were selected by cDNA subtractive hybridization. Besides known genes associated with cell proliferation, several novel genes were isolated. The novel gene that was most up-regulated was further studied. Its mRNA showed a liver-specific expression and encoded a protein comprising 367 amino acids. The mouse and human cDNA analogues were also isolated and appeared to be highly homologous. The human gene analogue was located at an apolipoprotein gene cluster on chromosome 11q23. The protein encoded by this gene had appreciable homology with apolipoproteins A-I and A-IV. Maximal expression of the gene in the rat liver and its gene product in rat plasma was observed 6 h after PHx. The protein was present in plasma fractions containing high density lipoprotein particles. Therefore, we have identified a novel apolipoprotein, designated apolipoprotein A-V, that is associated with an early phase of liver regeneration.  相似文献   

10.
Hepatic expression of the protooncogenes c-fos and c-myc occurs within 2 h after partial hepatectomy, and these immediate early genes are thought to prime the hepatocytes for subsequent proliferation. To examine whether such gene activation occured in the setting of hepatocyte proliferation after toxic liver injury, protooncogene expression was examined during the regenerative response following liver injury from carbon tetrachloride (CCI4) or galactosamine (GaIN). The pattern of protooncogene expression after CCI4 mirrored that seen after partial hepatectomy, with rises in c-fos and c-myc mRNA content within 2 h, and then a rapid return to baseline levels. In contrast, early c-fos and c-myc expression did not occur after GaIN injury. Instead GaIN-induced regeneration led to a delayed and prolonged c-fos an c-myc activation which peaked 24–48 h after injury. Increase in c-jun, jun-B, and jun-D mRNA levels also occured in both models at times similar to the rises of c-fos and c-myc expression. Although the timing of DNA synthesis was identical after GaIN or CCI4 treatment the proliferative response after GaIN injury was significantly less than that of CCI4, and marked by the histologic appearance of oval cells. The coadministration of 2-acetylaminofluorene, an inhibitor of differentiated hepatocyte proliferation, together with CCI4 altered the usual pattern of post-CCI4 protooncogene expression to one resembling that seen after GaIN injury. Thus, the timing of protooncogene expression during liver regeneration may vary considerably. These variations may influence the nature of the proliferative response in terms of which cell types(s) proliferates, and the amount of regeneration that ensures. © 1993 Wiley-Liss, Inc.  相似文献   

11.
The role of hepatocytes and oval cells in liver regeneration and repopulation   总被引:44,自引:0,他引:44  
The liver has the unique capacity to regulate its growth and mass. In rodents and humans, it grows rapidly after resection of more than 50% of its mass. This growth process, as well as that following acute chemical injury is known as liver regeneration, although growth takes place by compensatory hyperplasia rather than true regeneration. In addition to hepatocytes and non-parenchymal cells, the liver contains intra-hepatic "stem" cells which can generate a transit compartment of precursors named oval cells. Liver regeneration after partial hepatectomy does not involve intra or extra-hepatic (hemopoietic) stem cells but depends on the proliferation of hepatocytes. Transplantation and repopulation experiments have demonstrated that hepatocytes, which are highly differentiated and long-lived cells, have a remarkable capacity for multiple rounds of replication. In this article, we review some aspects of the regulation of hepatocyte proliferation as well as the interrelationships between hepatocytes and oval cells in different liver growth processes. We conclude that in the liver, normally quiescent differentiated cells replicate rapidly after tissue resection, while intra-hepatic precursor cells (oval cells) proliferate and generate lineage only in situations in which hepatocyte proliferation is blocked or delayed. Although bone marrow stem cells can generate oval cells and hepatocytes, transdifferentiation is very rare and inefficient.  相似文献   

12.
13.
Hepatocyte Growth Factor (HGF), which is a most potent growth factor for primary cultured hepatocytes, may act as a trigger for liver regeneration. After 70% of the rat liver was removed, HGF activity in the remnant liver began to increase within 24 h. In parallel with the activity, the HGF mRNA level in the remnant liver increased at 12 h after the operation and reached a maximum at 24 h. Increases in HGF activity and in the mRNA level were much lower and later than those in the liver of rats with hepatitis induced with CCl4. However, the first increase in HGF activity in the plasma of hepatectomized rats was noted 3 h after the resection, that is much earlier than the initial DNA synthesis in the remnant liver. Thus, while HGF production was induced in the remnant liver during regeneration after partial hepatectomy, the initial trigger may not be the liver-derived HGF, rather, it may be HGF derived from extrahepatic organs, via blood circulation.  相似文献   

14.
Although the complement system has been implicated in liver regeneration after toxic injury and partial hepatectomy, the mechanism or mechanisms through which it participates in these processes remains ill-defined. In this study, we demonstrate that complement activation products (C3a, C3b/iC3b) are generated in the serum of experimental mice after CCl(4) injection and that complement activation is required for normal liver regeneration. Decomplementation by cobra venom factor resulted in impaired entry of hepatocytes into S phase of the cell cycle. In addition, livers from C3-deficient (C3(-/-)) mice showed similarly impaired proliferation of hepatocytes, along with delayed kinetics of both hepatocyte hyperplasia and removal of injured liver parenchyma. Restoration of hepatocyte proliferative capabilities of C3(-/-) mice through C3a reconstitution, as well as the impaired regeneration of C3a receptor-deficient mice, demonstrated that C3a promotes liver cell proliferation via the C3a receptor. These findings, together with data showing two waves of complement activation, indicate that C3 activation is a pivotal mechanism for liver regeneration after CCl(4) injury, which fulfills multiple roles; C3a generated early after toxin injection is relevant during the priming of hepatocytes, whereas C3 activation at later times after CCl(4) treatment contributes to the clearance of injured tissue.  相似文献   

15.
Liver mRNA levels of two acute phase reactant (APR) proteins, alpha 2-HS glycoprotein (a major negative APR) and alpha 1-acid glycoprotein (a major positive APR) were measured in male rats at different times after the administration of turpentine, of tumor necrosis factor, or following partial hepatectomy. In every case, a marked decrease in mRNA levels of alpha 2-HS glycoprotein was observed which reached a maximum at 24 h. A concomitant increase of alpha 1-acid glycoprotein mRNA levels was observed under the same conditions. These results indicate that the decreased levels of alpha 2-HS glycoprotein induced by the acute-phase response following inflammatory mediators and partial hepatectomy are due to a down-regulation of the gene expression of this protein in rat liver.  相似文献   

16.
Hepatocyte growth factor (HGF) has been shown to be indispensable for liver regeneration because it serves as a main mitogenic stimulus driving hepatocytes toward proliferation. We hypothesized that ablating HGF in adult mice would have a negative effect on the ability of hepatocytes to regenerate. Deletion of the HGF gene was achieved by inducing systemic recombination in mice lacking exon 5 of HGF and carrying the Mx1-cre or Cre-ERT transgene. Analysis of liver genomic DNA from animals 10 days after treatment showed that a majority (70–80%) of alleles underwent cre-induced genetic recombination. Intriguingly, however, analysis by RT-PCR showed the continued presence of both unrecombined and recombined forms of HGF mRNA after treatment. Separation of liver cell populations into hepatocytes and non-parenchymal cells showed equal recombination of genomic HGF in both cell types. The presence of the unrecombined form of HGF mRNA persisted in the liver in significant amounts even after partial hepatectomy (PH), which correlated with insignificant changes in HGF protein and hepatocyte proliferation. The amount of HGF produced by stellate cells in culture was indirectly proportional to the concentration of HGF, suggesting that a decrease in HGF may induce de novo synthesis of HGF from cells with residual unrecombined alleles. Carbon tetrachloride (CCl4)-induced regeneration resulted in a substantial decrease in preexisting HGF mRNA and protein, and subsequent PH led to a delayed regenerative response. Thus, HGF mRNA persists in the liver even after genetic recombination affecting most cells; however, PH subsequent to CCl4 treatment is associated with a decrease in both HGF mRNA and protein and results in compromised liver regeneration, validating an important role of this mitogen in hepatic growth.  相似文献   

17.
18.
Vascular endothelial growth factor and angiopoietin in liver regeneration   总被引:24,自引:0,他引:24  
Liver architecture remodeling following partial hepatectomy (PHx) involves the formation of a complex network of liver sinusoids through which the blood flows. The present study examines the involvement of vascular endothelial growth factor (VEGF) and angiopoietin-1 (ang-1) during liver regeneration. Following PHx, VEGF and ang-1 mRNA levels increase, followed by gradual return to baseline levels. RT-PCR analysis of VEGF mRNA reveals three isoforms, VEGF120, VEGF164 and VEGF188. Of the three, VEGF188 is the predominant isoform, VEGF120 being the less abundant. Although VEGF mRNA fluctuates following PHx, the relative expression of each isoform remains the same throughout the recovery process. The level of neuropilin-1, an accessory receptor of VEGF to main receptor corresponds with that of VEGF and ang-1. We have previously demonstrated the capacity of exogenous VEGF165 to stimulate liver cell proliferation following PHx. We now report similar effect using VEGF121, further demonstrating the benefit of manipulating growth factors where such an intervention is required.  相似文献   

19.
20.
We examined the expression of perchloric acid-soluble protein (PSP) during liver regeneration after partial hepatectomy (PH) in rats. Liver regeneration was almost complete at 7-d after PH. Expression of PSP protein and mRNA decreased and then gradually increased during liver regeneration. An immunohistochemical study showed that PSP is distributed in cytosol and nuclei in normal liver, but localization in the nuclei was not be recognized in the regenerated liver.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号