首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
An oft-cited nutritional advantage of large body size is that larger animals have lower relative energy requirements and that, due to their increased gastrointestinal tract (GIT) capacity, they achieve longer ingesta passage rates, which allows them to use forage of lower quality. However, the fermentation of plant material cannot be optimized endlessly; there is a time when plant fibre is totally fermented, and another when energy losses due to methanogenic bacteria become punitive. Therefore, very large herbivores would need to evolve adaptations for a comparative acceleration of ingesta passage. To our knowledge, this phenomenon has not been emphasized in the literature to date. We propose that, among the extant herbivores, elephants, with their comparatively fast passage rate and low digestibility coefficients, are indicators of a trend that allowed even larger hindgut fermenting mammals to exist. The limited existing anatomical data on large hindgut fermenters suggests that both a relative shortening of the GIT, an increase in GIT diameter, and a reduced caecum might contribute to relatively faster ingesta passage; however, more anatomical data is needed to verify these hypotheses. The digestive physiology of large foregut fermenters presents a unique problem: ruminant-and nonruminant-forestomachs were designed to delay ingesta passage, and they limit food intake as a side effect. Therefore, with increasing body size and increasing absolute energy requirements, their relative capacity has to increase in order to compensate for this intake limitation. It seems that the foregut fermenting ungulates did not evolve species in which the intake-limiting effect of the foregut could be reduced, e.g. by special bypass structures, and hence this digestive model imposed an intrinsic body size limit. This limit will be lower the more the natural diet enhances the ingesta retention and hence the intake-limiting effect. Therefore, due to the mechanical characteristics of grass, grazing ruminants cannot become as big as the largest browsing ruminant. Ruminants are not absent from the very large body size classes because their digestive physiology offers no particular advantage, but because their digestive physiology itself intrinsically imposes a body size limit. We suggest that the decreasing ability for colonic water absorption in large grazing ruminants and the largest extant foregut fermenter, the hippopotamus, are an indication of this limit, and are the outcome of the competition of organs for the available space within the abdominal cavity. Our hypotheses are supported by the fossil record on extinct ruminant/tylopod species which did not, with the possible exception of the Sivatheriinae, surpass extant species in maximum body size. In contrast to foregut fermentation, the GIT design of hindgut fermenters allows adaptations for relative passage acceleration, which explains why very large extinct mammalian herbivores are thought to have been hindgut fermenters.  相似文献   

2.
Digestion is an important process in understanding the feeding ecology of animals. We examined digesta passage time, digestibility, and total gut fill in Japanese macaques (Macaca fuscata; n = 4) under 4 dietary conditions representing the seasonal and regional variations in the diets of wild populations to determine the effects of food type and food intake on these digestive features. Food type is associated with mean retention time (MRT), digestibility, and total gut fill. Dry matter intake (DMI) of food correlates positively with total gut fill but not with MRT or digestibility. Conversely, indigestible DMI affected MRT negatively. Thus, when Japanese macaques consume high-fiber foods, MRT becomes shorter and digestibility is lower than when eating low-fiber foods. Moreover, macaques experience increases in total gut fill when they consume high-fiber diets or a large amount of food. Japanese macaques may excrete difficult-to-digest food components quickly; they nevertheless buffer an increase in food intake by an increase in gut fill. Our study offers new insights into the relationship between feeding ecology and nutritional physiology in primates by simultaneously examining the effects of food type and intake level on MRT and digestibility.  相似文献   

3.
In order to know the bioenergetic effect of leaf eating in Japanese monkeys experiments were conducted on caged animals. Two monkeys from the Koshima troop were fed with leaves in a cage shortly after their capture. The monkeys were tested to determine in what duration they could fulfill their daily energy requirements by solely leaf eating or by solely wheat eating. Twelve hours of feeding solely on leaves did not fulfill the monkeys' maximum daily intake, whereas 4 hr of feeding solely on wheat satisfied their daily energy requirements. The ratio of the daily intake to the daily energy consumption was 90% for leaf eating and 120% for wheat eating. It is difficult for Japanese monkeys to fulfill their daily energy requirements by leaf eating only. Thus, the combination of fruits (nuts) and leaves must be necessary for their energy intake. These facts are to be considered in the studies of feeding activity, food abundance, or the home range size.  相似文献   

4.
Similar to other primate species, captive cynomolgus macaques (Macaca fascicularis) are prone to becoming overweight. The relationship between body condition and feeding behaviour in group-housed animals has not been reported. This study evaluated the effect of daily feeding routines on behaviour patterns in cynomolgus macaques to determine whether overweight macaques displayed different behaviours and activity levels. In this prospective observational study, 16 macaques (m = 4, f = 12) from four separate troops (n = 4 per troop) were selected from a colony of 165 animals. Observational data were collected over six months during morning and afternoon feedings by scan sampling. Behaviours of interest included foraging, eating, aggressive and positive social interactions, inactivity and physical activities. Multivariable mixed logistic regression modelling was used for data analysis. Results indicated that overweight animals were more likely to be inactive, dominant animals had increased probabilities of eating compared with non-dominants, and aggressive behaviours were more likely to occur in the morning and before feeding, suggesting feeding anticipation. Positive social interaction before feeding was seen and may be a strategy used to avoid aggressive encounters around food resources. Individual animal caregivers had an unintentional impact on behaviour, as decreased eating and an increase in inactivity were noted when certain individuals fed animals. These findings illustrate the complexities of feeding group-housed cynomolgus macaques to avoid overweight body condition. Feeding routines may require more care and attention to distribute food in a way that ensures equitable food intake among troop animals, while not disturbing group cohesion.  相似文献   

5.
An assumption based on the Jarman–Bell principle suggests a positive relationship between body size and the digestive efficiency in animals, where smaller animals are less effective at digesting fibrous food due to shorter digesta passage. To examine the effect of body size within a species and explore a potential physiological background of ontogenetic diet shifts, we measured food intake, digestibility, digesta passage and gut fill in nine Japanese macaques, including three juveniles/subadult animals. Although these three showed a comparable digestive efficiency as the older animals on a low-fiber diet, they did not achieve the long retention times of adults in spite of similar levels of indigestible food intake and gut capacity. While the limited sample size would not allow generalized conclusions on ontogenetic digestive development in primates, this study suggests additional, yet unexplored effects other than food intake, digestion and gut capacity on digesta retention during ontogeny.  相似文献   

6.
Fluid intake rates in ants correlate with their feeding habits   总被引:2,自引:0,他引:2  
This study investigates the techniques of nectar feeding in 11 different ant species, and quantitatively compares fluid intake rates over a wide range of nectar concentrations in four species that largely differ in their feeding habits. Ants were observed to employ two different techniques for liquid food intake, in which the glossa works either as a passive duct-like structure (sucking), or as an up- and downwards moving shovel (licking). The technique employed for collecting fluids at ad libitum food sources was observed to be species-specific and to correlate with the presence or absence of a well-developed crop in the species under scrutiny. Workers of ponerine ants licked fluid food during foraging and transported it as a droplet between their mandibles, whereas workers of species belonging to phylogenetically more advanced subfamilies, with a crop capable of storing liquids, sucked the fluid food, such as formicine ants of the genus Camponotus. In order to evaluate the performance of fluid collection during foraging, intake rates for sucrose solutions of different concentrations were measured in four ant species that differ in their foraging ecology. Scaling functions between fluid intake rates and ant size were first established for the polymorphic species, so as to compare ants of different size across species. Results showed that fluid intake rate depended, as expected and previously reported in the literature, on sugar concentration and the associated fluid viscosity. It also depended on both the species-specific feeding technique and the extent of specialization on foraging on liquid food. For similarly-sized ants, workers of two nectar-feeding ant species, Camponotus rufipes (Formicinae) and Pachycondyla villosa (Ponerinae), collected fluids with the highest intake rates, while workers of the leaf-cutting ant Atta sexdens (Myrmicinae) and a predatory ant from the Rhytidoponera impressa-complex (Ponerinae) did so with the lowest rate. Calculating the energy intake rates in mg sucrose per unit time, licking was shown to be a more advantageous technique at higher sugar concentrations than sucking, whereas sucking provided a higher energy intake rate at lower sugar concentrations.  相似文献   

7.
It has been suggested that large foregut-fermenting marsupial herbivores, the kangaroos and their relatives, may be less constrained by food intake limitations as compared with ruminants, due mainly to differences in their digestive morphology and management of ingesta particles through the gut. In particular, as the quality of forage declines with increasing contents of plant fibre (cellulose, hemicelluloses and lignin; measured as neutral-detergent fibre, NDF), the tubiform foregut of kangaroos may allow these animals to maintain food intakes more so than ruminants like sheep, which appear to be limited by fibrous bulk filling the foregut and truncating further ingestion. Using available data on dry matter intake (DMI, g kg(-0.75) d(-1)), ingesta mean retention time (MRT, h), and apparent digestibility, we modelled digestible dry matter intake (DDMI) and digestible energy intake (DEI) by ruminant sheep (Ovis aries) and by the largest marsupial herbivore, the red kangaroo (Macropus rufus). Sheep achieved higher MRTs on similar DMIs, and hence sheep achieved higher DDMIs for any given level of DMI as compared with kangaroos. Interestingly, MRT declined in response to increasing DMI in a similar pattern for both species, and the association between DMI and plant NDF contents did not support the hypothesis that kangaroos are less affected by increasing fibre relative to sheep. However, when DEI was modelled according to DDMIs and dietary energy contents, we show that the kangaroos could meet their daily maintenance energy requirements (MER) at lower levels of DMI and on diets with higher fibre contents compared with sheep, due largely to the kangaroos' lower absolute maintenance and basal energy metabolisms compared with eutherians. These results suggest that differences in the metabolic set-point of different species can have profound effects on their nutritional niche, even when their digestive constraints are similar, as was the case for these ruminant and non-ruminant foregut fermenters.  相似文献   

8.
The limiting factor for fitness in female primates is the acquisition of high-quality food, i.e., food that is high in energy and nutrients, such as protein, fat, and carbohydrates. Reproductive status can influence female feeding patterns, e.g., lactating females in some primate species consume greater quantities of food and specific nutrients than do nonlactating females. We examined the energy intake, ingestion rate, and composition of the diet in female white-faced capuchins in 3 reproductive states: lactating, gestating, and cycling. We observed 12 reproductively active females for 7 mo and compared their energy intake, ingestion rates, and intake rates of nutrients: protein, fat, sugar, and fiber. Lactating females took in significantly more energy per hour while feeding than pregnant and cycling females did. Lactating females also ingested significantly more food items per hour, but they did not spend more time eating than other females did, and they did not differ in the composition of their diet as measured by insect consumption and proportion of protein. Pregnant and cycling females did not differ from each other in any of the measures. We predicted that as the infants aged and began to move independently to forage and play, their mothers’ energy intake rates would decrease in concert with decreased energy demands by the infant. We found a statistically significant relationship between these 2 factors, with infant age explaining 75.4% of variation in mothers’ energy intake, supporting previous studies that found lactation to be the most energetically expensive reproductive state.  相似文献   

9.
Nectar-feeding animals increase their food intake when nectar sugar concentration decreases. However, some species present physiological constraints that limit their energy intake when nectar is diluted. We hypothesized that gut capacities of bats affect the ability of these animals to acquire and store energy, modifying how they use food resources in the field. We measured the food intake and changes in body mass of the members of an assemblage of nectar-feeding bats (Choeronycteris mexicana, Leptonycteris yerbabuenae, and Glossophaga soricina) feeding on sucrose solutions of different concentrations (146, 292, 438, 584, 730, 876, and 1,022 mmol L(-1)). The three bat species presented differences in their food intake and their capacity to store energy. While C. mexicana was able to maintain a constant energy intake at all concentrations tested, G. soricina and L. yerbabuenae decreased their sugar/energy intake at the lowest sugar concentrations. Choeronycteris mexicana also increased body mass independent of sugar concentration, while G. soricina and L. yerbabuenae did not. On the basis of our results, we generated a model relating gut capacities and the use of food resources in the field. Our model's predictions and field data support the idea that digestive traits affect the way these animals use the food resources present in their environment.  相似文献   

10.
A postprandial increase in ammonia nitrogen excretion and oxygen consumption rates was observed in juvenile pike fed a natural diet or an artificial dry diet. Specific growth rate of natural diet fed pike (2.4%) was lower than that of pike fed the artificial diet (3.1%). Fifty per cent of ingesta was evacuated within 5–6 h in pike of 25 mg body weight and 9–10 h in those weighing 150mg. Daily nitrogen excretion rates were related to body weight. Respiratory quotient and energy retention efficiency were affected by the nature of the diet ingested by pike. Parameters of the energy balance (losses, retention, increment due to feeding) were related to energy intake.  相似文献   

11.
Many peptides have been shown to modulate nutrient intake. In most cases, these peptides decrease food intake, but in a few cases they have been demonstrated to stimulate feeding. Infusion of insulin peripherally will decrease food intake unless hypoglycemia occurs where the reduced glucose is a stimulus to feeding. Other pancreatic hormones including glucagon, amylin, pancreatic polypeptide, and enterostatin reduce food intake. Of the gastrointestinal hormones, cholecystokinin has been the most widely studied and reduces food intake in a number of species, including human beings. Gastrin-releasing peptide and its relative bombesin have been shown to decrease food intake in experimental animals and man. Somatostatin reduces food intake in experimental animals, but no clinical studies are available. Four pituitary peptides also modify food intake. Vasopressin decreases feeding. In contrast, injections of desacetyl melanocyte stimulating hormone (dMSH), growth hormone, and prolactin are associated with increased food intake. Finally, there are a group of miscellaneous peptides which modulate feeding. β-casomorphin, a hepta peptide produced during the hydrolysis of casein, stimulates food intake in experimental animals. In contrast, the other pep tides in this group including calcitonin, apolipoprotein A-IV, the cyclized form of histidyl-proline, several cytokines, and thyrotropin-releasing hormone decrease food intake. Many of these peptides act on gastrointestinal or hepatic receptors which relay messages to the brain via the afferent vagus nerve. As a group they provide a number of leads for potential drug development.  相似文献   

12.
Leptin is a key factor for the regulation of food intake and energy homeostasis in mammals, but information regarding its role in teleosts is still limited. There are large differences between mammalian and teleost leptin at both gene and protein levels, and in order to characterize the function of leptin in fish, preparation of species-specific leptin is therefore a key step. In this study, full-length cDNA coding for rainbow trout leptin was identified. In spite of low amino acid sequence similarity with other animals, leptin is highly conserved between trout and salmon (98.7%). Based on the cDNA, we produced pure recombinant trout leptin (rt-leptin) in E. coli, with a final yield of 20 mg/L culture medium. We then examined the effects of intraperitoneal (IP) injection of rt-leptin on feeding behavior and gene expression of hypothalamic NPY and POMCs (POMC A1, A2 and B) in a short-term (8 h) experiment. The rt-leptin suppressed food intake and led to transient reduction of NPY mRNA levels, while the expression of POMCs A1 and A2, was elevated compared with vehicle-injected controls. These results for rainbow trout are the first that describe a physiological role of leptin using a species-specific orthologue in teleosts, and they suggest that leptin suppresses food intake mediated by hypothalamic regulation. This anorexic effect is similar to that observed in mammals and frogs and supports that the neuroendocrine pathways that control feeding by leptin are ancient and have been conserved through evolution.  相似文献   

13.
Ghrelin is an endogenous regulator of energy homeostasis synthesized by the stomach to stimulate appetite and positive energy balance. Similarly, the endocannabinoid system is part of our internal machinery controlling food intake and energy expenditure. Both peripheral and central mechanisms regulate CB1-mediated control of food intake and a functional relationship between hypothalamic ghrelin and cannabinoid CB1 receptor has been proposed. First of all, we investigated brain ghrelin actions on food intake in rats with different metabolic status (negative or equilibrate energy balance). Secondly, we tested a sub-anxiogenic ultra-low dose of the CB1 antagonist SR141716A (Rimonabant) and the peripheral-acting CB1 antagonist LH-21 on ghrelin orexigenic actions. We found that: 1) central administration of ghrelin promotes food intake in free feeding animals but not in 24 h food-deprived or chronically food-restricted animals; 2) an ultra-low dose of SR141716A (a subthreshold dose 75 folds lower than the EC50 for induction of anxiety) completely counteracts the orexigenic actions of central ghrelin in free feeding animals; 3) the peripheral-restricted CB1 antagonist LH-21 blocks ghrelin-induced hyperphagia in free feeding animals. Our study highlights the importance of the animaĺs metabolic status for the effectiveness of ghrelin in promoting feeding, and suggests that the peripheral endocannabinoid system may interact with ghrelińs signal in the control of food intake under equilibrate energy balance conditions.  相似文献   

14.
The day-night variation of food intake and alkaline phosphatase (AP) activity was studied in the duodenum of rats neonatally treated with monosodium glutamate (MSG) and saline-treated (control) rats. The animals were kept under light-dark conditions (light phase from 09:00 h to 21:00 h) with free access to food. AP activity was cytophotometrically analyzed in the brush-border of enterocytes separated from the tip, middle and cryptal part of the villi every 6 h over a 24-hour period. In comparison with the controls, MSG-treated rats consumed about 40% less food during the dark period and their 24-hour food intake was thus significantly lowered (P<0.001). On the other hand, the nocturnal feeding habit showed a similar pattern: food consumption was high during the night (65% vs. 75%) and the lowest consumption was found during the light phase (35% vs. 25%) in MSG-treated and control rats, respectively. In agreement with the rhythm of food intake, the highest AP activity was observed during the dark phase and was lowest during the light phase in both groups of animals. These significant day-night variations showed nearly the same pattern in the enterocytes of all observed parts along the villus axis. In comparison with the controls, a permanent increase of AP activity was observed in neonatal MSG-treated rats. This increase was more expressive during the dark phase of the day in the cryptal (P<0.001) and middle part of the villus (P<0.01). From the viewpoint of feeding, this enzyme in MSG-treated rats was enhanced in an inverse relation to the amount of food eaten i.e. despite sustained hypophagia the mean AP activity in the enterocytes along the villus axis was higher than in the control animals during all investigated periods. The present results suggest that the increased AP activity in MSG-treated rats is probably not a consequence of actual day-night eating perturbations but could be a component of a more general effect of MSG. This information contributes to better understanding of the function of intestinal AP and its relation to day-night feeding changes especially in connection with the MSG syndrome.  相似文献   

15.
Although several aspects of the digestive physiology of the hippopotamidae-non-ruminating foregut fermenters-have been described, ingesta kinetics and passage characteristics of these species are not well understood. The most outstanding feature of the hippo digestive physiology reported so far is the very long mean ingesta retention times (MRTs) measured by Foose [Foose, T., 1982. Trophic strategies of ruminant versus nonruminant ungulates. PhD dissertation, University of Chicago, Chicago.]. Since those data had been investigated with animals without water access, we intended to measure MRT in hippos which were allowed to enter water pools during the night. MRT parameters as well as dry matter (DM) digestibility were determined in four common (Hippopotamus amphibius) and four pygmy hippos (Hexaprotodon liberiensis) on two different diets each using cobalt ethylendiamintetraacetate (Co-EDTA) as a fluid, chromium (Cr)-mordanted fibre (<2 mm) as a particle and acid detergent lignin (ADL) as an internal digestibility marker. Four of the animals additionally received cerium (Ce)-mordanted fibres (2-10 mm) as particle markers. Total MRTs for fluids and particles ranged between 20-35 and 48-106 h in the common and between 13-39 and 32-107 h in the pygmy hippos. The difference between fluid and particle retention was greater than usually reported in ruminants. Excretion patterns of the markers differed from those usually observed in ruminants but resembled those reported for macropods (kangaroos), indicating a plug-flow reactor-like physiology in the hippo forestomach (FRST). This finding complements other described similarities between the macropod and the hippo forestomach. The measurements of larger particle retention profiles suggest that in the hippo, larger particles might be excreted either faster or at the same rate as smaller particles, indicating a general difference between ruminants and hippos with respect to differential particle retention. The digestive physiology of hippos is characterised by a generally low food intake, long ingesta retention times and dry matter digestibilities lower than reported in ruminants. Moderate digestibilities in spite of long retention times might be the result of the generally high average ingesta particle size in hippos. The comparatively easy management of pygmy hippos, together with the significant correlations between food intake, MRT and digestibility in the pygmy hippos of this study, recommends this species for further studies on the interplay of these parameters in herbivore digestive physiology.  相似文献   

16.
Although commonly practiced with many species, feeding enrichment in elephants is understudied. The behavioral effects of feeding enrichment were tested in three African elephants by substituting an equal dry weight of browse for hay in an ABA design. The results showed a significant increase in feeding and significant decreases in drinking and inactivity when the browse was present. Additionally, changes in feeding, inactivity, and time spent in contact were observed outside the time the browse was actually presented, although the relationship of these changes to the experimental methodology is unknown. A significant increase in visibility to zoo visitors during the browse conditions demonstrates that browse is an effective, naturalistic method for increasing visibility as well as species-typical behaviors. Managers of captive elephants should consult with a nutritionist to address issues of energetics, nutritional content, and secondary compounds when using browse as feeding enrichment. Zoo Biol 19:485-493, 2000. Copyright 2000 Wiley-Liss, Inc.  相似文献   

17.
Comparative physiology applies methods established in domestic animal science to a wider variety of species. This can lead to improved insight into evolutionary adaptations of domestic animals, by putting domestic species into a broader context. Examples include the variety of responses to seasonally fluctuating environments, different adaptations to heat and drought, and in particular adaptations to herbivory and various herbivore niches. Herbivores generally face the challenge that a high food intake compromises digestive efficiency (by reducing ingesta retention time and time available for selective feeding and for food comminution), and a variety of digestive strategies have evolved in response. Ruminants are very successful herbivores. They benefit from potential advantages of a forestomach without being constrained in their food intake as much as other foregut fermenters, because of their peculiar reticuloruminal sorting mechanism that retains food requiring further digestion but clears the forestomach of already digested material; the same mechanism also optimises food comminution. Wild ruminants vary widely in the degree to which their rumen contents 'stratify', with little stratification in 'moose-type' ruminants (which are mostly restricted to a browse niche) and a high degree of stratification into gas, particle and fluid layers in 'cattle-type' ruminants (which are more flexible as intermediate feeders and grazers). Yet all ruminants uniformly achieve efficient selective particle retention, suggesting that functions other than particle retention played an important role in the evolution of stratification-enhancing adaptations. One interesting emerging hypothesis is that the high fluid turnover observed in 'cattle-type' ruminants - which is a prerequisite for stratification - is an adaptation that not only leads to a shift of the sorting mechanism from the reticulum to the whole reticulo-rumen, but also optimises the harvest of microbial protein from the forestomach. Although potential benefits of this adaptation have not been quantified, the evidence for convergent evolution toward stratification suggests that they must be substantial. In modern production systems, the main way in which humans influence the efficiency of energy uptake is by manipulating diet quality. Selective breeding for conversion efficiency has resulted in notable differences between wild and domestic animals. With increased knowledge on the relevance of individual factors, that is fluid throughput through the reticulo-rumen, more specific selection parameters for breeding could be defined to increase productivity of domestic ruminants by continuing certain evolutionary trajectories.  相似文献   

18.
Direct or indirect supplemental feeding of free‐ranging animals occurs worldwide, resulting in significant impacts on population density or altered demographic processes. Another potential impact of increased energy intake from supplemental feeding is altered immunocompetence. As immune system maintenance is energetically costly, there may be trade‐offs between immune responses and other energy‐demanding physiological processes in individual animals. Although increased availability of food sources through supplemental feeding is expected to increase the overall immunocompetence of animals, empirical data verifying the association between supplemental feeding and different immune parameters are lacking. Understanding the potential influence of supplemental feeding on immune phenotypes is critical, as it may also impact host–pathogen dynamics in free‐ranging animals. Using urban stray cats as a study model, we tested for associations between the intensity of supplemental feeding due to cat caretaker activity (CCA); body condition; and immune phenotype (bacterial killing assay (BKA), immunoglobulin G (IgG) concentration, and leukocyte counts). Significantly higher bacterial killing ability was observed in cats from high CCA districts, whereas higher IgG concentration and eosinophil counts were observed in cats from low CCA districts. Other leukocyte counts and body condition indices showed no significant association with CCA. We observed varying patterns of different immune components in relation to supplemental feeding. Out data suggest that supplemental feeding influences immune phenotype, not only by means of energy provisioning, but also by potentially reducing exposure rates to parasite infections through stray cat behavioral changes.  相似文献   

19.
The eating pattern is altered by high-fat diet-induced obesity. To clarify whether this is dependent on the fatty acid profile of the diet, the authors conducted two studies on adult female Sprague-Dawley rats fed normal-fat chow or high-fat diets with varying fatty acid composition. Eating pattern and body weight were assessed in rats fed canola-based (low in saturated fatty acids) or lard-based (moderate in saturated fatty acids) diets for 7 days, and in animals fed chow or canola- or butter-based diets (rich in saturated fatty acids) for 43 days. These parameters were also determined when restricted amounts of low-fat canola- or butter-based diets were consumed for 25 days. Early exposure to canola or lard high-fat feeding or prolonged access to canola- or butter-based fat-rich diets (relative to chow feeding) did not alter the normal light-dark distribution of food and energy intake. All animals ingested most of their food during the dark phase. However, feeding the high-fat canola- and butter-based diets produced an altered eating pattern during the light phase characterized by a smaller number of meals, longer intermeal interval, and enhanced satiety ratio, and consumption of shorter-lasting meals than chow-fed animals. Relative to canola or chow feeding, butter-fed animals consumed a lower number of meals during the dark phase and had a higher eating rate in the light phase, but ate larger meals overall. Only butter feeding led to overeating and obesity. When given a restricted amount of low-fat canola- or butter-based diet at the start of the light phase, rats ate most of their food in that phase and diurnal rather than nocturnal feeding occurred with restriction. These findings underscore the role of saturated fatty acids and the resulting eating pattern alteration in the development of obesity.  相似文献   

20.
The effects of neuropeptide Y (NPY), a tyrosine-rich peptide found in the rat brain, on feeding and sexual behavior were studied in male and female rats. Intraventricular (ivt) injections of NPY during the final hours of the light period induced feeding in a dose-related manner. While the lowest dose tested (0.02 nM) was without effect, higher doses (0.12, 0.47, 2.3 nM) uniformly elicited feeding with a latency of about 15 min in male rats. With the most effective dose, 0.47 nM, the increased food intake was due to an increased local eating rate. In contrast, the pattern of feeding behavior after a related peptide, rat pancreatic polypeptide (rPP), was quite different and less impressive. During the first hour, only one ivt dose of rPP (0.45 nM) evoked an increase in food intake, due to an increased time spent eating. Further, the effects of NPY on food intake were greater during the nocturnal period. Interestingly, increased food intake in nocturnal tests (4 h) was due solely to augmented intake during the first 60 min after ivt administration. In mating tests, initiated 2 h after the onset of darkness and 10 min after ivt administration of peptide, all but the lowest dose of NPY (0.01 nM) drastically suppressed ejaculatory behavior. Most rats treated with higher doses of NPY (0.02, 0.12, or 0.47 nM) mounted and intromitted only a few times before the cessation of sexual activity, and elongated latencies to the initial mount and intromission were observed. In contrast to the dramatic NPY-induced suppression of ejaculatory behavior, rPP (0.11 and 0.45 nM) was without effect on copulatory behavior. To substantiate further that the impairment of sexual behavior seen in NPY-treated rats was not due to an attenuated sexual ability, an additional experiment was performed. Penile reflexes, including erection, were monitored 10 min after ivt injection of NPY (0.12 nM), rPP (0.11 nM), or saline. No effect of NPY or rPP was observed on the proportion of rats showing erection or latency to initial erection, or in the number of erections per test. In fact, a slight facilitation of penile dorsiflexion responses was seen after NPY. These findings suggest that NPY selectively depresses sexual motivation in the male rat. In ovariectomized female rats responding to estrogen plus progesterone with a good level of sexual receptivity (lordosis quotient > 70), ivt saline and 0.01 nM NPY were without effect on sexual behavior. However, higher doses of NPY (0.12 and 0.47 nM) promptly suppressed sexual behavior in tests initiated 10 min after treatment. A significant 50% decrement in receptivity and a virtual elimination of proceptive behavior were observed. Further, although a low level of mounting (one to five mounts in 15 min) was seen in both the saline (33% mounting) and the 0.01 nM NPY (38% mounting) treated groups, none was observed in animals treated with the higher NPY doses. These observations indicate that NPY may also suppress female sexual behavior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号