首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
A growing number of studies suggest ratio-dependence may be common in many predator–prey systems, yet in large mammal systems, evidence is limited to wolves and their prey in Isle Royale and Yellowstone. More importantly, the consequences of ratio-dependent predation have not been empirically examined to understand the implications for prey. Wolves recolonized Banff National Park in the early 1980s, and recovery was correlated with significant elk declines. I used time-series data of wolf kill rates of elk, wolf and elk densities in winter from 1985–2007 to test for support for prey-, ratio-, or predator dependent functional and numeric responses of wolf killing rate to elk density. I then combined functional and numeric responses to estimate the total predation response to identify potential equilibrium states. Evidence suggests wolf predation on elk was best described by a type II ratio-dependent functional response and a type II numeric response that lead to inversely density-dependent predation rate on elk. Despite support for ratio-dependence, like other wolf-prey systems, there was considerable uncertainty amongst functional response models, especially at low prey densities. Consistent with predictions from ratio-dependent models, however, wolves contributed to elk population declines of over 80 % in our Banff system. Despite the statistical signature for ratio-dependence, the biological mechanism remains unknown and may be related to multi-prey dynamics in our system. Regardless, ratio-dependent models strike a parsimonious balance between theory and empiricism, and this study suggests that large mammal ecologists need to consider ratio-dependent models in predator–prey dynamics.  相似文献   

5.
1. Interference between predator species frequently decreases predation rates, lowering the risk of predation for shared prey. However, such interference can also occur between conspecific predators. 2. Therefore, to understand the importance of predator biodiversity and the degree that predator species can be considered functionally interchangeable, we determined the degree of additivity and redundancy of predators in multiple- and single-species combinations. 3. We show that interference between two invasive species of predatory crabs, Carcinus maenas and Hemigrapsus sanguineus, reduced the risk of predation for shared amphipod prey, and had redundant per capita effects in most multiple- and single-species predator combinations. 4. However, when predator combinations with the potential for intraguild predation were examined, predator interference increased and predator redundancy decreased. 5. Our study indicates that trophic structure is important in determining how the effects of predator species combine and demonstrates the utility of determining the redundancy, as well as the additivity, of multiple predator species.  相似文献   

6.
Food-restricted rainbow trout Oncorhynchus mykiss maintained a lower basal heart rate than satiated fish, probably as a result of reduced metabolic rate. Food-restricted fish were also more active during feeding and were more willing to take risks than satiated fish. Both satiated and food-restricted fish were positioned lower in the tank after the predator attack. Heart rate increased more during feeding in the food-restricted fish compared to the satiated, but energy status had no general effect on the relation between heart rate and behaviour. Hence, the increase in heart rate was mainly a response to the more active foraging behaviour in the food-restricted fish. Moreover, behavioural activity in the food-restricted fish was associated with a higher heart rate after the predator attack than when the fish was undisturbed, which may reflect physiological preparation for flight. These findings suggest that behavioural and cardiac responses are coadapted to meet variation in food availability and predation risk in the wild.  相似文献   

7.
The effect of temperature and photoperiod on the rate of predation of nymphs and adults of the predator Macrolophus pygmaeus was studied using Myzus persicae prey feeding on egg-plant and pepper plants. The experiments were conducted at three photoperiods (16L:8D, 12L:12D and 8L:16D), three temperatures (20, 25 and 30 °C), and at 65% r.h. The rate of predation increased with temperature. Predation rate was affected by photoperiod on pepper but not on egg-plant. Females and fifth instar nymphs were the most voracious stages followed by third and fourth instar nymphs and males. First and second instar nymphs consumed far fewer aphids. Predation rate was higher on leaves of pepper than egg-plant, especially at 30 °C. Variation in the efficacy of this predator is discussed.  相似文献   

8.
Many passerine bird populations, particularly those that have open‐cup nests, are in decline in agricultural landscapes. Current theory suggests that an increase in habitat generalist predators in response to landscape change is partially responsible for these declines. However, empirical tests have failed to reach a consensus on how and through what mechanisms landscape change affects nest predation. We tested one hypothesis, the Additive Predation Model, with an artificial nest experiment in fragmented landscapes in southern Queensland, Australia. We employed structural equation modelling of the influence of the relative density of woodland and habitat generalist predators and landscape features at the nest, site, patch and landscape scales on the probability of nest predation. We found little support for the Additive Predation Model, with no significant influence of the density of woodland predators on the probability of nest predation, although landscape features at different spatial scales were important. Within woodlands fragmented by agriculture in eastern Australia, the presence of noisy miner colonies appears to influence ecological processes important for nest predation such that the Additive Predation Model does not hold. In the absence of colonies of the aggressive native bird, the noisy miner, the influence of woodland predators on the risk of artificial nest predation was low compared with that of habitat generalist predators. Outside noisy miner colonies, we found significant edge effects with greater predation rates for artificial nests within woodland patches located closer to the agricultural matrix. Furthermore, the density of habitat generalist predators increased with the extent of irrigated land‐use, suggesting that in the absence of noisy miner colonies, nest predation increases with land‐use intensity at the landscape scale.  相似文献   

9.
Abstract. 1. Aggregation in bark beetles (Coleoptera: Scolytidae) aids in mate attraction and resource procurement when colonising well‐defended plants; however, some species colonise primarily poorly defended plants, and intraspecific competition increases mortality. The hypothesis that decreased risk of predation was a potential benefit to aggregation in such circumstances was tested, using the pine engraver, Ips pini (Say) and its two major predators Thanasimus dubius (F.) (Coleoptera: Cleridae) and Platysoma cylindrica (Paykull) (Coleoptera: Histeridae). Both single‐ and multiple‐predator effects, across a range of prey densities, were tested. 2. Both male and female colonisation events increased with herbivore density, in an asymptotic fashion. 3. Predators decreased the number of colonisers in a density‐dependent manner, consistent with a type II functional response. 4. The proportional impact of predators decreased with increased herbivore colonisation densities. These findings indicate that predator dilution may be a viable benefit to aggregation. 5. Total emergence of the herbivore also increased with density, although the net replacement rate during one generation was independent of initial arrival density. This was likely due to larval predation, which negates potential relationships between per capita reproductive success and establishment density. 6. Each predator species decreased I. pini's net replacement rate by approximately 42%, and their combined effect was approximately 70%. 7. Overall, these predators modified their prey's establishment and adult mortality relationships in additive manners. This is somewhat surprising, given the potential for emergent effects due to interactions between multiple predators foraging within a common habitat. The persistence of additivity, rather than risk reduction or enhancement to the prey, may increase the predator‐swamping benefit to aggregation for this herbivore. 8. The effects of these predators are substitutable, and likely exert equivalent selective pressures to mask signals at the whole‐plant level.  相似文献   

10.
The functional response of adult Nabis kinbergii (Hemiptera: Nabidae) to density of diamondback moth Plutella xylostella (Lepidoptera: Plutellidae) was investigated under laboratory conditions. Holling' s (1959) type Ⅱ model was found to be a good fit for the observed functional response of this predator. The numbers of P. xylostella consumed increased with temperature from 15℃ to 35℃. The maximum number of prey killed was observed at 35℃, with average of 10.3 and 8.3 forth instar larvae consumed by adult females and males of N. kinbergii, respectively. The predation of N. kinbergii on P. xylostella increased with successive immature stages. The number of prey consumed by predators decreased as the body size of prey increased. An average of 131 eggs or 95 larvae of P. xylostella were killed by a single of female adult in 24 hours at 24"C. The pupae of P. xylostella were observed to be eaten by fifth instar nymphs and adults N. kinbergiiin numbers of less than an average of 0.7 pupae per predator in 24 hours at 24"C. Predation preference by N. kinbergii was also investigated. The number of P. xylostella and Myzus persicae killed by female N. kinbergii was not significantly different, but males killed significantly more P. xylostella than M. persicae. Both eggs and larvae of P. xylosteUa were killed in significantly greater number than those of Pieris rapae in the same feeding arena.  相似文献   

11.
为明确异色瓢虫对设施栽培桃树上桃蚜的自然控制力,在室内研究了异色瓢虫成虫自身密度和不同蚜虫密度对捕食功能的影响。结果表明,异色瓢虫对桃蚜的捕食功能反应符合Holling-Ⅱ圆盘方程,其拟合模型为Na=0.898Nt/(1+0.0045Nt),每头异色瓢虫在1 d内对桃蚜的最大捕食量为200头,捕食每头桃蚜的处置时间Th=0.005d。异色瓢虫自身密度对桃蚜捕食作用有一定制约,拟合Watt竞争模型方程为A=86.441P-0.6592。  相似文献   

12.
植食性哺乳动物对食物斑块的选择和利用不仅取决于食物的可利用性,且与觅食环境潜存的各种风险紧密关联。捕食风险是否通过作用于动物觅食活动中的警觉影响其功能反应格局。在新鲜白三叶叶片构成的各类食物密集斑块上,测定东方田鼠觅食行为,建立功能反应模型,检验捕食风险对其功能反应格局的作用。结果发现,捕食风险能显著地延长东方田鼠的觅食决定时间,但其摄入率保持稳定,功能反应构型亦未发生改变,仍为Ⅱ型功能反应;除了对照组个体的采食时间随叶片大小增大无明显变动规律外,处理组个体的采食时间及对照组和处理组个体的处理时间、觅食中断时间均随叶片大小及口量的增大呈线性增高趋势,处理组个体的觅食中断时间明显大于对照组个体的;对照组和处理组个体的采食率均随叶片大小及口量呈非线性渐近递减趋势,但处理组个体的采食率较对照组个体的略有降低。结果揭示,在捕食风险压力下,虽然上述觅食参数变异能潜在地降低摄入率,但个体能通过改变觅食活动中各种警觉行为动作如降低嗅闻和静听监视动作的发生频次,增大视觉监视动作比重,以此缓冲捕食风险压力,维持摄入率。摄入率测定值与模型预测值的线性回归极显著,表明,功能反应模型具有良好的预测性。在可利用植物密集斑块,动物觅食活动中的警觉能缓冲捕食风险压力;动物摄入率是由植物大小调控的口量决定的,且受采食与处理食物竞争及觅食中断的制约;其功能反应仍属Ⅱ型功能反应。  相似文献   

13.
14.
Predation risk is an important driver of ecosystems, and local spatial variation in risk can have population-level consequences by affecting multiple components of the predation process. I use resource selection and proportional hazard time-to-event modelling to assess the spatial drivers of two key components of risk—the search rate (i.e. aggregative response) and predation efficiency rate (i.e. functional response)—imposed by wolves (Canis lupus) in a multi-prey system. In my study area, both components of risk increased according to topographic variation, but anthropogenic features affected only the search rate. Predicted models of the cumulative hazard, or risk of a kill, underlying wolf search paths validated well with broad-scale variation in kill rates, suggesting that spatial hazard models provide a means of scaling up from local heterogeneity in predation risk to population-level dynamics in predator–prey systems. Additionally, I estimated an integrated model of relative spatial predation risk as the product of the search and efficiency rates, combining the distinct contributions of spatial heterogeneity to each component of risk.  相似文献   

15.
16.
1. First known for their shredding activity, freshwater amphipods also behave as active predators with consequences for prey population regulation and amphipod coexistence in the context of biological invasions. 2. A way to quantify predation is to determine the average consumption rate per predator, also known as its functional response (FR). 3. Although amphipods are gregarious and can display social interactions that can alter per capita consumption rates, previous studies using the FR approach to investigate amphipod predation ignored such potential mutual interference because they did not consider variations in predator density. 4. We investigated the FR of Echinogammarus berilloni feeding on dipteran larvae with joint variations in prey and predator densities. This bivariate experimental design allowed us to estimate interference and to compare the fits of the three main classes of theoretical FR models, in which the predation rate is a function of prey density alone (prey‐dependent models), of both prey and predator densities (predator‐dependent models) or of the prey‐to‐predator ratio (ratio‐dependent models). 5. The Arditi–Ginzburg ratio‐dependent FR model provided the best representation of the FR of E. berilloni, whose predation rate showed a decelerating rise to a horizontal asymptote as prey abundance increased. 6. Ratio dependence means that mutual interference between amphipods leads to prey sharing. Mutual interference is likely to vary between amphipod species, depending on their level of aggressiveness.  相似文献   

17.
18.
  • 1 Reasons for fluctuating populations of small mammals have been intensively investigated since the early days of modern ecology. Particular interest has been taken in vole populations exhibiting multiannual oscillations. Much empirical and theoretical work has been accomplished to find out the key factor(s) driving these population cycles and many reviews have been written about the results.
  • 2 One of the most plausible processes for explaining regular fluctuations in small mammals is predation. Here I review the existing literature on the experimental studies of the role of predation in vole population dynamics in the hope that a critical examination of these studies will help researchers improve the design of future experiments.
  • 3 Most predation manipulations have been done in exclosures, but there are also studies that have attempted to reduce or increase predator numbers in non‐fenced areas, islands and enclosures.
  • 4 As the number of experimental studies has increased, their quality in terms of replication, use of controls and realistic spatial and temporal scales has also improved.
  • 5 Most studies have found population‐level effects of predator manipulations on prey populations. The effects have varied from very weak to very strong, reflecting dissimilar experimental designs and the great variety of predator–prey interactions among different kinds of species in different landscapes. Most of these studies show that predation limits population growth of voles, and in some circumstances even regulate vole population fluctuations, but none of them clearly demonstrates that predation consistently changes fluctuation patterns of voles.
  • 6 To be able to assess more reliably the true role of predation on (cyclic) population fluctuations of voles, more competent experiments are still needed not only over the geographical range of cyclic population dynamics, but also in areas of weakly or non‐cyclic populations of voles.
  相似文献   

19.
Understanding and predicting the outcomes of biological invasions is challenging where multiple invader and native species interact. We hypothesize that antagonistic interactions between invaders and natives could divert their impact on subsequent invasive species, thus facilitating coexistence. From field data, we found that, when existing together in freshwater sites, the native amphipod Gammarus duebeni celticus and a previous invader G. pulex appear to facilitate the establishment of a second invader, their shared prey Crangonyx pseudogracilis. Indeed, the latter species was rarely found at sites where each Gammarus species was present on its own. Experiments indicated that this may be the result of G. d. celticus and G. pulex engaging in more intraguild predation (IGP) than cannibalism; when the ‘enemy’ of either Gammarus species was present, that is, the other Gammarus species, C. pseudogracilis significantly more often escaped predation. Thus, the presence of mutual enemies and the stronger inter- than intraspecific interactions they engage in can facilitate other invaders. With some invasive species such as C. pseudogracilis having no known detrimental effects on native species, and indeed having some positive ecological effects, we also conclude that some invasions could promote biodiversity and ecosystem functioning.  相似文献   

20.
Quantifying kill rates and sources of variation in kill rates remains an important challenge in linking predators to their prey. We address current approaches to using global positioning system (GPS)-based movement data for quantifying key predation components of large carnivores. We review approaches to identify kill sites from GPS movement data as a means to estimate kill rates and address advantages of using GPS-based data over past approaches. Despite considerable progress, modelling the probability that a cluster of GPS points is a kill site is no substitute for field visits, but can guide our field efforts. Once kill sites are identified, time spent at a kill site (handling time) and time between kills (killing time) can be determined. We show how statistical models can be used to investigate the influence of factors such as animal characteristics (e.g. age, sex, group size) and landscape features on either handling time or killing efficiency. If we know the prey densities along paths to a kill, we can quantify the ‘attack success’ parameter in functional response models directly. Problems remain in incorporating the behavioural complexity derived from GPS movement paths into functional response models, particularly in multi-prey systems, but we believe that exploring the details of GPS movement data has put us on the right path.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号