首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We used Southern blotting to screen a variety of bacterial genes for homology to the kdp genes of Escherichia coli, genes that encode an ATP-driven K+ transport system. We found that most enterobacteria have sequences homologous to those of the three kdp structural genes and the kdpD regulatory gene. A number of distantly related species, including some cyanobacteria, have sequences homologous to those of the structural genes but not the regulatory gene. In all cases only a single region of homology was found. These results suggest that ATP-driven transport systems similar to the Kdp system in structure and regulation are found in many enteric organisms. In other gram-negative organisms, the ATPase is more divergent, retaining good homology at the DNA level only to the highly conserved phosphorylated subunit of the ATPase.  相似文献   

2.
Understanding the genetics of how organisms adapt to changing environments is a fundamental topic in modern evolutionary ecology. The field is currently progressing rapidly because of advances in genomics technologies, especially DNA sequencing. The aim of this review is to first briefly summarise how next generation sequencing (NGS) has transformed our ability to identify the genes underpinning adaptation. We then demonstrate how the application of these genomic tools to ecological model species means that we can start addressing some of the questions that have puzzled ecological geneticists for decades such as: How many genes are involved in adaptation? What types of genetic variation are responsible for adaptation? Does adaptation utilise pre-existing genetic variation or does it require new mutations to arise following an environmental change?  相似文献   

3.
Population genetics, the mathematical theory of modern evolutionary biology, defines evolution as the alteration of the frequency of distinct gene variants (alleles) differing in fitness over the time. The major problem with this view is that in gene and protein sequences we can find little evidence concerning the molecular basis of phenotypic variance, especially those that would confer adaptive benefit to the bearers. Some novel data, however, suggest that a large amount of genetic variation exists in the regulatory region of genes within populations. In addition, comparison of homologous DNA sequences of various species shows that evolution appears to depend more strongly on gene expression than on the genes themselves. Furthermore, it has been demonstrated in several systems that genes form functional networks, whose products exhibit interrelated expression profiles. Finally, it has been found that regulatory circuits of development behave as evolutionary units. These data demonstrate that our view of evolution calls for a new synthesis. In this article I propose a novel concept, termed the selfish gene network hypothesis, which is based on an overall consideration of the above findings. The major statements of this hypothesis are as follows. (1) Instead of individual genes, gene networks (GNs) are responsible for the determination of traits and behaviors. (2) The primary source of microevolution is the intraspecific polymorphism in GNs and not the allelic variation in either the coding or the regulatory sequences of individual genes. (3) GN polymorphism is generated by the variation in the regulatory regions of the component genes and not by the variance in their coding sequences. (4) Evolution proceeds through continuous restructuring of the composition of GNs rather than fixing of specific alleles or GN variants.  相似文献   

4.

Background  

Nuclear insertions of mitochondrial sequences (NuMts) have been identified in a wide variety of organisms. Trafficking of genetic material from the mitochondria to the nucleus has occurred frequently during mammalian evolution and can lead to the production of a large pool of sequences with varying degrees of homology to organellar mitochondrial DNA (mtDNA) sequences. This presents both opportunities and challenges for forensics, population genetics, evolutionary genetics, conservation biology and the study of DNA from ancient samples. Here we present a case in which difficulties in ascertaining the organellar mtDNA sequence from modern samples hindered their comparison to ancient DNA sequences.  相似文献   

5.
Chromosomal DNA from group I Pseudomonas species, Azotobacter vinelandii, Azomonas macrocytogens, Xanthomonas campestris, Serpens flexibilis, and three enteric bacteria was screened for sequences homologous to four Pseudomonas aeruginosa alginate (alg) genes (algA, pmm, algD, and algR1). All the group I Pseudomonas species tested (including alginate producers and nonproducers) contained sequences homologous to all the P. aeruginosa alg genes used as probes, with the exception of P. stutzeri, which lacked algD. Azotobacter vinelandii also contained sequences homologous to all the alg gene probes tested, while Azomonas macrocytogenes DNA showed homology to all but algD. X. campestris contained sequences homologous to pmm and algR1 but not to algA or algD. The helical bacterium S. flexibilis showed homology to the algR1 gene, suggesting that an environmentally responsive regulatory gene similar to algR1 exists in S. flexibilis. Escherichia coli showed homology to the algD and algR1 genes, while Salmonella typhimurium and Klebsiella pneumoniae failed to show homology with any of the P. aeruginosa alg genes. Since all the organisms tested are superfamily B procaryotes, these results suggest that within superfamily B, the alginate genes are distributed throughout the Pseudomonas group I-Azotobacter-Azomonas lineage, while only some alg genes have been retained in the Pseudomonas group V (Xanthomonas) and enteric lineages.  相似文献   

6.
Chromosomal DNA from group I Pseudomonas species, Azotobacter vinelandii, Azomonas macrocytogens, Xanthomonas campestris, Serpens flexibilis, and three enteric bacteria was screened for sequences homologous to four Pseudomonas aeruginosa alginate (alg) genes (algA, pmm, algD, and algR1). All the group I Pseudomonas species tested (including alginate producers and nonproducers) contained sequences homologous to all the P. aeruginosa alg genes used as probes, with the exception of P. stutzeri, which lacked algD. Azotobacter vinelandii also contained sequences homologous to all the alg gene probes tested, while Azomonas macrocytogenes DNA showed homology to all but algD. X. campestris contained sequences homologous to pmm and algR1 but not to algA or algD. The helical bacterium S. flexibilis showed homology to the algR1 gene, suggesting that an environmentally responsive regulatory gene similar to algR1 exists in S. flexibilis. Escherichia coli showed homology to the algD and algR1 genes, while Salmonella typhimurium and Klebsiella pneumoniae failed to show homology with any of the P. aeruginosa alg genes. Since all the organisms tested are superfamily B procaryotes, these results suggest that within superfamily B, the alginate genes are distributed throughout the Pseudomonas group I-Azotobacter-Azomonas lineage, while only some alg genes have been retained in the Pseudomonas group V (Xanthomonas) and enteric lineages.  相似文献   

7.
牦牛与其他物种ZFX/ZFY基因片段间的进化关系   总被引:1,自引:0,他引:1  
利用PCR扩增、克隆和序列分析法对牦牛ZFX/ZFY基因第11外显子部分片段进行了研究,并同来自于NCBI GenBank中人、猩猩、普通牛等9个物种的ZFX/ZFY基因核苷酸及其氨基酸序列进行了进化分析.结果表明,牦牛ZFX、ZFY基因间核苷酸序列同源性为94.1%,显示同一物种同源基因ZFX/ZFY间存在变异;比较的10个物种间ZFX基因核苷酸序列同源性为87.7%、ZFY基因为81.7%,相应ZFX、ZFY氨基酸同源性分别为96.6%、91.0%,ZFY基因的变异性大于ZFX基因,显示X染色体与Y染色体可能是独立进化.  相似文献   

8.
Structure of the Caulobacter crescentus trpFBA operon.   总被引:15,自引:12,他引:3       下载免费PDF全文
  相似文献   

9.
Sun J  Xu J  Liu Z  Liu Q  Zhao A  Shi T  Li Y 《Bioinformatics (Oxford, England)》2005,21(16):3409-3415
MOTIVATION: The increasing availability of complete genome sequences provides excellent opportunity for the further development of tools for functional studies in proteomics. Several experimental approaches and in silico algorithms have been developed to cluster proteins into networks of biological significance that may provide new biological insights, especially into understanding the functions of many uncharacterized proteins. Among these methods, the phylogenetic profiles method has been widely used to predict protein-protein interactions. It involves the selection of reference organisms and identification of homologous proteins. Up to now, no published report has systematically studied the effects of the reference genome selection and the identification of homologous proteins upon the accuracy of this method. RESULTS: In this study, we optimized the phylogenetic profiles method by integrating phylogenetic relationships among reference organisms and sequence homology information to improve prediction accuracy. Our results revealed that the selection of the reference organisms set and the criteria for homology identification significantly are two critical factors for the prediction accuracy of this method. Our refined phylogenetic profiles method shows greater performance and potentially provides more reliable functional linkages compared with previous methods.  相似文献   

10.
RecA protein in gram-negative bacteria, especially in Escherichia coli, has been extensively studied, but little is known about this key enzyme in other procaryotes. Described here are degenerate oligonucleotide primers that have been used to amplify by the polymerase chain reaction (PCR) recA sequences from several gram-positive bacteria and mycoplasmas. The DNA sequences of recA PCR products from Streptococcus pyogenes, Streptococcus mutans, Enterococcus faecalis, and Mycoplasma pulmonis were determined and compared. These data indicate that the M. pulmonis recA gene has diverged significantly from recA genes of other eubacteria. It should be possible to use cloned recA PCR products to construct recA mutants, thereby providing the means of elucidating homologous genetic recombination and DNA repair activities in these organisms.  相似文献   

11.
Homologous recombination is now routinely used in mammalian cells to replace endogenous chromosomal sequences with transferred DNA. Vectors for this purpose are traditionally constructed so that the replacement segment is flanked on both sides by DNA sequences which are identical to sequences in the chromosomal target gene. To test the importance of bilateral regions of homology, we measured recombination between transferred and chromosomal immunoglobulin genes when the transferred segment was homologous to the chromosomal gene only on the 3' side. In each of the four recombinants analyzed, the 5' junction was unique, suggesting that it was formed by nonhomologous, i.e., random or illegitimate, recombination. In two of the recombinants, the 3' junction was apparently formed by homologous recombination, while in the other two recombinants, the 3' junction as well as the 5' junction might have involved a nonhomologous crossover. As reported previously, we found that the frequency of gene targeting increases monotonically with the length of the region of homology. Our results also indicate that targeting with fragments bearing one-sided homology can be as efficient as with fragments with bilateral homology, provided that the overall length of homology is comparable. The frequency of these events suggests that the immunoglobulin locus is particularly susceptible to nonhomologous recombination. Vectors designed for one-sided homologous recombination might be advantageous for some applications in genetic engineering.  相似文献   

12.
The spectrin super-family   总被引:6,自引:0,他引:6  
The review is focused on recent data on the primary sequences of erythroid and non-erythroid spectrins. As in other fields, the techniques of molecular genetics have allowed great advances in our knowledge of the structure and the genetic story of these molecules. Comparison of alpha-chains sequences of the non-erythroid (fodrin) and erythroid spectrin demonstrated that the fodrin alpha-genes are strictly conserved across species, while the mammalian spectrin genes have diverged rapidly. Spectrin and fodrin alpha-chains are largely composed of homologous 106-amino-acid repeat units. Spectrin alpha-chain is lacking a 37 amino-acid sequence which bears the calmodulin-binding site of the fodrin alpha-chain. The highest degree of homology between the spectrin alpha-chain and the fodrin alpha-chain lies in a central atypical segment unrelated to the canonical repeat sequence. This region is closely related to the N-terminal segment of several src-tyrosine kinases and to a domain of phospholipase C. Like the spectrin alpha-chain, the major central part of the spectrin beta-chain is made up of repeat units of 106 amino-acids. The N-terminal domain of the beta-chain, and especially the actin binding site, is the region of greatest homology among members of the spectrin super-family, including Drosophila spectrin beta-chain, dystrophin and alpha-actinin. The C-terminal extremity of the erythroid beta-chain is also of great interest, since tissue-specific differential processing of 3'beta-spectrin gene pre-mRNA generates a beta spectrin-isoform with a unique C-terminus in human skeletal muscle.  相似文献   

13.
The major histocompatibility complex (MHC) is a fundamental part of the vertebrate immune system, and the high variability in many MHC genes is thought to play an essential role in recognition of parasites. The Przewalski's horse is extinct in the wild and all the living individuals descend from 13 founders, most of whom were captured around the turn of the century. One of the primary genetic concerns in endangered species is whether they have ample adaptive variation to respond to novel selective factors. In examining 14 Przewalski's horses that are broadly representative of the living animals, we found six different class II DRB major histocompatibility sequences. The sequences showed extensive nonsynonymous variation, concentrated in the putative antigen-binding sites, and little synonymous variation. Individuals had from two to four sequences as determined by single-stranded conformation polymorphism (SSCP) analysis. On the basis of the SSCP data, phylogenetic analysis of the nucleotide sequences, and segregation in a family group, we conclude that four of these sequences are from one gene (although one sequence codes for a nonfunctional allele because it contains a stop codon) and two other sequences are from another gene. The position of the stop codon is at the same amino-acid position as in a closely related sequence from the domestic horse. Because other organisms have extensive variation at homologous loci, the Przewalski's horse may have quite low variation in this important adaptive region.  相似文献   

14.
15.
Using degenerate-primers PCR we isolated and sequenced fragments from the sand fly Lutzomyia longipalpis homologous to two behavioural genes in Drosophila, cacophony and period. In addition we identified a number of other gene fragments that show homology to genes previously cloned in Drosophila. A codon usage table for L. longipalpis based on these and other genes was calculated. These new molecular markers will be useful in population genetics and evolutionary studies in phlebotomine sand flies and in establishing a preliminary genetic map in these important leishmaniasis vectors.  相似文献   

16.
Variation and Evolution of Meiosis   总被引:1,自引:0,他引:1  
Meiosis arose in the evolution of primitive unicellular organisms as a part of sexual process. One type of meiosis, the so-called classical type, predominates in all kingdoms of eukaryotes. Meiosis is controlled by hundreds of genes, both shared with mitosis and specifically meiotic ones. In a wide range of taxa, which in some cases include kingdoms, meiotic genes and features obey Vavilov's law of homologous variation series. Synaptonemal complexes (SCs) temporarily binding homologous chromosomes at prophase I, ensure precise and equal crossing over and interference. SC proteins have 60–80% homology within the class of mammals but differ from the corresponding proteins in fungi and insects. Thus, nonhomologous SC proteins perform similar functions in different taxa. Some recombination enzymes in fungi and plants have common epitopes. The molecular mechanism of recombination is inherited by eukaryotes from prokaryotes and operates in special compartments: SC recombination nodules. Chiasmata, i.e., physical crossovers of nonsister chromatids, are preserved in bivalents until metaphase I due to local cohesion of sister chromatids in the remaining SC fragments. Owing to chiasmata, homologous chromosomes participate in meiosis I in pairs rather than individually, which, along with unipolarity of kinetochores (only in meiosis 1), ensures segregation of homologous chromosomes. The appearance of SC and chiasmata played a key role in the evolution of unicellular organisms since it promoted the development of a progressive type of meiosis. Some lower eukaryotes retain primitive meiosis types. These primitive modes of meiosis also occur in the sex of some insects that is heterozygous for sex chromosomes. I suggest an explanation for these cases. Mutations at meiotic genes impair meiosis; however, due to the preservation of archaic meiotic genes in the genotype, bypass metabolic pathways arise, which provide partial rescue of the traits damaged by mutations. Individual blocks of genetic program of meiotic regulation have probably evolved independently.  相似文献   

17.
The presence of homologous nucleic acid sequences can exert profound effects on chromosomal and gene function in a wide range of organisms. These homology effects reveal remarkable forms of regulation as well as suggest possible avenues for the development of new technologies.  相似文献   

18.
李萌  贺竹梅 《遗传》2014,36(6):611-617
有性生殖的出现是生物进化中的重大事件。性别作为生物的一种重要而又复杂的表型, 由基因和环境因素共同控制, 其中遗传因素即基因起到非常关键的作用。 然而, 并不是每个相关基因对于生物的性别都具有相同的作用, 性别决定关键基因对生物性别的决定和性别的分化具有重要作用, 因而研究和理解性别决定的关键基因具有重要意义。随着现代遗传学的发展, 目前关于生物性别决定方式以及性别决定关键基因的研究已取得了很大的进展。文章就生物的基因性别决定机制以及基因性别决定机制的研究策略进行了综述, 以期在遗传学教学中能更好地理解和阐述。  相似文献   

19.
Bogdanov IuF 《Genetika》2003,39(4):453-473
Meiosis arose in the evolution of primitive unicellular organisms as a part of sexual process. One type of meiosis, the so-called classical type, predominates in all kingdoms of eukaryotes. Meiosis is controlled by hundreds of genes, both shared with mitosis and specifically meiotic ones. In a wide range of taxa, which in some cases include kingdoms, meiotic genes and features obey Vavilov's law of homologous variation series. Synaptonemal complexes (SCs) temporarily binding homologous chromosomes at prophase I, ensure precise and equal crossing over and interference. SC proteins have 60-80% homology within the class of mammals but differ from the corresponding proteins in fungi and plants. Thus, nonhomologous SC proteins perform similar functions in different taxa. Some recombination enzymes in fungi and insects have common epitopes. The molecular mechanism of recombination is inherited by eukaryotes from prokaryotes and operates in special compartments: SC recombination nodules. Chiasmata, i.e., physical crossovers of nonsister chromatids, are preserved in bivalents until metaphase I due to local cohesion of sister chromatids in the remaining SC fragments. Owing to chiasmata, homologous chromosomes participate in meiosis I in pairs rather than individually, which, along with unipolarity of kinetochores (only in meiosis 1), ensures segregation of homologous chromosomes. The appearance of SC and chiasmata played a key role in the evolution of unicellular organisms since it promoted the development of a progressive type of meiosis. Some lower eukaryotes retain primitive meiosis types. These primitive modes of meiosis also occur in the sex of some insects that is heterozygous for sex chromosomes. I suggest an explanation for these cases. Mutations at meiotic genes impair meiosis; however, due to the preservation of archaic meiotic genes in the genotype, bypass metabolic pathways arise, which provide partial rescue of the traits damaged by mutations. Individual blocks of genetic program of meiotic regulation have probably evolved independently.  相似文献   

20.
Silencing of developmental genes in Hydra.   总被引:32,自引:0,他引:32  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号