首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Injection of tumor cells in mice more than 30 years ago resulted in the discovery of an epithelial antigen, later defined as a cell adhesion molecule (EpCAM). Although EpCAM has since evoked significant interest as a target in cancer therapy, mechanistic insights on the functions of this glycoprotein have been emerging only very recently. This may have been caused by the multitude of functions attributed to the glycoprotein, its localization at different subcellular sites and complex posttranslational modifications. Here, we review how EpCAM modifies cell–cell contact adhesion strength and tissue plasticity, and how it regulates cell proliferation and differentiation. Major knowledge derived from human diseases will be highlighted: Mutant EpCAM that is absent from the cell surface leads to fatal intestinal abnormalities (congenital tufting enteropathy). EpCAM-mediated cell proliferation in cancer may result from signaling (i) via regulated intramembrane proteolysis and/or (ii) the localization and association with binding partners in specialized membrane microdomains. New insight in EpCAM signaling will help to develop optimized cancer therapies and open new avenues in the field of regenerative medicine.  相似文献   

2.
Varis A  Salmela AL  Kallio MJ 《Chromosoma》2006,115(4):288-295
Cenp-F (mitosin) is a large coiled-coil protein whose function has remained obscure since its identification a decade ago. It has been suggested that the protein plays a role in the kinetochore-mediated mitotic functions but until recently there was little evidence to support this postulation. Recent results from five laboratories have given insights on how Cenp-F may participate in the regulation of cell division. In this mini-review, we will summarize the current data regarding the mitotic tasks of Cenp-F as well as discuss how it is used as a proliferation marker of malignant cell growth in the clinic. Also, the protein’s post-translational modification by farnesylation and potential contribution to cell cycle effects of farnesyl transferase inhibitors will be addressed.  相似文献   

3.
Stat5 is constitutively activated in many human cancers affecting the expression of cell proliferation and cell survival controlling genes. These oncogenic functions of Stat5 have been elegantly reproduced in mouse models. Aberrant Stat5 activity induces also mitochondrial dysfunction and reactive oxygen species leading to DNA damage. Although DNA damage can stimulate tumorigenesis, it can also prevent it. Stat5 can inhibit tumor progression like in the liver and it is a tumor suppressor in fibroblasts. Stat5 proteins are able to regulate cell differentiation and senescence activating the tumor suppressors SOCS1, p53 and PML. Understanding the context dependent regulation of tumorigenesis through Stat5 function will be central to understand proliferation, survival, differentiation or senescence of cancer cells.  相似文献   

4.
Genes dedicated to killing cells must have evolved because of their positive effects on organismal survival. Positive functions of apoptotic genes have been well established in a large number of biological contexts, including their role in eliminating damaged and potentially cancerous cells. More recently, evidence has suggested that proapoptotic proteins-mostly caspases-can induce proliferation of neighboring surviving cells to replace dying cells. This process, that we will refer to as "apoptosis-induced proliferation," may be critical for stem cell activity and tissue regeneration. Depending on the caspases involved, at least two distinct types of apoptosis-induced proliferation can be distinguished. One of these types have been studied using a model in which cells have initiated cell death, but are prevented from executing it because of effector caspase inhibition, thereby generating "undead" cells that emit persistent mitogen signaling and overgrowth. Such conditions are likely to contribute to certain forms of cancer. In this review, we summarize the current knowledge of apoptosis-induced proliferation and discuss its relevance for tissue regeneration and cancer.  相似文献   

5.
S F Gilbert  B R Migeon 《Cell》1975,5(1):11-17
A nutrient medium has been developed to enable the growth of normal epithelial cells while selectively inhibiting fibroblast proliferation. In this medium, D-valine is substituted for L-valine; and only those cells containing D-amino acid oxidase can convert the D-amino acid into its essential L-enantiomer. The ability to select for cells with this enzyme has enabled us to maintain epithelial cell populations free from fibroblast overgrowth. The presence of D-amino acid oxidase has been histochemically confirmed in the epithelial cells selected from renal cell suspensions and explants. The ability to proliferate in the selective medium is transmitted to the clonal progeny of these cells. Moreover, epithelial cell proliferation of this medium indicates the presence of D-amino acid oxidase, which we have detected in tissues where it had not previously been reported-fetal human kidney, lung, and cord. Fibroblasts will not grow in the selective medium, but will proliferate normally if the product of the D-amino acid oxidase reaction is supplied.  相似文献   

6.
The shoot apical meristem is a group of rapidly dividing cells that generate all aerial parts of the plant. It is a highly organised structure, which can be divided into functionally distinct domains, characterised by specific proliferation rates of the individual cells. Genetic studies have enabled the identification of regulators of meristem function. These factors are involved in the formation and maintenance of the meristem, as well as in the formation of the primordia. Somehow, they must also govern cell proliferation rates within the shoot apex. Possible links between meristem regulators and the cell cycle machinery will be discussed. In order to analyse the role of cell proliferation in development, cell cycle gene expression has been perturbed using transgenic approaches and mutation. The effect of these alterations on growth and development at the shoot apex will be presented. Together, these studies give a first insight into the regulatory networks controlling the cell cycle and into the significance of cell proliferation in plant development.  相似文献   

7.
Muscle cell culture as a tool in animal growth research   总被引:1,自引:0,他引:1  
Muscle cell culture techniques have been used for several years in research on muscle growth and development. Several types of culture systems have been devised, including primary cultures from embryonic or postnatal muscle and myogenic cell lines. In addition, serum-free and serum-containing media have been developed to address specific muscle development questions. Many of these questions center around muscle cell differentiation and muscle cell physiology; and, more recently, muscle cell cultures have been used as bioassay tools for examining growth physiology in domestic animals. In our laboratory, skeletal muscle satellite cells have been studied in vitro to evaluate the effect of several protein hormones and growth factors on satellite cell proliferation and differentiation. Of the hormones examined, only the insulin-like growth factors/somatomedins and fibroblast growth factor have been shown to have a stimulatory effect on proliferation that could be physiologically significant. None of the major anterior pituitary hormones interacted directly with satellite cells to stimulate proliferation. With advances in serum-free medium formulations and cell separation techniques, more information can be obtained from experiments with muscle cell cultures. With appropriate design and interpretation, our knowledge of muscle growth in domestic animals will be expanded.  相似文献   

8.
Tumor cells develop different strategies to cope with changing microenvironmental conditions. A prominent example is the adaptive phenotypic switching between cell migration and proliferation. While it has been shown that the migration-proliferation plasticity influences tumor spread, it remains unclear how this particular phenotypic plasticity affects overall tumor growth, in particular initiation and persistence. To address this problem, we formulate and study a mathematical model of spatio-temporal tumor dynamics which incorporates the microenvironmental influence through a local cell density dependence. Our analysis reveals that two dynamic regimes can be distinguished. If cell motility is allowed to increase with local cell density, any tumor cell population will persist in time, irrespective of its initial size. On the contrary, if cell motility is assumed to decrease with respect to local cell density, any tumor population below a certain size threshold will eventually extinguish, a fact usually termed as Allee effect in ecology. These results suggest that strategies aimed at modulating migration are worth to be explored as alternatives to those mainly focused at keeping tumor proliferation under control.  相似文献   

9.
器官大小是植物形态的一个重要特征,而且具有严格的种属特异性。植物器官大小虽然受到外在的环境因素(如光照、营养等)的影响,但它由内在特有的细胞数目和细胞大小决定。许多通过转录调节、蛋白合成、激素调节或松弛细胞壁等途径作用于植物细胞繁殖和/或细胞扩张的基因已经被鉴定,它们的过表达或缺失表达能促进植物器官大小和加快植物生长。尽管如此,这些基因通过相对独立的途径起作用,在植物中难以阐明一个相对整合的器官大小基因调控网络,这也是该研究领域的亟待需要解决的问题。目前,一些器官大小相关基因已经应用农作物育种,并培育出显著增大的农作物品种,这也证实了利用器官大小基因进行植物品种选育的可行性。因此,通过研究药用植物器官大小的基因,人为地在分子水平上有目的的调控器官的大小和形态,是缓解当前许多药用植物面临的资源紧缺、枯竭濒危困境的可考虑途径之一。  相似文献   

10.
11.
The proliferation of Mycobacterium-primed murine lymph node T cells to purified protein derivative of tuberculin (PPD), as measured by the uptake of tritiated thymidine, requires the obligatory participiation of macrophages which stimulate the T cells either directly with antigen in association with cell surface Ia (I region-defined antigens), or indirectly by means of soluble factors. We have examined the possibility that this functional dichotomy is due to heterogeneity within the macrophage population. Since the maturation of macrophages from the precursor monocytes is associated with cell enlargement, macrophage subpopulations differing in developmental stage are obtained by cell fractionation according to size by velocity sedimentation. Nylon-wool-purified T cells which have been depleted of macrophages and B cells are stimulated with PPD either in a free form or bound to macrophages which have been incubated for a short time (i.e., pulsed) with PPD. We found that for PPD-pulsed macrophages, only the smallest (and probably the most immature) are capable of inducing T-cell proliferation. This antigen presentation function is mediated by cell surface Ia since it is abolished by pretreatment of the macrophages with anti-Ia serum and complement. On the other hand, all macrophages, irrespective of sensitivity to anti-Ia serum, secrete factors which will stimulate T-cell proliferation in the presence of free PPD. Thus the maturation of macrophages is accompanied by a shift from Ia-dependent to Ia-independent mechanisms of immunostimulation.  相似文献   

12.
R L Melnick 《FASEB journal》1992,6(9):2698-2706
Cell proliferation has long been recognized as having an important role in chemically induced carcinogenesis. Based on findings that certain nongenotoxic chemical carcinogens induced cell proliferation in the same organ that had an increased incidence of tumors, it has been hypothesized that a chemically induced response of enhanced DNA synthesis and cellular division causes cancer by increasing the rate of spontaneous mutations. It was further suggested that there would be no increased human risk of cancer by non-DNA-reactive compounds at doses that do not cause a proliferative response. An evaluation of the literature on the relationship between chemically induced cell proliferation and liver carcinogenesis reveals that very few systematic cell proliferation studies have been conducted over periods of extended exposure, and in many cases the exposure concentrations were not similar to those used in the cancer studies. The proliferative response resulting from exposure to many nongenotoxic carcinogens is not well sustained, whereas the carcinogenic response by these chemicals often requires prolonged exposure. The available literature leads to the conclusion that quantitative correspondences between cellular proliferation and carcinogenic responses have not been demonstrated and do not support the hypothesis that chemically induced cell proliferation is the primary mechanism by which nongenotoxic chemicals cause liver cancer. Studies of liver carcinogenesis in two-stage models point out the need to better understand chemical effects on cell loss as well as on cell replication, and demonstrate that measurements of cell proliferation alone are not sufficient to elucidate mechanisms of tumor development.  相似文献   

13.
FGF signals for cell proliferation and migration through different pathways   总被引:9,自引:0,他引:9  
FGFs are pleiotropic growth factors that control cell proliferation, migration and differentiation. However, FGF transduction studies have so far focused primarily on the mitogenic effect of this growth factor family and it has been difficult to assess if the described intracellular signaling pathways are dedicated solely to cell proliferation, or whether they are equally important for the migratory activity often seen in responsive cells. We review here papers in which the migratory effects of this growth factor family were clearly discriminated from proliferative effects. In toto, these studies suggest that cells use different signaling pathways for migration, such as Src and p38 MAP kinase, from those for proliferation, which tend to upregulate the ERKs. Which signaling pathway a cell uses for proliferation or migration appears to depend on many factors, including the structure and the quantity of available FGF trapped in the basal lamina by heparan sulfate co-factors, the disposition of cognate high affinity receptors and the general environment of the cell. Thus the density of the cell population, the state of the cell cycle, the presence of other factors or receptors will modulate the migratory response of cells to FGF.  相似文献   

14.
Current load-bearing orthopaedic implants are produced in 'bio-inert' materials such as titanium alloys. When inserted into the reamed bone during hip or knee replacement surgery the implants interact with mesenchymal populations including the bone marrow. Bio-inert materials are shielded from the body by differentiation of the cells along the fibroblastic lineage producing scar tissue and inferior healing. This is exacerbated by implant micromotion, which can lead to capsule formation. Thus, next-generation implant materials will have to elicit influence over osteoprogenitor differentiation and mesenchymal populations in order to recruit osteoblastic cells and produce direct bone apposition onto the implant. A powerful method of delivering cues to cells is via topography. Micro-scale topography has been shown to affect cell adhesion, migration, cytoskeleton, proliferation and differentiation of a large range of cell types (thus far all cell types tested have been shown to be responsive to topographical cues). More recent research with nanotopography has also shown a broad range of cell response, with fibroblastic cells sensing down to 10 nm in height. Initial studies with human mesenchymal populations and osteoprogenitor populations have again shown strong cell responses to nanofeatures with increased levels of osteocalcin and osteopontin production from the cells on certain topographies. This is indicative of increased osteoblastic activity on the nanotextured materials. Looking at preliminary data, it is tempting to speculate that progenitor cells are, in fact, more responsive to topography than more mature cell types and that they are actively seeking cues from their environment. This review will investigate the range of nanotopographies available to researchers and our present understanding of mechanisms of progenitor cell response. Finally, it will make some speculations of the future of nanomaterials and progenitor cells in tissue engineering.  相似文献   

15.
The role of cell cycle regulators in the control of cell proliferation has been extensively studied, but independently of these functions in cell proliferation, it now appears that these proteins are also key to the adapted metabolic response of the cells. This has some logic since cell cycle is linked to metabolic control. This review focusses on the involvment of cyclins, cyclin dependent kinases or E2F factor in the control of adipogenesis, glucidic homeostasis, and energy consumption. Murine models in which genes encoding these regulators have been invalidated have been key to unravel these novel functions of cell cycle regulators in cell metabolism. Furthermore, these findings may also have some relevance for metabolic disorders such as obesity or diabetes.  相似文献   

16.
During the development of multicellular animals, cell proliferation must be precisely controlled, as deregulated proliferation can lead to overgrowth and cancer. In addition, proliferation must be tightly integrated with pattern formation and differentiation to generate the required number of cells in the right organs, and at the right time. All major signaling pathways employed during embryogenesis have been implicated in cell cycle regulation, indicating that no single pathway has been dedicated to this task. Also, the precise role of a particular signaling pathway in regulating proliferation is highly dependent on the cellular context, and may have opposite effects on cell-cycle progression in different cells and tissues. The Hedgehog (Hh) family of signaling proteins is known to control both differentiation and proliferation during development. So far, studies addressing the effect of Hh signaling on proliferation have shown it to have a stimulatory effect on cell-cycle progression. Here we review several recent studies indicating that Hh signaling can also have the opposite effect, directing cell-cycle exit in a number of cell types in vertebrate and in invertebrate embryos.  相似文献   

17.
A crucial step towards the goal of tissue engineering a heart valve will be the choice of scaffold onto which an appropriate cell phenotype can be seeded. Successful scaffold materials should be amenable to modification, have a controlled degradation, be compatible with the cells, lack cytotoxicity and not elicit an immune or inflammatory response. In addition, the scaffold should induce appropriate responses from the cells seeded onto it, such as cell attachment, proliferation and remodelling capacity, all of which should promote the formation of a tissue construct that can mimic the structure and function of the native valve. This paper discusses the various biological scaffolds that have been considered and are being studied for use in tissue engineering a heart valve. Also, strategies to enhance the biological communication between the scaffold and the cells seeded onto it as well as the use of bionanotechnology in the manufacture of scaffolds possessing the desired properties will be discussed.  相似文献   

18.
B Erlichman  O M Howard 《Cytokine》1999,11(7):476-484
Tumour necrosis factor receptor (TNFR) superfamily members play critical roles in the regulation of cell proliferation and death. One member of the TNFR superfamily, CD27, is unique because it is the only covalently linked homodimer in the family. CD27 and its cellular ligand, CD70, have been implicated in the regulation of T cell and B cell interactions that lead to cellular activation and regulation of immunoglobulin expression. Due to the unique nature of CD27, we chose to screen a number of B cell lymphoma cell lines for CD27 and CD70 expression and evaluate CD27 activation by antibody cross-linking. Two cell lines, HT and SU-4, showed greater cellular proliferation when CD27 was cross-lined and this correlated with increased PKC activation. Additionally, in the HT cell line cell surface expression of IgG was increased by CD27 cross-linking. Thus we have identified cellular systems for the study of CD27 signal transduction that will allow definition of the CD27 signal cascade of some B cell lymphomas.  相似文献   

19.
一种新型干细胞--侧群细胞   总被引:3,自引:0,他引:3  
侧群细胞(side population cell)是利用Hoechst染料和流式细胞术进行造血千/祖细胞分离时发现的一群特殊细胞,广泛分布于多种成体组织、胚胎和某些肿瘤细胞系中;它既具有类似千细胞的自我更新和多向分化潜能,还具有独特的表型标记和生物学特征,代表了一种新的千细胞类型。对侧群细胞的研究,不仅有助于人们增加对千细胞增殖、分化及其发育调控机制的理解,同时还提供了一种从不同组织中分离纯化和利用多能干细胞的新策略,为组织工程和细胞治疗提供新的千细胞材料来源。现就侧群细胞的组织分布、生物学特征、表型标记、信号转导机制及其与肿瘤发生相关性等方面的研究进展进行了综述,并对侧群细胞的进一步研究和应用作了展望。  相似文献   

20.
Ion Channels and Cancer   总被引:17,自引:0,他引:17  
Membrane ion channels are essential for cell proliferation and appear to have a role in the development of cancer. This has initially been demonstrated for potassium channels and is meanwhile also suggested for other cation channels and Cl channels. For some of these channels, like voltage-gated ether à go-go and Ca2+-dependent potassium channels as well as calcium and chloride channels, a cell cycle-dependent function has been demonstrated. Along with other membrane conductances, these channels control the membrane voltage and Ca2+ signaling in proliferating cells. Homeostatic parameters, such as the intracellular ion concentration, cytosolic pH and cell volume, are also governed by the activity of ion channels. Thus it will be an essential task for future studies to unravel cell cycle-specific effects of ion channels and non-specific homeostatic functions. When studying the role of ion channels in cancer cells, it is indispensable to choose experimental conditions that come close to the in vivo situation. Thus, environmental parameters, such as low oxygen pressure, acidosis and exposure to serum proteins, have to be taken into account. In order to achieve clinical application, more studies on the original cancer tissue are required, and improved animal models. Finally, it will be essential to generate more potent and specific inhibitors of ion channels to overcome the shortcomings of some of the current approaches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号