首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Targeting of specific pathogens to FcRs on immune effector cells by using bispecific Abs was reported to result in effective killing of the pathogens, both in vitro and in vivo. Instead of targeting a specific pathogen to an FcR, we assessed whether a broad spectrum of pathogens can be targeted to an FcR using surfactant protein D (SP-D). SP-D is a collectin that binds a great variety of pathogens via its carbohydrate recognition domain. A recombinant trimeric fragment of SP-D (rfSP-D), consisting of the carbohydrate recognition domain and neck domain of human SP-D, was chemically cross-linked to the Fab' of an Ab directed against the human Fc alpha RI (CD89). In vitro, the chimeric rfSP-D/anti-CD89 protein enhanced uptake of Escherichia coli, Candida albicans, and influenza A virus by human neutrophils. Blocking of the interaction between rfSP-D/anti-CD89 and either the pathogen or CD89 abolished its stimulatory effect on pathogen uptake by neutrophils. In addition, rfSP-D/anti-CD89 stimulated killing of E. coli and C. albicans by neutrophils and enhanced neutrophil activation by influenza A virus. In conclusion, rfSP-D/anti-CD89 effectively targeted three structurally unrelated pathogens to neutrophils. (Col)lectin-based chimeric proteins may thus offer promise for therapy of infectious disease.  相似文献   

2.
Collectins are a family of innate immune proteins that contain fibrillar collagen-like regions and globular carbohydrate recognition domains (CRDs). The CRDs of these proteins recognize various microbial surface-specific carbohydrate patterns, particularly hexoses. We hypothesized that collectins, such as pulmonary surfactant proteins (SPs) SP-A and SP-D and serum protein mannose-binding lectin, could recognize nucleic acids, pentose-based anionic phosphate polymers. Here we show that collectins bind DNA from a variety of origins, including bacteria, mice, and synthetic oligonucleotides. Pentoses, such as arabinose, ribose, and deoxyribose, inhibit the interaction between SP-D and mannan, one of the well-studied hexose ligands for SP-D, and biologically relevant d-forms of the pentoses are better competitors than the l-forms. In addition, DNA and RNA polymer-related compounds, such as nucleotide diphosphates and triphosphates, also inhibit the carbohydrate binding ability of SP-D, or approximately 60 kDa trimeric recombinant fragments of SP-D that are composed of the alpha-helical coiled-coil neck region and three CRDs (SP-D(n/CRD)) or SP-D(n/CRD) with eight GXY repeats (SPD(GXY)(8)(n/CRD)). Direct binding and competition studies suggest that collectins bind nucleic acid via their CRDs as well as by their collagen-like regions, and that SP-D binds DNA more effectively than do SP-A and mannose-binding lectin at physiological salt conditions. Furthermore, the SP-D(GXY)(8)(n/CRD) fragments co-localize with DNA, and the protein competes the interaction between propidium iodide, a DNA-binding dye, and apoptotic cells. In conclusion, we show that collectins are a new class of proteins that bind free DNA and the DNA present on apoptotic cells by both their globular CRDs and collagen-like regions. Collectins may therefore play an important role in decreasing the inflammation caused by DNA in lungs and other tissues.  相似文献   

3.
Innate immune collectins, such as surfactant protein D (SP-D), contain fibrillar collagen-like regions and globular carbohydrate-recognition domains (CRDs). SP-D recognizes carbohydrate arrays present on microbial surfaces via its CRDs, agglutinates microbes and enhances their phagocytosis. In contrast, adaptive immune proteins such as immunoglobulins (Igs) recognize pathogens via binding to specific antigens. Here we show that: SP-D binds various classes of immunoglobins, including IgG, IgM, IgE and secretory IgA, but not serum IgA; the globular domains of SP-D bind both the Fab and Fc domains of IgG; SP-D recognizes IgG via calcium-dependent protein-protein interactions, aggregates IgG-coated beads and enhances their phagocytosis by murine macrophage RAW 264.7 cells. Therefore, we propose that SP-D effectively interlinks innate and adaptive immune systems.  相似文献   

4.
Pulmonary surfactant protein D (SP-D), a lung host defense protein, is assembled as multimers of trimeric subunits. Trimerization of SP-D monomers is required for high affinity saccharide binding, and the oligomerization of trimers is required for many of its functions. A peptide containing the alpha-helical neck region can spontaneously trimerize in vitro. However, it is not known whether this sequence is necessary for the complete cellular assembly of disulfide-cross-linked, trimeric subunits and dodecamers. For the present studies, we synthesized mutant cDNAs with deletions or site-directed substitutions in the neck domain of rat SP-D, and examined the assembly of the newly synthesized proteins after transfection of CHO-K1 cells. The neck domain contains three "classical" heptad repeat motifs with leucine residues at the "d position," and a distinctive C-terminal repeat previously suggested to drive trimeric chain association. Deletion of the highly conserved core of the latter repeat (FSRYLKK) did not interfere with the secretion of dodecamers with lectin activity. By contrast, deletion of the entire neck domain or deletion of one or two amino-terminal repeats resulted in defective molecular assembly. The secreted proteins eluted in the position of monomers by gel filtration under nondenaturing conditions. In addition, the neck + carbohydrate recognition domain of SP-D was necessary and sufficient for the trimerization of a heterologous collagen sequence located amino-terminal to the trimeric coiled-coil. These studies provide strong evidence that the amino-terminal heptad repeats of the neck domain are necessary for the intracellular, trimeric association of SP-D monomers and for the assembly and secretion of functional dodecamers.  相似文献   

5.
Lipopolysaccharides (LPS) of Gram-negative bacteria are important mediators of bacterial virulence that can elicit potent endotoxic effects. Surfactant protein D (SP-D) shows specific interactions with LPS, both in vitro and in vivo. These interactions involve binding of the carbohydrate recognition domain (CRD) to LPS oligosaccharides (OS); however, little is known about the mechanisms of LPS recognition. Recombinant neck+CRDs (NCRDs) provide an opportunity to directly correlate binding interactions with a crystallographic analysis of the binding mechanism. In these studies, we examined the interactions of wild-type and mutant trimeric NCRDs with rough LPS (R-LPS). Although rat NCRDs bound more efficiently than human NCRDs to Escherichia coli J-5 LPS, both proteins exhibited efficient binding to solid-phase Rd2-LPS and to Rd2-LPS aggregates presented in the solution phase. Involvement of residues flanking calcium at the sugar binding site was demonstrated by reciprocal exchange of lysine and arginine at position 343 of rat and human CRDs. The lectin activity of hNCRDs was inhibited by specific heptoses, including l-glycero-alpha-d-manno-heptose (l,d-heptose), but not by 3-deoxy-alpha-d-manno-oct-2-ulosonic acid (Kdo). Crystallographic analysis of the hNCRD demonstrated a novel binding orientation for l,d-heptose, involving the hydroxyl groups of the side chain. Similar binding was observed for a synthetic alpha1-->3-linked heptose disaccharide corresponding to heptoses I and II of the inner core region in many LPS. 7-O-Carbamoyl-l,d-heptose and d-glycero-alpha-d-manno-heptose were bound via ring hydroxyl groups. Interactions with the side chain of inner core heptoses provide a potential mechanism for the recognition of diverse types of LPS by SP-D.  相似文献   

6.
BACKGROUND: Human lung surfactant protein D (hSP-D) belongs to the collectin family of C-type lectins and participates in the innate immune surveillance against microorganisms in the lung through recognition of carbohydrate ligands present on the surface of pathogens. The involvement of this protein in innate immunity and the allergic response make it the subject of much interest. RESULTS: We have determined the crystal structure of a trimeric fragment of hSP-D at 2.3 A resolution. The structure comprises an alpha-helical coiled-coil and three carbohydrate-recognition domains (CRDs). An interesting deviation from symmetry was found in the projection of a single tyrosine sidechain into the centre of the coiled-coil; the asymmetry of this residue influences the orientation of one of the adjacent CRDs. The cleft between the three CRDs presents a large positively charged surface. CONCLUSIONS: The fold of the CRD of hSP-D is similar to that of the mannan-binding protein (MBP), but its orientation relative to the alpha-helical coiled-coil region differs somewhat to that seen in the MBP structure. The novel central packing of the tyrosine sidechain within the coiled-coil and the resulting asymmetric orientation of the CRDs has unexpected functional implications. The positively charged surface might facilitate binding to negatively charged structures, such as lipopolysaccharides.  相似文献   

7.
Effective innate host defense requires early recognition of pathogens. Surfactant protein D (SP-D), shown to play a role in host defense, binds to the lipopolysaccharide (LPS) component of Gram-negative bacterial membranes. Binding takes place via the carbohydrate recognition domain (CRD) of SP-D. Recombinant trimeric neck+CRDs (NCRD) have proven valuable in biophysical studies of specific interactions. Although X-ray crystallography has provided atomic level information on NCRD binding to carbohydrates and other ligands, molecular level information about interactions between SP-D and biological ligands under physiologically relevant conditions is lacking. Infrared reflection-absorption spectroscopy (IRRAS) provides molecular structure information from films at the air/water interface where protein adsorption to LPS monolayers serves as a model for protein-lipid interaction. In the current studies, we examine the adsorption of NCRDs to Rd 1 LPS monolayers using surface pressure measurements and IRRAS. Measurements of surface pressure, Amide I band intensities, and LPS acyl chain conformational ordering, along with the introduction of EDTA, permit discrimination of Ca (2+)-mediated binding from nonspecific protein adsorption. The findings support the concept of specific binding between the CRD and heptoses in the core region of LPS. In addition, a novel simulation method that accurately predicts the IR Amide I contour from X-ray coordinates of NCRD SP-D is applied and coupled to quantitative IRRAS equations providing information on protein orientation. Marked differences in orientation are found when the NCRD binds to LPS compared to nonspecific adsorption. The geometry suggests that all three CRDs are simultaneously bound to LPS under conditions that support the Ca (2+)-mediated interaction.  相似文献   

8.
Surfactant protein D (SP-D) and serum conglutinin are closely related members of the collectin family of host defense lectins. Although normally synthesized at different anatomic sites, both proteins participate in the innate immune response to microbial challenge. To discern the roles of specific domains in the function of SP-D in vivo, a fusion protein (SP-D/Cong(neck+CRD)) consisting of the NH(2)-terminal and collagenous domains of rat SP-D (rSP-D) and the neck and carbohydrate recognition domains (CRDs) of bovine conglutinin (Cong) was expressed in the respiratory epithelium of SP-D gene-targeted (SP-D(-/-)) mice. While SP-D/Cong(neck+CRD) fusion protein did not affect lung morphology and surfactant phospholipid levels in the lungs of wild type mice, the chimeric protein substantially corrected the increased lung phospholipids in SP-D(-/-) mice. The SP-D/Cong(neck+CRD) fusion protein also completely corrected defects in influenza A clearance and inhibited the exaggerated inflammatory response that occurs following viral infection. However, the chimeric protein did not ameliorate the ongoing lung inflammation, enhanced metalloproteinase expression, and alveolar destruction that characterize this model of SP-D deficiency. By contrast, a single arm mutant (RrSP-D(Ser15,20)) partially restored antiviral activity but otherwise failed to rescue the deficient phenotype. Our findings directly implicate the CRDs of both SP-D and conglutinin in host defense in vivo. Our findings also strongly suggest that the molecular mechanisms underlying impaired pulmonary host defense and abnormal lipid metabolism are distinct from those that promote ongoing inflammation and the development of emphysema.  相似文献   

9.
Surfactant protein D (SP-D) is an innate immune effector that contributes to antimicrobial host defense and immune regulation. Interactions of SP-D with microorganisms and organic antigens involve binding of glycoconjugates to the C-type lectin carbohydrate recognition domain (CRD). A trimeric fusion protein encoding the human neck+CRD bound to the aromatic glycoside p-nitrophenyl-alpha-D-maltoside with nearly a log-fold higher affinity than maltose, the prototypical competitor. Maltotriose, which has the same linkage pattern as the maltoside, bound with intermediate affinity. Site-directed substitution of leucine for phenylalanine 335 (Phe-335) decreased affinities for the maltoside and maltotriose without significantly altering the affinity for maltose or glucose, and substitution of tyrosine or tryptophan for leucine restored preferential binding to maltotriose and the maltoside. A mutant with alanine at this position failed to bind to mannan or maltose-substituted solid supports. Crystallographic analysis of the human neck+CRD complexed with maltotriose or p-nitrophenyl-maltoside showed stacking of the terminal glucose or nitrophenyl ring with the aromatic ring of Phe-335. Our studies indicate that Phe-335, which is evolutionarily conserved in all known SP-Ds, plays important, if not critical, roles in SP-D function.  相似文献   

10.
Recent studies strongly suggest that surfactant protein D (SP-D) plays important roles in pulmonary host defense and the regulation of immune and inflammatory reactions in the lung. Although SP-D can bind to alveolar macrophages and can elicit their chemotaxis, relatively little is known about the direct cellular consequences of SP-D on the function of these cells. Because matrix metalloproteinases (MMPs) are synthesized in increased amounts in response to various proinflammatory stimuli, we investigated the capacity of SP-D to modulate the production of MMPs by freshly isolated human alveolar macrophages. Unexpectedly we found that recombinant rat SP-D dodecamers selectively induce the biosynthesis of collagenase-1 (MMP-1), stromelysin (MMP-3), and macrophage elastase (MMP-12) without significantly increasing the production of tumor necrosis factor alpha and interleukin-1beta. SP-D did not alter the production of these MMPs by fibroblasts. Phosphatidylinositol, a surfactant-associated ligand that interacts with the carboxyl-terminal neck and carbohydrate recognition domains of SP-D, inhibited the SP-D-dependent increase in MMP biosynthesis. A trimeric, recombinant protein consisting of only the neck and carbohydrate recognition domain did not augment metalloproteinase production, suggesting that the stimulatory effect on MMP production depends on an appropriate spatial presentation of trimeric lectin domains. Although SP-D dodecamers can selectively augment metalloproteinase activity in vitro, this effect may be competitively inhibited by tissue inhibitors of metalloproteinases or surfactant-associated ligands in vivo.  相似文献   

11.
The recognition of influenza A virus (IAV) by surfactant protein D (SP-D) is mediated by interactions between the SP-D carbohydrate recognition domains (CRD) and glycans displayed on envelope glycoproteins. Although native human SP-D shows potent antiviral and aggregating activity, trimeric recombinant neck+CRDs (NCRDs) show little or no capacity to influence IAV infection. A mutant trimeric NCRD, D325A/R343V, showed marked hemagglutination inhibition and viral neutralization, with viral aggregation and aggregation-dependent viral uptake by neutrophils. D325A/R343V exhibited glucose-sensitive binding to Phil82 hemagglutinin trimer (HA) by surface plasmon resonance. By contrast, there was very low binding to the HA trimer from another virus (PR8) that lacks glycans on the HA head. Mass spectrometry demonstrated the presence of high mannose glycans on the Phil82 HA at positions known to contribute to IAV binding. Molecular modeling predicted an enhanced capacity for bridging interactions between HA glycans and D325A/R343V. Finally, the trimeric D325A/R343V NCRD decreased morbidity and increased viral clearance in a murine model of IAV infection using a reassortant A/WSN/33 virus with a more heavily glycosylated HA. The combined data support a model in which altered binding by a truncated mutant SP-D to IAV HA glycans facilitates viral aggregation, leading to significant viral neutralization in vitro and in vivo. These studies demonstrate the potential utility of homology modeling and protein structure analysis for engineering effective collectin antivirals as in vivo therapeutics.  相似文献   

12.
Lung surfactant protein A (SP-A) and D (SP-D) are innate immune molecules which are known to interact with allergens and immune cells and modulate cytokine and chemokine profiles during host hypersensitivity response. We have previously shown therapeutic effects of SP-A and SP-D using a murine model of lung hypersensitivity to Aspergillus fumigatus (Afu) allergens. In this study, we have examined the susceptibility of SP-A (AKO) or SP-D gene-deficient (DKO) mice to the Afu allergen challenge, as compared with the wild-type mice. Both AKO and DKO mice exhibited intrinsic hypereosinophilia and several-fold increase in levels of IL-5 and IL-13, and lowering of IFN-gamma to IL-4 ratio in the lungs, suggesting a Th2 bias of immune response. This Th2 bias was reversible by treating AKO or DKO mice with SP-A or SP-D, respectively. The AKO and DKO mice showed distinct immune responses to Afu sensitization. DKO mice were found more susceptible than wild-type mice to pulmonary hypersensitivity induced by Afu allergens. AKO mice were found to be nearly resistant to Afu sensitization. Intranasal treatment with SP-D or rhSP-D (a recombinant fragment of human SP-D containing trimeric C-type lectin domains) was effective in rescuing the Afu-sensitized DKO mice, while SP-A-treated Afu-sensitized AKO mice showed several-fold elevated levels of IL-13 and IL-5, resulting in increased pulmonary eosinophilia and damaged lung tissue. These data reaffirm an important role for SP-A and SP-D in offering resistance to pulmonary allergenic challenge.  相似文献   

13.
Recent studies have shown that surfactant components, in particular the collectins surfactant protein (SP)-A and -D, modulate the phagocytosis of various pathogens by alveolar macrophages. This interaction might be important not only for the elimination of pathogens but also for the elimination of inhaled allergens and might explain anti-inflammatory effects of SP-A and SP-D in allergic airway inflammation. We investigated the effect of surfactant components on the phagocytosis of allergen-containing pollen starch granules (PSG) by alveolar macrophages. PSG were isolated from Dactylis glomerata or Phleum pratense, two common grass pollen allergens, and incubated with either rat or human alveolar macrophages in the presence of recombinant human SP-A, SP-A purified from patients suffering from alveolar proteinosis, a recombinant fragment of human SP-D, dodecameric recombinant rat SP-D, or the commercially available surfactant preparations Curosurf and Alveofact. Dodecameric rat recombinant SP-D enhanced binding and phagocytosis of the PSG by alveolar macrophages, whereas the recombinant fragment of human SP-D, SP-A, or the surfactant lipid preparations had no effect. In addition, recombinant rat SP-D bound to the surface of the PSG and induced aggregation. Binding, aggregation, and enhancement of phagocytosis by recombinant rat SP-D was completely blocked by EDTA and inhibited by d-maltose and to a lesser extent by d-galactose, indicating the involvement of the carbohydrate recognition domain of SP-D in these functions. The modulation of allergen phagocytosis by SP-D might play an important role in allergen clearance from the lung and thereby modulate the allergic inflammation of asthma.  相似文献   

14.
Surfactant protein D reduces alveolar macrophage apoptosis in vivo   总被引:2,自引:0,他引:2  
Surfactant protein D (SP-D) is a molecule of the innate immune system that recognizes the patterns of surface carbohydrate on pathogens and targets them for phagocytosis and killing. SP-D-deficient mice show an increased number of macrophages in the alveolar space, excess surfactant phospholipid, overproduction of reactive oxygen species, and the development of emphysema. We report here that SP-D-deficient mice have a 5- to 10-fold increase in the number of apoptotic and necrotic alveolar macrophages, as defined by annexin V and propidium iodine staining, respectively. Intrapulmonary administration of a truncated 60-kDa fragment of human recombinant SP-D reduces the number of apoptotic and necrotic alveolar macrophages and partially corrects the lipid accumulation in SP-D-deficient mice. The same SP-D fragment binds preferentially to apoptotic and necrotic alveolar macrophages in vitro, suggesting that SP-D contributes to immune homeostasis in the lung by recognizing and promoting removal of necrotic and apoptotic cells.  相似文献   

15.
The carbohydrate recognition domains (CRDs) of human serum mannose-binding lectin (MBL) and pulmonary surfactant protein D (SP-D) have distinctive monosaccharide-binding properties, and their N-terminal and collagen domains have very different quaternary structures. We produced a chimeric protein containing the N terminus and collagen domain of human SP-D and the neck region and CRD of human MBL (SP-D/MBLneck+CRD) to create a novel human collectin. The chimera bound to influenza A virus (IAV), inhibited IAV hemagglutination activity and infectivity, and induced aggregation of viral particles to a much greater extent than MBL. Furthermore, SP-D/MBLneck+CRD caused much greater increases in neutrophil uptake of, and respiratory burst responses to, IAV than MBL. These results indicate that pathogen interactions mediated by the MBL CRD are strongly influenced by the N-terminal and collagen-domain backbone to which it is attached. The presence of the CRD of MBL in the chimera resulted in altered monosaccharide binding properties compared with SP-D. As a result, the chimera caused greater aggregation and neutralization of IAV than SP-D. Distinctive functional properties of collectin collagenous domains and CRDs can be exploited to generate novel human collectins with potential for therapy of influenza.  相似文献   

16.
The innate immune system in the lung is essential for controlling infections due to inhaled pathogens. Mycobacterium tuberculosis (M.tb) encounters components of the innate immune system when inhaled into the lung, but the consequences of these interactions are poorly understood. Surfactant protein D (SP-D) binds to and agglutinates M.tb bacilli, and reduces the uptake of the bacteria by human macrophages. In the current studies, we utilized a recombinant SP-D variant (CDM) that lacks the collagen domain to further characterize the interaction of SP-D with M.tb, and determine the effects of agglutination on bacterial uptake by human monocyte-derived macrophages. These studies demonstrate that the binding of SP-D and CDM to M.tb is saturable and inhibited by carbohydrate competition and Ca(2+) chelation, implicating the carbohydrate recognition domain in the interaction. Fluorescence microscopy reveals that dodecameric SP-D leads to agglutination of the bacilli, whereas the trimeric CDM does not, demonstrating that the multivalent nature of SP-D is essential for agglutination of M.tb. However, preincubation of M.tb with increasing concentrations of SP-D or CDM leads to a concentration-dependent reduction in the uptake of the bacteria by macrophages, indicating that agglutination does not play a direct role in this observation. Finally, the reduced uptake of M.tb by SP-D is associated with reduced growth of M.tb in monocyte-derived macrophages. These studies provide direct evidence that the inhibition of phagocytosis of M.tb effected by SP-D occurs independently of the aggregation process.  相似文献   

17.
Dying microbes and necrotic cells release highly viscous DNA that induces inflammation and septic shock, and apoptotic cells display DNA, a potential autoantigen, on their surfaces. However, innate immune proteins that mediate the clearance of free DNA and surface DNA-containing cells are not clearly established. Pulmonary surfactant proteins (SP-) A and D are innate immune pattern recognition collectins that contain fibrillar collagen-like regions and globular carbohydrate recognition domains (CRDs). We have recently shown that collectins SP-A, SP-D, and mannose binding lectin recognize DNA and RNA via their collagen-like regions and CRDs. Here we show that SP-D enhances the uptake of Cy3-labeled fragments of DNA and DNA-coated beads by U937 human monocytic cells, in vitro. Analysis of DNA uptake by freshly isolated mouse alveolar macrophages shows that SP-D, but not SP-A, deficiency results in reduced clearance of DNA, ex vivo. Analysis of bronchoalveolar lavage fluid shows that SP-D- but not SP-A-deficient mice are defective in clearing free DNA from the lung. Additionally, both SP-A- and SP-D-deficient mice accumulate anti-DNA Abs in sera in an age-dependent manner. Thus, we conclude that collectins such as SP-A and SP-D reduce the generation of anti-DNA autoantibody, which may be explained in part by the defective clearance of DNA from the lungs in the absence of these proteins. Our findings establish two new roles for these innate immune proteins and that SP-D enhances efficient pinocytosis and phagocytosis of DNA by macrophages and minimizes anti-DNA Ab generation.  相似文献   

18.
Although lectins are "hard-wired" in the germline, the presence of tandemly arrayed carbohydrate recognition domains (CRDs), of chimeric structures displaying distinct CRDs, of polymorphic genes resulting in multiple isoforms, and in some cases, of a considerable recognition plasticity of their carbohydrate binding sites, significantly expand the lectin ligand-recognition spectrum and lectin functional diversification. Analysis of structural/functional aspects of galectins and F-lectins-the most recently identified lectin family characterized by a unique CRD sequence motif (a distinctive structural fold) and nominal specificity for l-Fuc-has led to a greater understanding of self/nonself recognition by proteins with tandemly arrayed CRDs. For lectins with a single CRD, however, recognition of self and nonself glycans can only be rationalized in terms of protein oligomerization and ligand clustering and presentation. Spatial and temporal changes in lectin expression, secretion, and local concentrations in extracellular microenvironments, as well as structural diversity and spatial display of their carbohydrate ligands on the host or microbial cell surface, are suggestive of a dynamic interplay of their recognition and effector functions in development and immunity.  相似文献   

19.
Surfactant protein D (SP-D) plays important roles in lung host defense. However, it can also recognize specific host molecules and contributes to surfactant homeostasis. The major known surfactant-associated ligand is phosphatidylinositol (PI). Trimeric neck-carbohydrate recognition domains (NCRDs) of rat and human SP-D exhibited dose-dependent, calcium-dependent, and inositol-sensitive binding to solid-phase PI and to multilamellar PI liposomes. However, the rat protein exhibited a >5-fold higher affinity for solid-phase PI than the human NCRD. In addition, human dodecamers, but not full-length human trimers, efficiently coprecipitated with multilamellar PI liposomes in the presence of calcium. A human NCRD mutant resembling the rat and mouse proteins at position 343 (hR343K) showed much stronger binding to PI. A reciprocal rat mutant with arginine at the position of lysine 343 (rK343R) showed weak binding to PI, even weaker than that of the wild-type human protein. Crystal complexes of the human trimeric NCRD with myoinositol and inositol 1-phosphate showed binding of the equatorial OH groups of the cyclitol ring of the inositol to calcium at the carbohydrate binding site. Myoinositol binding occurred in two major orientations, while inositol 1-phosphate appeared primarily constrained to a single, different orientation. Our studies directly implicate the CRD in PI binding and reveal unexpected species differences in PI recognition that can be largely attributed to the side chain of residue 343. In addition, the studies indicate that oligomerization of trimeric subunits is an important determinant of recognition of PI by human SP-D.  相似文献   

20.
Collectins are multimeric host defence lectins with trimeric CRDs (carbohydrate-recognition domains) and collagen and N-terminal domains that form higher-order structures composed of four or more trimers. Recombinant trimers composed of only the CRD and adjacent neck domain (termed NCRD) retain binding activity for some ligands and mediate some functional activities. The lung collectin SP-D (surfactant protein D) has strong neutralizing activity for IAVs (influenza A viruses) in vitro and in vivo, however, the NCRD derived from SP-D has weak viral-binding ability and lacks neutralizing activity. Using a panel of mAbs (monoclonal antibodies) directed against the NCRD in the present study we show that mAbs binding near the lectin site inhibit antiviral activity of full-length SP-D, but mAbs which bind other sites on the CRD do not. Two of the non-blocking mAbs significantly increased binding and antiviral activity of NCRDs as assessed by haemagglutination and neuraminidase inhibition and by viral neutralization. mAb-mediated cross-linking also enabled NCRDs to induce viral aggregation and to increase viral uptake by neutrophils and virus-induced respiratory burst responses by these cells. These results show that antiviral activities of SP-D can be reproduced without the N-terminal and collagen domains and that cross-linking of NCRDs is essential for antiviral activity of SP-D with respect to IAV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号