首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An insertion in the rasA gene entirely blocked developmental aggregation and sporulation in Myxococcus xanthus while also reducing swarm expansion on a 0.3% agar surface. Data presented here demonstrate that rasA is required for extracellular fibril formation and social gliding motility.  相似文献   

2.
Abstract Progression through early Myxococcus xanthus multicellular fruiting body development requires the generation of and response to extracellular A signal. Extracellular A signal is a specific set of amino acids at an extracellular concentration greater than 10 μM. It functions as a cell density signal during starvation that allows the cells to sense that a minimal cell density has been reached and development can proceed. The generation of extracellular A signal requires the products of three asg genes. They have recently been identified as AsgA, a fused two-component histidine protein kinase and response regulator; AsgB, a putative DNA-binding protein; and AsgC, the M. xanthus major sigma factor. Other elements of the A signaling pathway map to the sasB locus and appear to be A signal transducers. These elements are regulators of the earliest A signal-dependent gene, whose promoter is a member of the sigma-54 family. Continued study of the A signaling pathway is expected to identify additional components of this network required for the complex behavioural response of fruiting body formation.  相似文献   

3.
In response to starvation, Myxococcus xanthus undergoes a multicellular developmental process that produces a dome-shaped fruiting body structure filled with differentiated cells called myxospores. Two insertion mutants that block the final stages of fruiting body morphogenesis and reduce sporulation efficiency were isolated and characterized. DNA sequence analysis revealed that the chromosomal insertions are located in open reading frames ORF2 and asgE, which are separated by 68 bp. The sporulation defect of cells carrying the asgE insertion can be rescued phenotypically when co-developed with wild-type cells, whereas the sporulation efficiency of cells carrying the ORF2 insertion was not improved when mixed with wild-type cells. Thus, the asgE insertion mutant appears to belong to a class of developmental mutants that are unable to produce cell-cell signals required for M. xanthus development, but they retain the ability to respond to them when they are provided by wild-type cells. Several lines of evidence indicate that asgE cells fail to produce normal levels of A-factor, a cell density signal. A-factor consists of a mixture of heat-stable amino acids and peptides, and at least two heat-labile extracellular proteases. The asgE mutant yielded about 10-fold less heat-labile A-factor and about twofold less heat-stable A-factor than wild-type cells, suggesting that the primary defect of asgE cells is in the production or release of heat-labile A-factor.  相似文献   

4.
The gliding bacterium Myxococcus xanthus aggregates to form spore-filled fruiting bodies when nutrients are limiting. Defective fruiting-body formation and sporulation result from mutations in the sasA locus, which encodes the wzm wzt wbgA (formerly rfbABC ) lipopolysaccharide (LPS) O-antigen biosynthesis genes. Mutants carrying these same sasA mutations are defective in social motility and form small glossy colonies. We report here that the developmental and motility phenotypes of four mutants each containing different Tn 5 insertions in LPS O-antigen biosynthesis genes are similar to those of the original sasA locus mutants. All of the LPS O-antigen mutants tested exhibited defective developmental aggregation and sporulated at only 0.02–15% of the wild-type level. In addition, all of the LPS O-antigen mutants were determined by genetic analyses to be wild type for adventurous motility and defective in social motility, indicating that the LPS O-antigen is necessary for normal development and social motility. The two previously identified cell-surface components required for social motility, type IV pili and the protein-associated polysaccharide material termed fibrils, were detected on the surfaces of all of the LPS O-antigen mutants. This indicates that LPS O-antigen is a third cell-surface component required for social motility.  相似文献   

5.
The mlpA gene encoding a 236-residue polypeptide has been identified immediately downstream of the oar gene of Myxococcus xanthus (M. Martinez-Canamero, J. Munoz-Dorado, E. Farez-Vidal, M. Inouye, and S. Inouye, J. Bacteriol. 175:4756-4763, 1993). The amino-terminal 21 residues of MlpA encode a typical prokaryotic signal sequence with a putative lipoprotein cleavage site. When expressed in Escherichia coli in the presence of [2-3H]glycerol, 3H-labeled MlpA had a molecular mass of 33 kDa and was found to be associated with the membrane fraction. Globomycin, an inhibitor of signal peptidase II, caused a shift in the mobility of E. coli-expressed MlpA to 35 kDa. Subsequently, a mlpA disruption strain (oar+) was constructed and found to have delayed fruiting body formation (by approximately 36 h), with significantly larger fruiting bodies being produced compared with those of the wild-type strain. Nevertheless, spore yields for the two strains were identical after 120 h of development. These data indicate that MlpA, the lipoprotein identified in M. xanthus, is required for normal fruiting body formation.  相似文献   

6.
7.
We have cloned a DNA fragment from a genomic library of Myxococcus xanthus using an oligonucleotide probe representing conserved regions of biotin carboxylase subunits of acetyl coenzyme A (acetyl-CoA) carboxylases. The fragment contained two open reading frames (ORF1 and ORF2), designated the accB and accA genes, capable of encoding a 538-amino-acid protein of 58.1 kDa and a 573-amino-acid protein of 61.5 kDa, respectively. The protein (AccA) encoded by the accA gene was strikingly similar to biotin carboxylase subunits of acetyl-CoA and propionyl-CoA carboxylases and of pyruvate carboxylase. The putative motifs for ATP binding, CO(2) fixation, and biotin binding were found in AccA. The accB gene was located upstream of the accA gene, and they formed a two-gene operon. The protein (AccB) encoded by the accB gene showed high degrees of sequence similarity with carboxyltransferase subunits of acetyl-CoA and propionyl-CoA carboxylases and of methylmalonyl-CoA decarboxylase. Carboxybiotin-binding and acyl-CoA-binding domains, which are conserved in several carboxyltransferase subunits of acyl-CoA carboxylases, were found in AccB. An accA disruption mutant showed a reduced growth rate and reduced acetyl-CoA carboxylase activity compared with the wild-type strain. Western blot analysis indicated that the product of the accA gene was a biotinylated protein that was expressed during the exponential growth phase. Based on these results, we propose that this M. xanthus acetyl-CoA carboxylase consists of two subunits, which are encoded by the accB and accA genes, and occupies a position between prokaryotic and eukaryotic acetyl-CoA carboxylases in terms of evolution.  相似文献   

8.
Myxococous xanthus cells can glide both as individual cells, dependent on A dventurous motility (A motility), and as groups of cells, dependent upon S ocial motility (S motility), Tn5-lac mutagenesis was used to generate 16 new A- and nine new S- mutations. In contrast with previous results, we find that subsets of A- mutants are defective in fruiting body morphogenesis and/or myxospore differentiation. All S- mutants are defective in fruiting body morphogenesis, consistent with previous results. Whereas some S- mutants produce a wild-type complement of spores, others are defective in the differentiation of myxospores. Therefore, a subset of the A genes and all of the S genes are critical for fruiting body morphogenesis. Subsets of both A and S genes are essential for sporulation. Three S::Tn5–lac insertions result in surprising phenotypes. Colonies of two S- mutants glide on ‘swim’ (0.35% agar) plates to form fractal patterns. These S- mutants are the first examples of a bacterium in which mutations result in fractal patterns of colonial spreading. An otherwise wild-type strain with one S- insertion resembles the frz- sglA1- mutants upon development, suggesting that this S- gene defines a new chemotaxis component in M. xanthus.  相似文献   

9.
Certain developmental mutants of Myxococcus xanthus can be complemented (extracellularly) by wild-type cells. Insertions of Tn5 lac (a transposon which couples beta-galactosidase expression to exogenous promoters) into developmentally regulated genes were used to investigate extracellular complementation of the A group mutations. A- mutations reduced developmental beta-galactosidase expression from 18 of 21 Tn5 lac insertions tested and that expression was restored to A- Tn5 lac cells by adding wild-type cells. The earliest A-dependent Tn5 lac normally expresses beta-galactosidase at 1.5 hr of development indicating a developmental block at 1-2 hr in A- mutants. A substance which can rescue the expression of this early Tn5 lac is released by wild-type (A+) but not by A- cells. This substance appears in a cell-free wash of wild-type cells or in starvation buffer conditioned by wild-type cells 1-2 hr after development is initiated. The conditioned starvation buffer also restores normal morphological development to an A- mutant.  相似文献   

10.
11.
We report here the identification and characterization of a member of the Myxococcus xanthus SdeK signal transduction pathway, BrgE. This protein was identified as an SdeK-interacting component using a yeast two-hybrid screen, and we further confirmed this interaction by the glutathione S-transferase (GST) pulldown assay. Additional yeast two-hybrid analyses revealed that BrgE preferentially interacts with the putative amino-terminal sensor domain of SdeK, but not with the carboxy-terminal kinase domain. A brgE insertion strain was shown to be blocked in development between aggregation and mound formation, and decreased by 50-fold in viable spore production compared with the parental wild type. These phenotypes are similar to those of sdeK mutants. The brgE mutation also altered expression of a sample of Tn5 lac developmental markers that are also SdeK regulated. Finally, we demonstrated that a brgE sdeK double mutant has a more severe sporulation defect than either of the two single mutants, suggesting that BrgE and SdeK act synergistically to regulate wild-type levels of sporulation. In sum, these data suggest that BrgE operates as an auxiliary factor to stimulate the SdeK signal transduction pathway by directly binding to the amino-terminal sensor domain of SdeK.  相似文献   

12.
Myxococcus xanthus is a developmental gram-negative bacterium which forms multicellular fruiting bodies upon nutrient starvation. This bacterium was found to contain a 115-kDa membrane protein which separated with the inner membrane fraction by sucrose density gradient centrifugation. The gene for this protein was cloned, and its DNA sequence was determined. The deduced amino acid sequence consists of 1,061 residues. This protein contains a putative signal sequence and many short segments, found scattered throughout the entire protein, that have sequence similarities with OmpA, a major outer membrane protein of Escherichia coli. Thus, the gene was designated oar (OmpA-related protein). A second open reading frame was found 36 bases downstream of the oar termination codon. This open reading frame encodes a protein of 236 residues and contains a putative lipoprotein signal sequence. An aor disruption mutation (delta oar) showed no effect on vegetative growth but caused abnormal morphogenesis during development and reduced myxospore formation. When examined with a light microscope, delta oar cells were unable to aggregate on developmental agar, indicating that Oar is required for cellular adhesiveness during development.  相似文献   

13.
Bellenger K  Ma X  Shi W  Yang Z 《Journal of bacteriology》2002,184(20):5654-5660
In bacteria with multiple sets of chemotaxis genes, the deletion of homologous genes or even different genes in the same operon can result in disparate phenotypes. Myxococcus xanthus is a bacterium with multiple sets of chemotaxis genes and/or homologues. It was shown previously that difA and difE, encoding homologues of the methyl-accepting chemoreceptor protein (MCP) and the CheA kinase, respectively, are required for M. xanthus social gliding (S) motility and development. Both difA and difE mutants were also defective in the biogenesis of the cell surface appendages known as extracellular matrix fibrils. In this study, we investigated the roles of the CheW homologue encoded by difC, a gene at the same locus as difA and difE. We showed that difC mutations resulted in defects in M. xanthus developmental aggregation, sporulation, and S motility. We demonstrated that difC is indispensable for wild-type cellular cohesion and fibril biogenesis but not for pilus production. We further illustrated the ectopic complementation of a difC in-frame deletion by a wild-type difC. The identical phenotypes of difA, difC, and difE mutants are consistent and supportive of the hypothesis that the Dif chemotaxis homologues constitute a chemotaxis-like signal transduction pathway that regulates M. xanthus fibril biogenesis and S motility.  相似文献   

14.
The twin-arginine translocation (Tat) system serves to export fully folded proteins across the cytoplasmic membrane. In many bacteria, three major components, TatA, TatB and TatC, are the functionally essential constituents of the Tat system. A Myxococcus xanthus tatB–tatC deletion mutant could aggregate and form mounds, but was unable to form fruiting bodies under nutritionally limiting conditions. When tatB–tatC mutant vegetative cells were cultured with 0.5 M glycerol, the cell morphology changed to spore-like spherical cells, but the spores were not resistant to heat and sonication treatments. In contrast to the wild-type strain, the tatB–tatC mutant also showed a decreased cell growth rate and a lower maximum cell concentration. These results suggest possibility that the Tat system may contribute to export of various important proteins for development and growth for M. xanthus.  相似文献   

15.
Previous studies have demonstrated that fruiting body-derived Myxococcus xanthus myxospores contain two fully replicated copies of its genome, implying developmental control of chromosome replication and septation. In this study, we employ DNA replication inhibitors to determine if chromosome replication is essential to development and the exact time frame in which chromosome replication occurs within the developmental cycle. Our results show that DNA replication during the aggregation phase is essential for developmental progression, implying the existence of a checkpoint that monitors chromosome integrity at the end of the aggregation phase.  相似文献   

16.
Acetyl coenzyme A (acteyl-CoA) carboxylase (ACC) is the first committed enzyme of the fatty acid synthesis pathway. Escherichia coli ACC is composed of four different proteins. The first enzymatic activity of the ACC complex, biotin carboxylase (BC), catalyzes the carboxylation of the protein-bound biotin moiety of another subunit with bicarbonate in an ATP-dependent reaction. Although BC is found as a dimer in cell extracts and the carboxylase activities of the two subunits of the dimer are interdependent, mutant BC proteins deficient in dimerization are reported to retain appreciable activity in vitro (Y. Shen, C. Y. Chou, G. G. Chang, and L. Tong, Mol. Cell 22:807-818, 2006). However, in vivo BC must interact with the other proteins of the complex, and thus studies of the isolated BC may not reflect the intracellular function of the enzyme. We have tested the abilities of three BC mutant proteins deficient in dimerization to support growth and report that the two BC proteins most deficient in dimerization fail to support growth unless expressed at high levels. In contrast, the wild-type protein supports growth at low expression levels. We conclude that BC must be dimeric to fulfill its physiological function.  相似文献   

17.
L Plamann  Y Li  B Cantwell    J Mayor 《Journal of bacteriology》1995,177(8):2014-2020
The Myxococcus xanthus asgA gene is one of three known genes necessary for the production of extracellular A-signal, a cell density signal required early in fruiting body development. We determined the DNA sequence of asgA. The deduced 385-amino-acid sequence of AsgA was found to contain two domains: one homologous to the receiver domain of response regulators and the other homologous to the transmitter domain of histidine protein kinases. A kanamycin resistance (Kmr) gene was inserted at various positions within or near the asgA gene to determine the null phenotype. Those strains with the Kmr gene inserted upstream or downstream of asgA are able to form fruiting bodies, while strains containing the Kmr gene inserted within asgA fail to develop. The nature and location of the asgA476 mutation were determined. This mutation causes a leucine-to-proline substitution within a conserved stretch of hydrophobic residues in the N-terminal receiver domain. Cells containing the insertion within asgA and cells containing the asgA476 substitution have similar phenotypes with respect to development, colony color, and expression of an asg-dependent gene. An analysis of expression of a translational asgA-lacZ fusion confirms that asgA is expressed during growth and early development. Finally, we propose that AsgA functions within a signal transduction pathway that is required to sense starvation and to respond with the production of extracellular A-signal.  相似文献   

18.
Iodination of Myxococcus xanthus during development   总被引:5,自引:4,他引:1       下载免费PDF全文
Intact cells of Myxococcus xanthus were iodinated with [125I]lactoperoxidase to permit examination of the surface components accessible to labeling during cell development. Vegetative cells, starved on a defined solid medium, aggregated, formed fruiting bodies, and produced myxospores. Cells collected at different stages were iodinated, and their proteins were analyzed by one- and two-dimensional electrophoresis and autoradiography. One-dimensional electrophoresis revealed six iodinated bands in vegetative cell extracts. During development, 10 radioactive bands were detected, 4 of which migrated to the same positions as those of vegetative cells. Only six bands were detected in purified, labeled myxospores. Of these, one band possessed mobility similar to that of labeled vegetative cell proteins, whereas the other bands possessed mobility similar to that detected in developing cells. Analysis of two-dimensional gels indicated that at least 14 proteins were iodinated in vegetative cells, one of which was intensely labeled (protein b). Another of the proteins (protein a) was labeled throughout development. During development, about 30 proteins were iodinated and the prominently labeled ones were designated c, d, e, f, and g. The latter two (proteins f and g) were not detected in purified, iodinated myxospores. The data indicated a pronounced change in surface structure during development; some of the change may be involved in cellular interaction during aggregation.  相似文献   

19.
The aglZ gene of Myxococcus xanthus was identified from a yeast two-hybrid assay in which MglA was used as bait. MglA is a 22-kDa cytoplasmic GTPase required for both adventurous and social gliding motility and sporulation. Genetic studies showed that aglZ is part of the A motility system, because disruption or deletion of aglZ abolished movement of isolated cells and aglZ sglK double mutants were nonmotile. The aglZ gene encodes a 153-kDa protein that interacts with purified MglA in vitro. The N terminus of AglZ shows similarity to the receiver domain of two-component response regulator proteins, while the C terminus contains heptad repeats characteristic of coiled-coil proteins, such as myosin. Consistent with this motif, expression of AglZ in Escherichia coli resulted in production of striated lattice structures. Similar to the myosin heavy chain, the purified C-terminal coiled-coil domain of AglZ forms filament structures in vitro.  相似文献   

20.
Myxococcus xanthus is a predatory bacterium that exhibits complex social behavior. The most pronounced behavior is the aggregation of cells into raised fruiting body structures in which cells differentiate into stress-resistant spores. In the laboratory, monocultures of M. xanthus at a very high density will reproducibly induce hundreds of randomly localized fruiting bodies when exposed to low nutrient availability and a solid surface. In this report, we analyze how M. xanthus fruiting body development proceeds in a coculture with suitable prey. Our analysis indicates that when prey bacteria are provided as a nutrient source, fruiting body aggregation is more organized, such that fruiting bodies form specifically after a step-down or loss of prey availability, whereas a step-up in prey availability inhibits fruiting body formation. This localization of aggregates occurs independently of the basal nutrient levels tested, indicating that starvation is not required for this process. Analysis of early developmental signaling relA and asgD mutants indicates that they are capable of forming fruiting body aggregates in the presence of prey, demonstrating that the stringent response and A-signal production are surprisingly not required for the initiation of fruiting behavior. However, these strains are still defective in differentiating to spores. We conclude that fruiting body formation does not occur exclusively in response to starvation and propose an alternative model in which multicellular development is driven by the interactions between M. xanthus cells and their cognate prey.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号