首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 7 毫秒
1.
MOTIVATION: During the last years, the discovering of biclusters in data is becoming more and more popular. Biclustering aims at extracting a set of clusters, each of which might use a different subset of attributes. Therefore, it is clear that the usefulness of biclustering techniques is beyond the traditional clustering techniques, especially when datasets present high or very high dimensionality. Also, biclustering considers overlapping, which is an interesting aspect, algorithmically and from the point of view of the result interpretation. Since the Cheng and Church's works, the mean squared residue has turned into one of the most popular measures to search for biclusters, which ideally should discover shifting and scaling patterns. RESULTS: In this work, we identify both types of patterns (shifting and scaling) and demonstrate that the mean squared residue is very useful to search for shifting patterns, but it is not appropriate to find scaling patterns because even when we find a perfect scaling pattern the mean squared residue is not zero. In addition, we provide an interesting result: the mean squared residue is highly dependent on the variance of the scaling factor, which makes possible that any algorithm based on this measure might not find these patterns in data when the variance of gene values is high. The main contribution of this paper is to prove that the mean squared residue is not precise enough from the mathematical point of view in order to discover shifting and scaling patterns at the same time. CONTACT: aguilar@lsi.us.es.  相似文献   

2.
Analysis of variance components in gene expression data   总被引:5,自引:0,他引:5  
MOTIVATION: A microarray experiment is a multi-step process, and each step is a potential source of variation. There are two major sources of variation: biological variation and technical variation. This study presents a variance-components approach to investigating animal-to-animal, between-array, within-array and day-to-day variations for two data sets. The first data set involved estimation of technical variances for pooled control and pooled treated RNA samples. The variance components included between-array, and two nested within-array variances: between-section (the upper- and lower-sections of the array are replicates) and within-section (two adjacent spots of the same gene are printed within each section). The second experiment was conducted on four different weeks. Each week there were reference and test samples with a dye-flip replicate in two hybridization days. The variance components included week-to-week, animal-to-animal and between-array and within-array variances. RESULTS: We applied the linear mixed-effects model to quantify different sources of variation. In the first data set, we found that the between-array variance is greater than the between-section variance, which, in turn, is greater than the within-section variance. In the second data set, for the reference samples, the week-to-week variance is larger than the between-array variance, which, in turn, is slightly larger than the within-array variance. For the test samples, the week-to-week variance has the largest variation. The animal-to-animal variance is slightly larger than the between-array and within-array variances. However, in a gene-by-gene analysis, the animal-to-animal variance is smaller than the between-array variance in four out of five housekeeping genes. In summary, the largest variation observed is the week-to-week effect. Another important source of variability is the animal-to-animal variation. Finally, we describe the use of variance-component estimates to determine optimal numbers of animals, arrays per animal and sections per array in planning microarray experiments.  相似文献   

3.
Analysis of large-scale gene expression data.   总被引:10,自引:0,他引:10  
DNA microarray technology has resulted in the generation of large complex data sets, such that the bottleneck in biological investigation has shifted from data generation, to data analysis. This review discusses some of the algorithms and tools for the analysis and organisation of microarray expression data, including clustering methods, partitioning methods, and methods for correlating expression data to other biological data.  相似文献   

4.

Background  

Time series gene expression data analysis is used widely to study the dynamics of various cell processes. Most of the time series data available today consist of few time points only, thus making the application of standard clustering techniques difficult.  相似文献   

5.
6.
Gene expression profiles of 14 common tumors and their counterpart normal tissues were analyzed with machine learning methods to address the problem of selection of tumor-specific genes and analysis of their differential expressions in tumor tissues. First, a variation of the Relief algorithm, “RFE_Relief algorithm” was proposed to learn the relations between genes and tissue types. Then, a support vector machine was employed to find the gene subset with the best classification performance for distinguishing cancerous tissues and their counterparts. After tissue-specific genes were removed, cross validation experiments were employed to demonstrate the common deregulated expressions of the selected gene in tumor tissues. The results indicate the existence of a specific expression fingerprint of these genes that is shared in different tumor tissues, and the hallmarks of the expression patterns of these genes in cancerous tissues are summarized at the end of this paper.  相似文献   

7.
Tumor-specific gene expression patterns with gene expression profiles   总被引:1,自引:0,他引:1  
Gene expression profiles of 14 common tumors and their counterpart normal tissues were analyzed with machine learning methods to address the problem of selection of tumor-specific genes and analysis of their differential expressions in tumor tissues. First, a variation of the Relief algorithm, "RFE_Relief algorithm" was proposed to learn the relations between genes and tissue types. Then, a support vector machine was employed to find the gene subset with the best classification performance for distinguishing cancerous tissues and their counterparts. After tissue-specific genes were removed, cross validation experiments were employed to demonstrate the common deregulated expressions of the selected gene in tumor tissues. The results indicate the existence of a specific expression fingerprint of these genes that is shared in different tumor tissues, and the hallmarks of the expression patterns of these genes in cancerous tissues are summarized at the end of this paper.  相似文献   

8.
Root organization and gene expression patterns   总被引:5,自引:1,他引:4  
New tools of microscopy, molecular biology, and genetics aremaking it possible for biologists to study roots with new vigour.Such investigations have enabled plant biologists to noticethe symmetry, pattern, and simplicity of root structures sothat there is now an exciting rebirth in the study of roots.The literature of root biology, development and structure isvast. In this short review we will concentrate on describingour notion of how roots are organized structurally, and thendiscuss what is known about tissue- and zone-specific gene expressionin roots. Key words: Root apex, root anatomy, root development, gene expression  相似文献   

9.
10.
Analysis of gene expression data using self-organizing maps.   总被引:29,自引:0,他引:29  
DNA microarray technologies together with rapidly increasing genomic sequence information is leading to an explosion in available gene expression data. Currently there is a great need for efficient methods to analyze and visualize these massive data sets. A self-organizing map (SOM) is an unsupervised neural network learning algorithm which has been successfully used for the analysis and organization of large data files. We have here applied the SOM algorithm to analyze published data of yeast gene expression and show that SOM is an excellent tool for the analysis and visualization of gene expression profiles.  相似文献   

11.
Analysis of variance for gene expression microarray data.   总被引:22,自引:0,他引:22  
Spotted cDNA microarrays are emerging as a powerful and cost-effective tool for large-scale analysis of gene expression. Microarrays can be used to measure the relative quantities of specific mRNAs in two or more tissue samples for thousands of genes simultaneously. While the power of this technology has been recognized, many open questions remain about appropriate analysis of microarray data. One question is how to make valid estimates of the relative expression for genes that are not biased by ancillary sources of variation. Recognizing that there is inherent "noise" in microarray data, how does one estimate the error variation associated with an estimated change in expression, i.e., how does one construct the error bars? We demonstrate that ANOVA methods can be used to normalize microarray data and provide estimates of changes in gene expression that are corrected for potential confounding effects. This approach establishes a framework for the general analysis and interpretation of microarray data.  相似文献   

12.
13.

Background  

An ever increasing number of techniques are being used to find genes with similar profiles from microarray studies. Visualization of gene expression profiles can aid this process, potentially contributing to the identification of co-regulated genes and gene function as well as network development.  相似文献   

14.
Clustering gene expression patterns.   总被引:23,自引:0,他引:23  
Recent advances in biotechnology allow researchers to measure expression levels for thousands of genes simultaneously, across different conditions and over time. Analysis of data produced by such experiments offers potential insight into gene function and regulatory mechanisms. A key step in the analysis of gene expression data is the detection of groups of genes that manifest similar expression patterns. The corresponding algorithmic problem is to cluster multicondition gene expression patterns. In this paper we describe a novel clustering algorithm that was developed for analysis of gene expression data. We define an appropriate stochastic error model on the input, and prove that under the conditions of the model, the algorithm recovers the cluster structure with high probability. The running time of the algorithm on an n-gene dataset is O[n2[log(n)]c]. We also present a practical heuristic based on the same algorithmic ideas. The heuristic was implemented and its performance is demonstrated on simulated data and on real gene expression data, with very promising results.  相似文献   

15.
16.
17.
18.
The particular fascination of butterfly wings for developmental biologists (and others) lies in their spectacular array of colour patterns. The evolutionary and developmental relationships between these patterns have been analysed and we know something of the cell interactions involved in their formation(1). Now butterfly homologues of Drosophila wing-patterning genes have been identified, and their expression patterns offer the first clues to the molecular mechanisms which specify wing colour patterns(2).  相似文献   

19.

Background  

The DNA microarray technology allows the measurement of expression levels of thousands of genes under tens/hundreds of different conditions. In microarray data, genes with similar functions usually co-express under certain conditions only [1]. Thus, biclustering which clusters genes and conditions simultaneously is preferred over the traditional clustering technique in discovering these coherent genes. Various biclustering algorithms have been developed using different bicluster formulations. Unfortunately, many useful formulations result in NP-complete problems. In this article, we investigate an efficient method for identifying a popular type of biclusters called additive model. Furthermore, parallel coordinate (PC) plots are used for bicluster visualization and analysis.  相似文献   

20.

Background  

Expression microarrays represent a powerful technique for the simultaneous investigation of thousands of genes. The evidence that genes are not randomly distributed in the genome and that their coordinated expression depends on their position on chromosomes has highlighted the need for mathematical approaches to exploit this dependency for the analysis of expression data-sets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号