首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Synthetic polypeptide D-(iEW) (Thymodepressin) was shown to reduce the bone marrow CFU-S in the S-phase of cell cycle. Apparently, due to this property the agent being administered 2 days before the irradiation with 4 Gy causes a prominent restoration of the CFU-S population afterwards. The 3-5 times higher value of this parameter as compared to the control (irradiation only) is likely to be connected to the increased "survival" of the Thymodepressin-protected CFU-S after the treatment with ionizing irradiation.  相似文献   

2.
Cancer chemotherapy can cause significant damage to the bone marrow (BM) microvascular (sinusoidal) system. Investigations must now address whether and how BM sinusoidal endothelial cells (SECs) can be protected during chemotherapy. Herein we examined the potential protective effects of genistein, a soy-derived flavonoid, against BM sinusoidal damage caused by treatment with methotrexate (MTX). The groups of young adult rats were gavaged daily with genistein (20 mg/kg) or placebo. After 1 week, rats also received daily injections of MTX (0.75 mg/kg) or saline for 5 days and were killed after a further 4 days. Histological analyses showed that BM sinusoids were markedly dilated ( p < 0.001) in the MTX-alone group but were unaffected or less dilated in the genistein+MTX group. In control rats, genistein significantly enhanced expression of vascular endothelial growth factor (VEGF; p < 0.01), particularly in osteoblasts, and angiogenesis marker CD31 ( p < 0.001) in bone. In MTX-treated rats, genistein suppressed MTX-induced apoptosis of BM SECs ( p < 0.001 vs MTX alone group) and tended to increase expression of CD31 and VEGF ( p < 0.05). Our in vitro studies showed that genistein in certain concentrations protected cultured SECs from MTX cytotoxic effects. Genistein enhanced tube formation of cultured SECs, which is associated with its ability to induce expression of endothelial nitric oxide synthase and production of nitric oxide. These data suggest that genistein can protect BM sinusoids during MTX therapy, which is associated, at least partially, with its indirect effect of promoting VEGF expression in osteoblasts and its direct effect of enhancing nitric oxide production in SECs.  相似文献   

3.
Mesenchymal stem cells (MSC), because of their multipotency and ease of purification and amplification, are an ideal stem cell source for cell therapies. Bone-marrow-derived stem cells (BMSC) can be used to develop MSC-like immortalized cell lines with large proliferation and differentiation potentialities. Their immortalized status prevents the maintenance of MSC function and characters; this can be negated by modifying the isolation and maintenance protocol. Adult murine BMSC were isolated and maintained in media without additional growth factors together with passage-dependent reseeding following trypsinization. Cells maintained over 25 passages were considered as putative cell lines and characterized. The phenotypic and genotypic characteristics and multilineage differentiation potential of the cells were assessed by morphological, phenotypic, and molecular assays at various passages. The putative BMSC cell lines showed the characteristics of MSC and were able to maintain these characteristics, even after immortalization. The phenotypic data demonstrated difference among two cell lines; this was further validated by the difference in their multilineage differentiation potential following specific induction. More importantly, no changes were observed in the genotypic level in comparison with control cells, even after more than 50 passages. Our protocol thus advances the isolation and maintenance of BMSC and the development of putative BMSC cell lines that maintain characteristics of MSC, including multilineage differentiation potential, after more than 40 passages.  相似文献   

4.
5.
The syngeneic thymocytes increase the efficiency of spleen colony formation and proliferative activity of CFU-S derived from fetal liver on 13th-16th day of gestation and CFU-S from long term bone marrow culture. The thymocytes effect spleen colony cells. These data indicate that T-cell-CFU-S interaction in spleen colony formation have a physiological character.  相似文献   

6.
7.
Improper fluid shear stress (FSS) can cause serious damages to bone marrow mesenchymal stem cells (MSCs). Mechano-growth factor (MGF) E peptide pretreatment was proposed to protect MSCs against FSS damage in this study. MSCs were exposed to FSS for 30 min after they were pretreated with MGF E peptide for 24 h. Then, the effects of MGF E peptide on the viability, proliferation and cell apoptosis of MSCs were investigated. MGF E peptide pretreatment could recover the cellular metabolic activity of MSCs reduced by 72 dyne cm?2 FSS and had a synergistic effect with FSS on the cellular metabolic viability of MSCs under 24 and 72 dyne cm?2 FSS. These results suggested that MGF E peptide pretreatment could be an effective method for the protection of FSS damage in bone tissue engineering.  相似文献   

8.
Bone marrow-enhancing factor (B-EF) is the spontaneous product of whole bone marrow cells cultured in serum-free medium for a short term (24-48 hr). The factor is prepared by ultrafiltration of BMC supernates to yield a preparation with a MW of greater than 10,000. Production of the factor is not dependent upon antigenic or mitogenic stimulation of BMC, but is inhibited by treatment of BMC with cycloheximide. B-EF augments the in vitro primary PFC response to SRBC, as well as in vitro secondary IgM and IgG PFC responses to SRBC. Enhancement by B-EF is antigen dependent, genetically nonrestricted, and maximal when present at the initiation of culture. B-EF cannot induce a polyclonal antibody response like the polyclonal activator LPS. B-EF is directly mitogenic for thymocytes, bone marrow, and whole spleen cells, but fails to act as a costimulator of thymocyte proliferation in the presence of Con A. B-EF cannot support the growth of the IL-2-dependent cell line CTLL-2. Since B-EF has not been purified, the supernatant may contain more than one activity. The factor is heat labile at 65 degrees C and is sensitive to enzymatic digestion with trypsin and neuraminidase; this implies that B-EF may be a glycoprotein.  相似文献   

9.
Thrombocytopenia (rise of the thrombopoietin level) was induced by an antithrombocyte serum in mice. After 6 hours of existence of thrombocytopenia, the CFU-S and megakaryocyte-commmitted stem cell content of the bone marrow and spleen was determined by transplantation into mice pretreated with 800 cGy-rtg irradiation. Thrombocytopenia did not influence the CFU-S content. Thrombocytopoiesis of the recipient mice was better restored by bone marrow and spleen cells of thrombocytopenic animals than by cells transplanted from animals with a normal thrombocyte count.  相似文献   

10.
We previously reported that highly purified bone marrow-derived macrophage precursors can exert strong spontaneous cytotoxicity against YAC-1 tumor cells, Candida albicans, and protozoa of the genus Leishmania. In the present paper, evidence is shown that macrophage precursors in normal untreated mice are not confined to the bone marrow compartment but can also be found in the spleen. These organ-associated cells, which have the same buoyant density as large granular lymphocytes, have been positively sorted by means of an indirect rosetting technique employing the macrophage-specific monoclonal antibodies F4/80 and M143. The rosetting fractions represented an extremely homogeneous population of macrophage precursors characterized by high candidacidal and natural killer activity and by a strong proliferative response to the macrophage-specific colony-stimulating factor CSF-1. Spleen- and bone marrow-derived macrophage precursors differed in their target selectivity. In addition, the mature macrophages derived in vitro from these two precursor populations displayed striking differences in their candidacidal activity. The implications of these findings in relationship to heterogeneity in the macrophage differentiation line are discussed.  相似文献   

11.
12.
Functionally active natural killer (NK) cells with the ability to lyse 51Cr-labeled YAC-1 lymphoma target cells are no longer detectable by 1 wk of culture in cultured marrow cells harvested from Dexter-type long-term marrow cultures (LMC). Interferon, which enhances NK cell-mediated target cell lysis, fails to induce NK activity from LMC cells even at high effector to target cell ratios. However, such LMC cells, when placed in secondary cultures in the presence of Con A-splenic leukocyte-conditioned medium (spleen-CM) generated a population of cells with NK activity within 1 wk. Kinetic studies showed that the generation of NK activity was not due simply to proliferation of a few surviving NK cells, but suggested derivation from NK precursors through clonal expansion and functional maturation. This NK activity was further shown to be associated with a subpopulation of cells bearing surface Thy-1, Ly-5, and NK-1 as well as asialo-GM1 antigens but lacking Ly-1 antigen. The expression of Ly-2 antigen, however, was variable. Electron microscopy studies of isolated asialo-GM1-positive cells showed a uniform lymphoblastoid morphology with large cytoplasmic to nuclear ratios and prominent electron dense cytoplasmic granules characteristic of large granular lymphocytes. In support of the NK nature of such cultured cells was the ability of anti-asialo-GM1 and complement to abrogate, and of interferon to augment, target cell lysis. Isolated cell lines also showed target selectivity similar to NK cells. The implications of the studies on further analysis of the nature of NK precursors is discussed.  相似文献   

13.
Murine long-term bone marrow cultures (LTBMCs) were used to generate hematopoietic cells free from marrow stromal cells. These progenitor cells were treated with GM-CSF (5 U/ml) with or without rat bone osteocalcin or rat serum albumin in either α-MEM with 2% heat-inactivated horse serum alone (α) or supplemented with 10% L-cell-conditioned medium (as a source of M-CSF) (L10). Few substrate-attached cells survived in basal α medium, but when treated with L10 medium or GM-CSF, they survived and proliferated. Osteocalcin did not significantly affect survival or proliferation. Subcultures of cells treated with GM-CSF had large numbers of multinucleated cells, more than half of which were tartrate-resistant acid phosphatase–positive (TRAP). Osteocalcin further promoted the development of TRAP-positive multinucleated cells; a dose of 0.7 μg/ml osteocalcin promoted osteoclastic differentiation by 60%. Using a novel microphotometric assay, we detected significantly more tartrate-resistant acid phosphatase activity in the osteocalcin plus GM-CSF group (75.6 ± 14.2) than in GM-CSF alone (53.3 ± 7.3). In the absence of M-CSF, GM-CSF stimulated tartrate-resistant acid phosphatase activity, but osteocalcin did not have an additional effect. These studies indicate that osteocalcin promotes osteoclastic differentiation of a stromal-free subpopulation of hematopoietic progenitors in the presence of GM-CSF and L-cell-conditioned medium. These results are consistent with the hypothesis that this bone-matrix constituent plays a role in bone resorption. © 1994 Wiley-Liss, Inc.  相似文献   

14.
Collagen synthesis by murine bone marrow cell culture   总被引:4,自引:0,他引:4  
Collagen types synthesized by murine bone marrow cells were studied and the effect of lithium chloride on collagen biosynthesis in vitro was investigated. In the liquid culture system used, an adherent, mixed cell population supports hemopoiesis. Radioactive labeling of cell cultures and subsequent fractionation with ammonium sulfate, enzyme digestion, immune precipitation, and gel electrophoresis indicated that the bone marrow cells synthesized precursors to collagen types I, III, and IV, and fibronectin. A previously undescribed molecule or fragment with an apparent molecular weight of 17,000 daltons that was susceptible to bacterial collagenase and containing no interchain disulfide bonds was also identified in the culture media of both control and lithium-treated cells. Lithium treatment did not affect the types of collagen synthesized, although the relative proportions of collagen types may differ from controls. However, lithium does have an effect on the appearance of some, as yet unidentified, non-collagenous components in the cell culture media.  相似文献   

15.
We determined whether manganese superoxide dismutase (MnSOD)-plasmid liposome (PL) transfection of C57BL/ 6NHsd mouse bone marrow protected cells irradiated at room temperature (24 degrees C) or in the cryopreserved state. MnSOD-overexpressing hematopoietic progenitor 2C6 cells were radioresistant compared to the parent 32D cl 3 cells when irradiated frozen or at 24 degrees C. Fresh whole marrow from mice injected intravenously with MnSOD-PL prior to explant as well as explanted marrow single cell suspensions transfected in vitro were irradiated at 24 degrees C or -80 degrees C. In vivo or in vitro transfection of marrow with MnSOD-PL produced significant radiation protection of irradiated marrow progenitor cells compared to controls at 24 degrees C or -80 degrees C. (in vivo transfection D(0) 2.19 +/- 0.21 at 24 degrees C, D(0) 2.10 +/- 0.07 at -80 degrees C compared to control D(0) 1.56 +/- 0.06 or 1.66 +/- 0.04, P = 0.047 and 0.017 respectively; in vitro transfection D(0) 2.35 +/- 0.11 at 24 degrees C, D(0) 3.42 +/- 0.13 at -80 degrees C compared to D(0) 1.81 +/- 0.01 or 2.53 +/- 0.05, P = 0.0087 and 0.0026, respectively). Thus the MnSOD transgene product protects frozen marrow cells as well as marrow cells irradiated at 24 degrees C.  相似文献   

16.
17.
18.
Murine bone marrow (BM) cells were cultured in recombinant IL 2 (rIL 2) and interferon-alpha, -beta, and -gamma, and cytotoxic activity against YAC cells was determined in a 4-hr 51Cr-release assay. rIL 2 at 20 U/ml was the only lymphokine that consistently induced significant cytotoxic activity within 3 days of culture, peaking around 5 to 7 days. The cytotoxic cells generated are heterogeneous, consisting of at least two populations of cells: a) NK-1+, Qa-5+, AsGm-1+ Thy-1+/-, Lyt-2- cells, similar to natural killer (NK) cells, and b) NK-1-, Qa-5+, AsGm-1+ Thy-1+, Lyt-2+ cells, similar to cytotoxic T lymphocytes. The precursor/accessory cells of these BM cytolytic cells maintained in 20 U/ml of rIL 2 were Qa-2+, Qa-5+, Thy-1+/-, AsGM-1+/-, and NK-1+/- but Lyt-2-. They also lysed NK-resistant targets, P815 and BW5147, and the antigenic phenotypes of these cells were similar to those that lysed YAC cells. These studies indicate that IL 2 alone is adequate to generate cytotoxic activity from BM and that these cytotoxic cells were similar to splenic NK cells.  相似文献   

19.
Summary The radiosensitivity of pluripotent hemopoietic stem cells was studied in ICR Swiss mice (28 g/mouse) given i.v. 198.6 kBq239Pu/kg as citrate complex or 208.6 kBq241Am/kg as nitrate at the age of 10 weeks. The bone marrow cells were examined at the early and late phases of radionuclide contamination. To obtain data for survival curves andD 0 of stem cells the CFU-S assay was used and the donor vertebral marrow cells were exposed to the complementary X-irradiation either early after injection to the heavily irradiated recipients or to the in vitro irradiation given before the transplantation. To determine the iron uptake in splenic erythroid progeny the recipients given marrow cells unexposed to the X-rays received 37 kBq59Fe 6 h before they were killed and the relative activity per colony was calculated. The radiation effect of the used actinides on the bone marrow cells resulted in decreased cellularity and seriously altered both relative and absolute CFU-S numbers. The radiosensitivity of CFU-S increased in all intervals examined (D 0 from 0.60 to 0.86 Gy, in controls 0.97 to 1.06 Gy) and was more expressed when the CFU-S were exposed to the X-rays immediately after the bone marrow cell transplantation to the heavily irradiated hosts. The stem cell pool appeared, especially at older age, to be affected also in its ability to produce erythrocytic progeny.  相似文献   

20.
This study reports the culture and purification of murine bone marrow endothelial progenitor cells (EPCs) using endothelial cell-conditioned medium (EC-CM). Endothelial-like cells appeared at day 5 in culture of bone marrow mononuclear cells in the presence of EC-CM in the culture system, and these cells incorporated acetylated low-density lipoproteins (Ac-LDL) and reacted with endothelial-specific Ulex Europaeus Lectin. Continued incubation of these cells at low density with EC-CM for longer than 10 days resulted in the formation of endothelial cell colonies which gave rise to colonies of endothelial progeny and can be passed for many generations in the EC-CM culture system. Cells derived from these colonies expressed endothelial cell markers such as vWF and CD31, incorporated Dil-Ac-LDL, stained positive for Ulex Europaeus Lectin, formed capillary-like structures on Matrigel, and demonstrated a high proliferative capacity in culture. These bone marrow-derived adherent cells were identified as EPCs. The purification and the formation of EPC colonies by using EC-CM were associated with the cytokines secreted in the EC-CM. VEGF, bFGF, and GM-CSF in the EC-CM stimulated the proliferation and growth of EPCs, whereas AcSDKP (tetrapeptide NAc-Ser-Asp-Lys-Pro) in EC-CM suppressed the growth of mesenchymal stem cells (MSC) and fibroblasts. This approach is efficient for isolation/purification and outgrowth of bone marrow EPCs in vitro, a very important cell source in angiogenic therapies and regenerative medicine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号