首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. Planktonic ciliates were examined during a spring–summer period (November 1998–April 1999) in the ultraoligotrophic Lake Moreno Oeste (41°5' S and 71°33' W, 758 m a.s.l), which belongs to the Nahuel Huapi System (Patagonia, Argentina). The lake is deep ( Z max=90 m) and warm monomictic.
2. Sampling was performed at a mid-lake station, where vertical profiles of temperature and light were measured in situ , and samples for bacteria and ciliates enumeration were taken throughout the water column.
3. The peritrich Ophrydium naumanni , a freshwater pelagic ciliate with endosymbiotic Chlorella , was the dominant ciliate in the lake.
4.  Ophrydium naumanni and autotrophic picoplankton exhibit a clear coincidence in their vertical distribution ( P  < 0.05), preferring levels at or near the 1% of surface photosynthetically active radiation (PAR) irradiance. Both may have the same light requirements, or the coincidence may reflect a trophic relationship.
5. Dependence on light and prey by O. naumanni were studied using field experiments, in which we analysed ciliate grazing on bacteria, and in laboratory experiments, in which we compared particle uptake under dark and light conditions.
6.  Ophrydium naumanni was able to ingest particles [latex microspheres and fluorescently labelled bacteria (FLB)] in field and laboratory experiment, indicating that it has the potential to affect bacteria population of Lake Moreno Oeste.
7. Ciliate particle ingestion was observed to be dependent on light availability because under dark conditions, the ingestion was lowered ( P  < 0.05).  相似文献   

2.
The light climate at the deep chlorophyll maxima (DCM) was analysedin a set of lakes of the North Patagonian Andean region. Apparentand inherent optical properties in relation to the chlorophylla vertical distribution were investigated in seven lakes includingdeep (Zmax > 90 m) and shallow (Zmax < 12 m) ones. Samplingwas carried out during the thermal stratification period (summer)of the deep lakes since in the shallower lakes no stable thermalstratification was detected. The large deep lakes presentedvery low diffuse attenuation coefficients of photosyntheticallyactive radiation (Kd PAR), and a DCM situated at 0.98–2%of surface PAR irradiance, coinciding with the maximum abundanceof the mixotrophic ciliate Ophrydium naumanni and autotrophicpicoplankton. Both fractions seemed to be favoured by dim lightconditions of particular wavelengths, since at these DCM layersmainly green and blue wavelengths prevailed (<600 nm). Incontrast, shallow lakes showed higher Kd PAR values, with ahigher concentration of dissolved yellow substances, which causedsubstantial differences in the spectral quality that may havecontributed to explain the absence of this ciliate populationin these lakes.  相似文献   

3.
Feeding by larval and post-larval ctenophores on microzooplankton   总被引:2,自引:0,他引:2  
Feeding by the coastal ctenophorc, Mnemiopsis leidyi, on microplanktonwas investigated. Larval ctenophores (tentaculate stage) grewbest and had the highest survival rates when offered a mixtureof ciliates and copepod nauplii. Larvae did not survive whenoffered phytoplankton alone. Clearing of planktonjc ciliatesby post-larval ctenophores was a function of the ciliate speciesand the size of the predator. Removal of small ciliates (<20µm in size) and phytoplankton was negligible. Small post-larvalctenophores (volume <4 cm3) had higher biovolume-specificclearing rates (0.5–1.5 1 cm–3 day–1) thandid larger ctenophores fed the same ciliate species. Duringin situ incubations, adult M. leidyi removed ciliates, rotifersand copepod nauplii from natural microplankton assemblages.The data indicate that non-crustacean microzooplanlctoo arean important component of the diet of larval and post-larvallocate cteoophores, particularly when copepod standing stocksare low.  相似文献   

4.
1. The photosynthetic efficiencies of the mixotrophic ciliate Ophrydium naumanni and the autotrophic dinoflagellate Gymnodinium paradoxum were investigated using laboratory and field experiments in Lake Moreno Oeste (41°5′S and 71°33′W, 758 m a.s.l.), in the Nahuel Huapi System (North Patagonia, Argentina). 2. The effect of different underwater light intensities on net primary production (NPP) was assessed during one summer. Additionally, laboratory experiments were carried out to obtain photosynthesis‐irradiance response curves for each species. 3. Ophrydium naumanni and G. paradoxum dominated the metalimnetic (30 m depth) deep chlorophyll maximum (DCM) in the lake. 4. Despite these deep higher abundances, the cell‐specific production of both species was higher at 10 m than at 30 m (DCM) depth. In addition, at 5 m depth, NPP was reduced by PAR + UV‐A radiation. 5. Both species exhibited a positive NPP at very low irradiance but the mixotrophic ciliate was more efficient in exploiting the DCM irradiance level both in situ and at comparable light intensities in laboratory experiments. Light acclimatised O. naumanni showed a higher NPP at lower irradiances and photoinhibition at medium and high irradiances. 6. Under the strong wind‐driven turbulence commonly found in Patagonian lakes, organisms cannot select their position in the epilimnetic water column and will be dragged to potentially harmful UV radiation levels. Thus, metalimnetic DCM colonisation by these two species represents a tradeoff between higher survival and lower cell‐specific NPP.  相似文献   

5.
Feeding experiments were conducted with the ambush-feeding copepodAcartia tonsa and the feeding-current-generating copepod Temoralongicornis. The copepods were offered a mixed diet of the dinoflagellateHeterocapsa triquetra and the ciliate Balanion comatum of similarcell size. The dinoflagellate was offered at a constant concentrationof 10–15 cells mL–1, whereas the ciliate was offeredat a variety of concentrations, ranging from 7 to 57 cells mL–1.Copepods with different feeding modes possess different mechanismsfor prey detection, suggesting that the two copepods would responddifferently to the two prey types. Both copepods had significantlyhigher clearance rates on the highly motile ciliate than onthe less motile dinoflagellate. In encounters between A. tonsaand its prey, we argue that this is due to the higher hydromechanicalsignal generated by the ciliate. The advection feeding copepodT. longicornis fed on the two prey according to their relativeconcentrations; in this case, we suggest that although B. comatumis capable of detecting feeding-current-generating predators,the feeding current velocity generated by T. longicornis isgreater than the escape velocity of this ciliate.  相似文献   

6.
Nauplii and adults of the copepod Eurytemora affinis Poppe collectedfrom the Multiscale Experimental Ecosystem Research Center (MEERC)mesocosms and from the Choptank River (a subestuary of ChesapeakeBay) reduced ciliate and dinoflagellate microplankton densitiessignificantly during grazing experiments. Protozoan microplanktongenerally were consumed in proportion to their availability,although both adult copepod and naupliar clearance rates werehigher for larger prey ({small tilde}40µm). Ingestionof ciliate microplankton was confirmed by examining copepodgut fluorescence after brief (1 h) incubations with ciliateslabeled with a fluorescent vital stain (5-chloromethylfluoresceindiacetate). In addition, both adults and nauplii of E.affiniscleared protozoan microplankton at considerably higher ratesthan chlorophyll a. Naupliar clearance rates were generallyan order of magnitude lower than adult rates, but given naupliarabundances in copepod assemblages, they should contribute substantiallyto total grazing on protozoan microplankton. Grazing by thetotal copepod assemblage in mesocosms and in the field may beunderestimated if juvenile stages are ignored.  相似文献   

7.
1. Large mixotrophic ciliates ( Stentor araucanus , S. amethystinus and Ophrydium naumanni ) were a characteristic component of a temperate, oligotrophic lake in North Patagonia. During a 1-year study, the abundance, biomass and primary production of these large Chlorella -bearing ciliates were compared with those of the total plankton community.
2. Mixotrophic ciliates peaked in spring and from late summer to autumn, accounting for 1.6–43% (annual average: 16.3%) and 67–99% (annual average: 92%) of total ciliate abundance and biomass, respectively. Their contribution to total zooplankton biomass, including flagellates, rotifers, ciliates and crustaceans, was 14–76%, or 47% as an annual average. Endosymbiotic algae accounted for up to 25% of total autotrophic biomass (annual mean: 3.9%).
3. Maximum cell-specific photosynthetic rates of S. araucanus and S. amethystinus at light saturation varied between 80 and 4400 pg C ciliate–1 h–1 with high values during autumn and winter, and low values during summer. The depth-integrated rates of photosynthesis (0–40 m) of algal endosymbionts contributed 1–25% to total photosynthesis (annual mean: 6.5%).
4. A comparison of calculated ingestion rates with photosynthetic rates of Stentor indicates that photosynthate produced by endosymbionts generally exceeded heterotrophic food supply of Stentor during autumn and winter, but was much lower during summer, when food supply was high.
5. The mixotrophic ciliates represent an important 'link' between nanoplankton and higher trophic levels within the plankton community because of their high heterotrophic biomass and considerable contribution to total photosynthesis.  相似文献   

8.
Recent studies indicate that Oithona spp. contribute significantlyto total copepod biomass. Little is known, however, about theirecological significance, particularly in the case of the estuarineOithona nana. A study comprising three sites within SouthamptonWater was conducted to evaluate the late-stage copepodite/adult(stages IV–VI) O. nana community, using 120-µm meshnets. Although present throughout the estuary, there was a strikingspatial gradient with O. nana most common in the upper estuary.A clear seasonal pattern was observed with O. nana as the mostabundant copepod species from late summer until early winter.It comprised 61% of all copepods recorded, with a biomass of757.22 mg C m–3. Production estimates of O. nana werederived from the ‘instantaneous-growth’ approach,using appropriate growth equations. The estimated productionof O. nana ranged from 1.50 mg C m–3 year–1 withinthe lower estuary to 146.77 mg C m–3 year–1 in theupper estuary. In the upper estuary, this compares with productionrates of 187.47 mg C m–3 year–1 for all Acartiacongeners (excluding nauplii), the most common calanoid genus.Throughout the estuary, O. nana annual production represented18% of total copepod production clearly indicating that, atleast in the upper estuary, O. nana production may be directlycomparable with calanoid production.  相似文献   

9.
Vertical profiles of temperature, light and chlorophyll a concentration were examined in Lake Moreno Oeste, an oligotrophic South Andean lake (Argentina), during the warmest period of the year (November-April), when thermal stratification is characteristic. Concurrent samples for the enumeration of phytoplankton and green ciliates were taken, and the different contribution of these fractions to total chlorophyll a concentration was analysed. The development of a distinctive deep chlorophyll maximum was observed during summer months. The deep chlorophyll maximum was situated near the limit of the euphotic zone and just below the upper limit of the metalimnion. The results showed that the green ciliate Ophrydium naumanni with endosymbiotic Chlorella dominated the metalimnion causing the deep chlorophyll maximum. Additional laboratory experiments revealed a strong dependence of O.naumanni on light. Therefore, the symbiotic association appears to be an effective exploitation of the water column in poor-nutrient-high-light ecosystems like large Andean lakes.   相似文献   

10.
In August 2002 and March 2003 the trophic structure of the microbialassemblage from the San Pedro Channel, California was studiedfollowing the experimental alteration of the number of copepods.Changes in the abundance/biomass of microorganisms <80 µmduring 3-day incubations were monitored in (i) the absence ofmetazoa >80 µm, (ii) the presence of natural abundancesof metazoa and (iii) the presence of an elevated number of copepods.Prokaryotes and small-sized eukaryotes (<4 µm) dominatedplankton biomass during both experimental months. Diatoms numericallydominated the 10–80 µm plankton in August 2002,but ciliate and heterotrophic dinoflagellate biomass generallyexceeded diatom biomass on both dates. Ingestion of protozooplankton(predominantly ciliates) contributed substantially to copepoddaily carbon rations. The adult copepod assemblage removed 4.6and 36% per day of the microzooplankton standing stocks (10–80µm size fraction) in August and March, respectively. Elevatedcopepod grazing pressure on protozooplankton resulted in increasedbiomass of nanoplankton (<5 µm) presumably via a trophiccascade. Accordingly, the copepod–protozoan trophic linkappears to be a key factor structuring the planktonic microbialassemblage in the San Pedro Channel. This paper is one of six on the subject of the role of zooplanktonpredator–prey interactions in structuring plankton communities.  相似文献   

11.
Studies of the community structure and biomass of deep copepodsbelow 500 m from R/V Atlantis II cruises AII49 and AII59 inMay–June 1969 and September–October 1970 denoteuniformity in deep assemblages among all major Mediterraneansubregions. Of the 65 copepod species recorded from 600–2500m, 45 were common for both Western and Eastern basins Eightof these species were dominant for all deep Mediterranean waters,comprising 77% of the deep plankton population The uniformityof deep copepod assemblages was confirmed by the Mantel testapplied to a simulated sampling procedure Only in terms of biomassdid Western and Eastern basins show appreciable regional differenceswith highest values for density and volume characterizing Westernstations 1Died tragically at sea during the course of a cruise on December15, 1988  相似文献   

12.
Trophic interactions between zooplankton andPhaeocystis cf.globosa   总被引:1,自引:0,他引:1  
Mesozooplankton grazing onPhaeocystis cf.globosa was investigated by laboratory and field studies. Tests on 18 different species by means of laboratory incubation experiments, carried out at the Biologische Anstalt Helgoland, revealed thatPhaeocystis was ingested by 5 meroplanktonic and 6 holoplanktonic species; filtering and ingestion rates of the latter were determined. Among copepods, the highest feeding rates were found forCalanus helgolandicus andTemora longicornis. Copepods fed on all size-classes ofPhaeocystis offered (generally 4–500 μm equivalent spherical diameter [ESD]), but they preferred the colonies. FemaleC. helgolandicus and femaleT. longicornis preferably fed on larger colonies (ESD>200 μm and ESD>100 μm, respectively. However, a field study, carried out in the Marsdiep (Dutch Wadden Sea) showed phytoplankton grazing by the dominant copepodTemora longicornis to be negligible during thePhaeocystis spring bloom.T. longicornis gut fluorescence was inversely related toPhaeocystis dominance. The hypothesis has been put forward thatT. longicornis preferentially feeds on microzooplankton and by this may enhance rather than depressPhaeocystis blooms. Results from laboratory incubation experiments, including three trophic levels —Phaeocystis cf.globosa (algae),Strombidinopsis sp. (ciliate) andTemora longicornis (copepod) — support this hypothesis.  相似文献   

13.
This study evaluates food supply for copepods, highlighting the trophic relationship between copepods and protozooplankton. To test the hypotheses that protozooplankton prey are capable of sustaining the copepod standing stock in the western Irish Sea, the taxonomic and size composition of these two groups and the size-specific predation of copepods on protozooplankton were investigated. Protozooplankton and copepod samples were collected off the southwest coast of the Isle of Man using 1.7 l Niskin water bottles and two nets (64 and 280 μm meshes), respectively. Copepod predation on protozooplankton was calculated using weight-specific clearance rates from the literature, considering the availability of prey that was accessible to a given size of copepod. Low protozooplankton biomass was dominated by small cells (<60 μm), and high copepod biomass was dominated by small species, which were more efficiently collected by a 64-μm mesh net. However, large copepods were only collected by a 280-μm mesh net, suggesting that the combination of the two nets provided a better estimate of copepod biomass. Predation by the copepod assemblage in the Irish Sea removed 1–47% and 0.5–22% of ciliates and dinoflagellates standing stock, respectively, resulting in 1–40% of the copepod feeding requirement per day. Contrary to our hypothesis, copepods could not meet their feeding requirements by grazing only on the microzooplankton prey (15–200 μm), and other food sources (i.e. nanoplankton) must be important additional dietary components to copepods in the Irish Sea. Handling editor: S. M. Thomaz  相似文献   

14.
Potential uptake and clearance rates of fluorescent microspheres (FM) from 0.25 to 4.05 μm diameter were determined for the non-loricate ciliate Pseudocohnilembus sp. from Antarctic sea ice. The percentage of ciliate cells that ingested FM after 20 min incubation decreased with increasing particle diameter. Pseudocohnilembus sp. ingested FM between 0.25 and 4.05 μm in diameter. We offered FM at concentrations less than natural concentrations for plankton plus detrital material and obtained clearance rates less than those previously reported for bactivorous ciliates. Clearance rates were 3.6–5.4 nl cell−1 h−1 for FM 0.5 and 1 μm diameter, respectively, but decreased to 1.1 nl cell−1 h−1 for 1.97 μm diameter and 1.4 nl cell−1 h−1 for 4.05-μm-diameter FM. Clearance and uptake rates of FM 0.5 and 1 μm diameter indicate that Pseudocohnilembus sp. principally grazes on bacteria-sized particles. However, it can also ingest organisms as large as nanoplankton and may graze particles as small as femtoplankton and colloids. This suggests a feeding strategy that may suit the temporal and spatial changes in food availability in the sea-ice habitat. Accepted: 13 August 2000  相似文献   

15.
The impact of a cyclopoid copepod population on the protozoacommunity (two ciliate categories and Cryptomonas) was assessedweekly during the spring cohort of Cyclops vicinus (one monthduration) in hypereutrophic Lake Søbygård by insitu gradient experiments with manipulation of ambient zooplanktonabundance. As C.vicinus always made up >92% of the zooplanktonbiomass, the response of protozoa is assumed to be a resultof predation by the copepod. Significant effects of copepodbiomass on protozoa net population growth rates were obtainedin the four experiments. Copepod clearance rates were significantlyhigher on oligotrichs than on prostomatids and Cryptomonas butdeclined for all three protozoa categories during the firstthree weeks of the copepod cohort, probably because of the changein developmental instar composition of the copepod population.Grazing impact on protozoa at ambient copepod abundance wasconsiderable (range, 0.05–0.87 day–1) and could,together with the estimated reproductive potential of protozoans(range, –0.20–0.87 day–1), account for thedecline in abundance and biomass of protozoa during the cohortdevelopment. Carbon flow from the protozoa to C.vicinus (range,2.8–23.5 µg C l–1 day–1) documents thepresence of a trophic link between protozoa and the spring cohortof C.vicinus in Lake Søbygård.  相似文献   

16.
The winter/spring vertical distributions of polar cod, copepods, and ringed seal were monitored at a 230-m station in ice-covered Franklin Bay. In daytime, polar cod of all sizes (7–95 g) formed a dense aggregation in the deep inverse thermocline (160–230 m, −1.0 to 0°C). From December (polar night) to April (18-h daylight), small polar cod <25 g migrated into the isothermal cold intermediate layer (90–150 m, −1.4°C) at night to avoid visual predation by shallow-diving immature seals. By contrast, large polar cod (25–95 g), with large livers, remained below 180 m at all times, presumably to minimize predation by deep-diving mature seals. The diel vertical migration (DVM) of small polar cod was precisely synchronized with the light/dark cycle and its duration tracked the seasonal lengthening of the photoperiod. The DVM stopped in May coincident with the midnight sun and increased schooling and feeding. We propose that foraging interference and a limited prey supply in the deep aggregation drove the upward re-distribution of small polar cod at night. The bioluminescent copepod Metridia longa could have provided the light needed by polar cod to feed on copepods in the deep aphotic layers.  相似文献   

17.
Copepods are considered to be the main component of the Arctic marine zooplankton. We examined the copepod distribution and diversity off Franz Josef Land (northern Barents Sea) in August 2006 and 2007. A total of 18 and 14 copepod taxa were identified from the sampling layers (100–0 m or bottom–0 m) in 2006 and in 2007, respectively. There were no significant differences in the total copepod abundance between the years (means ± SE: 118,503 ± 24,115 individuals m−2 in 2006 vs. 113,932 ± 28,564 individuals m−2 in 2007). However, the copepod biomass in 2006 (4,518 ± 1,091 mg C m−2) exceeded clearly the value in 2007 (1,253 ± 217 mg C m−2). The copepod community showed low species richness and diversity in both years (Simpson index D: 0.34 and 0.38, respectively). Biomass of the large and small copepod species strongly decreased from 2006 to 2007. The total abundance of copepods was negatively correlated with water temperature in 2006 and positively correlated with salinity in 2007. The patchiness in copepod distribution was associated with local hydrography and temperature conditions.  相似文献   

18.
Community structure and diversity patterns of pelagic copepods were investigated for the coastal areas and in the marine lakes of the Palau islands in the West Pacific. We conducted field surveys during 2004–2007 and collected zooplankton samples from eight coastal areas and 16 marine lakes. The marine lakes in the islands of Palau are limnologically classified into two types, meromictic and holomictic lakes. Species diversity indices (Margalef’s species richness d′, Shannon–Wiener index H′, and Simpson’s dominance) were measured at each sampling site. The copepod community structure was analyzed using multivariate analyses, hierarchical cluster analysis, and non-metric multidimensional scaling (MDS) from the PRIMER package. A total of 36 copepod taxa were identified to the genus or species level from Calanoida, Cyclopoida, Harpacticoida, and Poecilostomatoida. Multivariate analysis based on the Bray–Curtis similarity index revealed that copepod assemblages could be classified into three different groups according to their habitat: (I) meromictic lakes, (II) holomictic lakes with an exceptionally shallow and flat basin (type A holomictic lakes), (III) holomictic lakes with a deep basin (type B holomictic lakes), and all coastal areas. The meromictic lakes were characterized by markedly decreased species diversity (d′ = 0.15, H′ = 0.41) in which only two brackish-water species, Bestiolina similis and Oithona dissimilis, were dominant. Type A holomictic lakes were characterized by relatively low levels of species diversity (d′ = 1.25, H′ = 1.35). In contrast, type B holomictic lakes were characterized by relatively high levels of species diversity, which was comparable to that of coastal areas. This result indicated that zooplankton assemblages in the type B holomictic lakes were closely related to a coastal community. The present study showed that the species diversity of pelagic copepods varies according to the level of isolation and the local environmental conditions for each marine lake.  相似文献   

19.
Abstract Grazing behavior of both individual cells and populations of the marine hypotrich Euplotes mutabilis, a largely benthic ciliate that feeds on suspended particles, was studied using fluorescent latex microspheres. Microspheres of sizes 0.57-, 1.90-, 3.06-, 5.66-, and 10.0-μm diam were offered at concentrations from 102 to 106 ml−1. Their uptake in a ten-min period was determined. Food particles within such ranges of size and concentration are found under natural conditions. The ciliates ingested particles of all sizes offered. Uptake rates at all concentrations were dependent upon particle size, with 1.90- and 3.06-μm diam microspheres having the highest uptake rate in all cases. For all sizes, there was an increase in the percentage of feeding cells and in the uptake rate (the number of particles ingested cell−1 h−1), with increasing particle concentration. When uptake was expressed as the volume ingested, maximum values were obtained for 5.85-μm diam microspheres at a concentration of 106 ml−1. By taking a small number of large particles, present at a low concentration in the medium, a ciliate can ingest a greater biovolume than by taking a high number of small particles which are abundant in the medium. These results demonstrate that some ciliates can graze particles of a wide range of sizes. Also, its nutrition can be affected by changing ambient concentrations of different prey, both through effects on the proportion of feeding cells and through the relative food content of the particles. The data can also add to the understanding of food niche partitioning between species. At low particle concentrations, particularly, it is important to consider the behavior of individual ciliates as well as of the whole population. Received: 11 February 1997; Accepted: 21 October 1997  相似文献   

20.
Knowledge of in situ copepod diet diversity is crucial for accurately describing pelagic food web structure but is challenging to achieve due to lack of an easily applicable methodology. To enable analysis with whole copepod-derived DNAs, we developed a copepod-excluding 18S rDNA-based PCR protocol. Although it is effective in depressing amplification of copepod 18S rDNA, its applicability to detect diverse eukaryotes in both mono- and mixed-species has not been demonstrated. Besides, the protocol suffers from the problem that sequences from symbiotic ciliates are overrepresented in the retrieved 18S rDNA libraries. In this study, we designed a blocking primer to make a combined primer set (copepod/symbiotic ciliate-excluding eukaryote-common: CEEC) to depress PCR amplification of symbiotic ciliate sequences while maximizing the range of eukaryotes amplified. We firstly examined the specificity and efficacy of CEEC by PCR-amplifying DNAs from 16 copepod species, 37 representative organisms that are potential prey of copepods and a natural microplankton sample, and then evaluated the efficiency in reconstructing diet composition by detecting the food of both lab-reared and field-collected copepods. Our results showed that the CEEC primer set can successfully amplify 18S rDNA from a wide range of isolated species and mixed-species samples while depressing amplification of that from copepod and targeted symbiotic ciliate, indicating the universality of CEEC in specifically detecting prey of copepods. All the predetermined food offered to copepods in the laboratory were successfully retrieved, suggesting that the CEEC-based protocol can accurately reconstruct the diets of copepods without interference of copepods and their associated ciliates present in the DNA samples. Our initial application to analyzing the food composition of field-collected copepods uncovered diverse prey species, including those currently known, and those that are unsuspected, as copepod prey. While testing is required, this protocol provides a useful strategy for depicting in situ dietary composition of copepods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号