首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cofactors are essential components of many proteins for biological activity. Characterization of several cofactor-binding proteins has shown that cofactors often have the ability to interact specifically with the unfolded polypeptides. This suggests that cofactor-coordination prior to polypeptide folding may be a relevant path in vivo. By binding before folding, the cofactor may affect both the mechanism and speed of folding. Here, we discuss three different cofactors that modulate protein-folding processes in vitro.  相似文献   

2.
Partner proteins determine multiple functions of Hsp70   总被引:14,自引:0,他引:14  
The 70 kDa heat shock proteins (Hsp70s) are ubiquitous molecular chaperones that are best known for their participation in protein folding. However, evidence is accumulating that Hsp70s perform several other cellular functions in cooperation with specific soluble or membrane-bound partner proteins. While the basic function of Hsp70s is explained by their ability to bind unfolded polypeptide segments, the partner proteins appear to customize them for specific roles such as involvement in protein traffic and folding, translocation of preproteins across membranes, and gene regulation.  相似文献   

3.
Folding and unfolding are fundamental biological processes in cell and are important for the biological functions of proteins. Characterizing the folding and unfolding kinetics of proteins is important for understanding the energetic landscape leading to the active native conformations of these molecules. However, the thermal or chemical-induced unfolding of many proteins is irreversible in vitro, precluding characterization of the folding kinetics of such proteins, just as it is impossible to “un-boil” an egg. Irreversible unfolding often manifests as irreversible aggregation of unfolded polypeptide chains, which typically occurs between denatured protein molecules in response to the exposure of hydrophobic residues to solvent. An example of such a protein where thermal denaturation results in irreversible aggregation is the β-1,4 endoxylanase from Bacillus circulans (BCX). Here, we report the use of single-molecule atomic force microscopy to directly measure the folding kinetics of BCX in vitro. By mechanically unfolding BCX, we essentially allowed only one unfolded molecule to exist in solution at a given time, effectively eliminating the possibility for aggregation. We found that BCX can readily refold back to the native state, allowing us to measure its folding kinetics for the first time. Our results demonstrate that single-molecule force-spectroscopy-based methods can adequately tackle the challenge of “un-boiling eggs”, providing a general methodology to characterize the folding kinetics of many proteins that suffer from irreversible denaturation and thus cannot be characterized using traditional equilibrium methodologies.  相似文献   

4.
While it is clear that many unfolded proteins can attain their native state spontaneously in vitro, the efficiency of such folding is usually limited to conditions far removed from those encountered within cells. Two properties of the cellular environment are expected to enhance strongly the propensity of incompletely folded polypeptides to misfold and aggregate: the crowding effect caused by the high concentration of macromolecules, and the close proximity of nascent polypeptide chains emerging from polyribosomes. However, in the living cell, non-productive protein folding is in many, if not most, cases prevented by the action of a highly conserved set of proteins termed molecular chaperones. In the cytoplasm, the Hsp70 (heat-shock protein of 70 kDa) and chaperonin families of molecular chaperones appear to be the major contributors to efficient protein folding during both normal conditions and adverse conditions such as heat stress. Hsp70 chaperones recognize and shield short, hydrophobic peptide segments in the context of non-native polypeptides and probably promote folding by decreasing the concentration of aggregation-prone intermediates. In contrast, the chaperonins interact with and globally enclose collapsed folding intermediates in a central cavity where efficient folding can proceed in a protected environment. For a number of proteins, folding requires the co-ordinated action of both of these molecular chaperones.  相似文献   

5.
Lipid-induced alpha-helix folding, which occurs in many lipid surface-binding proteins and peptides such as apolipoproteins and synucleins, has been proposed to provide an energy source for protein-lipid interactions. We propose that in a system comprised of a phospholipid surface and a small polypeptide that is unfolded in solution and binds reversibly to lipid surface, helical folding involves expenditure of free energy as compared to a similar polypeptide that is alpha-helical in solution. This is a consequence of the entropic cost of helix folding that is illustrated in a simple thermodynamic model and exemplifies the general "key-into-lock" paradigm of protein-ligand binding. Even though this simple model does not explicitly address the protein-induced lipid re-arrangement and may not directly apply to large proteins that undergo significant tertiary structural changes upon lipid binding, it suggests that the notion of helix folding as an energy source for lipid binding should be treated with caution.  相似文献   

6.
7.
T-complex polypeptide 1 (TCP-1) was analyzed as a potential chaperonin (GroEL/Hsp60) equivalent of the eukaryotic cytosol. We found TCP-1 to be part of a hetero-oligomeric 970 kDa complex containing several structurally related subunits of 52-65 kDa. These members of a new protein family are assembled into a TCP-1 ring complex (TRiC) which resembles the GroEL double ring. The main function of TRiC appears to be in chaperoning monomeric protein folding: TRiC binds unfolded polypeptides, thereby preventing their aggregation, and mediates the ATP-dependent renaturation of unfolded firefly luciferase and tubulin. At least in vitro, TRiC appears to function independently of a small co-chaperonin protein such as GroES. Folding of luciferase is mediated by TRiC but not by GroEL/ES. This suggests that the range of substrate proteins interacting productively with TRiC may differ from that of GroEL. We propose that TRiC mediates the folding of cytosolic proteins by a mechanism distinct from that of the chaperonins in specific aspects.  相似文献   

8.
We propose that the way in which some proteins fold is affected by the rates at which regions of their polypeptide chains are translated in vivo. Furthermore, we suggest that their gene sequences have evolved to control the rate of translational elongation such that the synthesis of defined portions of their polypeptide chains is separated temporally. We stress that many proteins are capable of folding efficiently into their native conformations without the help of differential translation rates. For these proteins the amino acid sequence does indeed contain all the information needed for the polypeptide chain to fold correctly (even in vitro, after denaturation). However, other proteins clearly do not fold efficiently into their native conformation in vitro. We argue that the efficiency of folding of these problematic proteins in vivo may be improved by controlled synthesis of the nascent polypeptide.  相似文献   

9.

Background

Molecular chaperones that support de novo folding of proteins under non stress condition are classified as chaperone ‘foldases’ that are distinct from chaperone’ holdases’ that provide high affinity binding platform for unfolded proteins and prevent their aggregation specifically under stress conditions. Ribosome, the cellular protein synthesis machine can act as a foldase chaperone that can bind unfolded proteins and release them in folding competent state. The peptidyl transferase center (PTC) located in the domain V of the 23S rRNA of Escherichia coli ribosome (bDV RNA) is the chaperoning center of the ribosome. It has been proposed that via specific interactions between the RNA and refolding proteins, the chaperone provides information for the correct folding of unfolded polypeptide chains.

Results

We demonstrate using Escherichia coli ribosome and variants of its domain V RNA that the ribosome can bind to partially folded intermediates of bovine carbonic anhydrase II (BCAII) and lysozyme and suppress aggregation during their refolding. Using mutants of domain V RNA we demonstrate that the time for which the chaperone retains the bound protein is an important factor in determining its ability to suppress aggregation and/or support reactivation of protein.

Conclusion

The ribosome can behave like a ‘holdase’ chaperone and has the ability to bind and hold back partially folded intermediate states of proteins from participating in the aggregation process. Since the ribosome is an essential organelle that is present in large numbers in all living cells, this ability of the ribosome provides an energetically inexpensive way to suppress cellular aggregation. Further, this ability of the ribosome might also be crucial in the context that the ribosome is one of the first chaperones to be encountered by a large nascent polypeptide chains that have a tendency to form partially folded intermediates immediately following their synthesis.  相似文献   

10.
《The Journal of cell biology》1993,122(6):1301-1310
The folding of actin and tubulin is mediated via interaction with a heteromeric toroidal complex (cytoplasmic chaperonin) that hydrolyzes ATP as part of the reaction whereby native proteins are ultimately released. Vertebrate actin-related protein (actin-RPV) (also termed centractin) and gamma-tubulin are two proteins that are distantly related to actin and tubulin, respectively: gamma-tubulin is exclusively located at the centrosome, while actin-RPV is conspicuously abundant at the same site. Here we show that actin-RPV and gamma- tubulin are both folded via interaction with the same chaperonin that mediates the folding of beta-actin and alpha- and beta-tubulin. In each case, the unfolded polypeptide forms a binary complex with cytoplasmic chaperonin and is released as a soluble, monomeric protein in the presence of Mg-ATP and the presence or absence of Mg-GTP. In contrast to alpha- and beta-tubulin, the folding of gamma-tubulin does not require the presence of cofactors in addition to chaperonin itself. Monomeric actin-RPV produced in in vitro folding reactions cocycles efficiently with native brain actin, while in vitro folded gamma- tubulin binds to polymerized microtubules in a manner consistent with interaction with microtubule ends. Both monomeric actin-RPV and gamma- tubulin bind to columns of immobilized nucleotide: monomeric actin-RPV has no marked preference for ATP or GTP, while gamma-tubulin shows some preference for GTP binding. We show that actin-RPV and gamma-tubulin compete with one another, and with beta-actin or alpha-tubulin, for binary complex formation with cytoplasmic chaperonin.  相似文献   

11.
Using a cross-linking approach, we recently demonstrated that radiolabeled peptides or misfolded proteins specifically interact in vitro with two luminal proteins in crude extracts from pancreas microsomes. The proteins were the folding catalysts protein disulfide isomerase (PDI) and PDIp, a glycosylated, PDI-related protein, expressed exclusively in the pancreas. In this study, we explore the specificity of these proteins in binding peptides and related ligands and show that tyrosine and tryptophan residues in peptides are the recognition motifs for their binding by PDIp. This peptide-binding specificity may reflect the selectivity of PDIp in binding regions of unfolded polypeptide during catalysis of protein folding.  相似文献   

12.
We recently identified ERdj3 as a component of unassembled immunoglobulin (Ig) heavy chain:BiP complexes. ERdj3 also associates with a number of other protein substrates, including unfolded light chains, a nonsecreted Ig light chain mutant, and the VSV-G ts045 mutant at the nonpermissive temperature. We produced an ERdj3 mutant that was unable to stimulate BiP's ATPase activity in vitro or to bind BiP in vivo. This mutant retained the ability to interact with unfolded protein substrates, suggesting that ERdj3 binds directly to proteins instead of via interactions with BiP. BiP remained bound to unfolded light chains longer than ERdj3, which interacted with unfolded light chains initially, but quickly disassociated before protein folding was completed. This suggests that ERdj3 may bind first to substrates and serve to inhibit protein aggregation until BiP joins the complex, whereas BiP remains bound until folding is complete. Moreover, our findings support a model where interactions with BiP help trigger the release of ERdj3 from the substrate:BiP complex.  相似文献   

13.
Mechanisms of folding and misfolding of membrane proteins are of interest in cell biology. Recently, we have established single-molecule force spectroscopy to observe directly the stepwise folding of the Na+/H+ antiporter NhaA from Escherichia coli in vitro. Here, we improved this approach significantly to track the folding intermediates of a single NhaA polypeptide forming structural segments such as the Na+-binding site, transmembrane alpha-helices, and helical pairs. The folding rates of structural segments ranged from 0.31 s(-1) to 47 s(-1), providing detailed insight into a distinct folding hierarchy of an unfolded polypeptide into the native membrane protein structure. In some cases, however, the folding chain formed stable and kinetically trapped non-native structures, which could be assigned to misfolding events of the antiporter.  相似文献   

14.
Mechanisms of protein folding   总被引:11,自引:0,他引:11  
The strong correlation between protein folding rates and the contact order suggests that folding rates are largely determined by the topology of the native structure. However, for a given topology, there may be several possible low free energy paths to the native state and the path that is chosen (the lowest free energy path) may depend on differences in interaction energies and local free energies of ordering in different parts of the structure. For larger proteins whose folding is assisted by chaperones, such as the Escherichia coli chaperonin GroEL, advances have been made in understanding both the aspects of an unfolded protein that GroEL recognizes and the mode of binding to the chaperonin. The possibility that GroEL can remove non-native proteins from kinetic traps by unfolding them either during polypeptide binding to the chaperonin or during the subsequent ATP-dependent formation of folding-active complexes with the co-chaperonin GroES has also been explored.  相似文献   

15.
Compaction of a nascent polypeptide chain inside the ribosomal exit tunnel, before it leaves the ribosome, has been proposed to accelerate the folding of newly synthesized proteins following their release from the ribosome. Thus, we used Kinetic Monte Carlo simulations of a minimalist on-lattice model to explore the effect that polypeptide translocation through a variety of channels has on protein folding kinetics. Our results demonstrate that tunnel confinement promotes faster folding of a well-designed protein relative to its folding in free space by displacing the unfolded state towards more compact structures that are closer to the transition state. Since the tunnel only forbids rarely visited, extended configurations, it has little effect on a "poorly designed" protein whose unfolded state is largely composed of low-energy, compact, misfolded configurations. The beneficial effect of the tunnel depends on its width; for example, a too-narrow tunnel enforces unfolded states with limited or no access to the transition state, while a too-wide tunnel has no effect on the unfolded state entropy. We speculate that such effects are likely to play an important role in the folding of some proteins or protein domains in the cellular environment and might dictate whether a protein folds co-translationally or post-translationally.  相似文献   

16.
While several proteins, including beta-lactamase, cytochrome c and apomyoglobin, are maximally unfolded at pH 2 by HCl in the absence of salt, the addition of anions, either from salt or acid, co-operatively induces the unfolded proteins to refold to a molten globule state, because anions bind preferentially to the compact molten globule state compared to the extended unfolded state. To study the role of the anion-dependent conformational transition at neutral pH, we synthesized a model polypeptide of 51 amino acid residues, consisting of tandem repeats of a Lys-Lys-Leu-Leu sequence and containing a turn sequence, Asn-Pro-Gly, at the center of the molecule. The model polypeptide showed no significant conformation by circular dichroism under conditions of low salt at neutral pH. However, addition of anions, either from salt or acid, induced the folding transition to an alpha-helical conformational state. The order of effectiveness of various anions in inducing the folding transition was consistent with the series of anions in inducing the molten globule of the acid-denatured protein. This suggests that the helical state of the model polypeptide is equivalent to the molten globule state. At pH values above 9, the model polypeptide also took an alpha-helical conformation, which was very similar to that induced by anions. On the basis of the chloride and pH-dependent conformational transitions, a phase diagram for the conformational states was constructed. The phase diagram was explained simply by assuming that the conformational transition is linked to the proton and the anion bindings to a limited number of amino groups and that anions bind only to the protonated groups.  相似文献   

17.
Makareeva E  Leikin S 《PloS one》2007,2(10):e1029
Fibers composed of type I collagen triple helices form the organic scaffold of bone and many other tissues, yet the energetically preferred conformation of type I collagen at body temperature is a random coil. In fibers, the triple helix is stabilized by neighbors, but how does it fold? The observations reported here reveal surprising features that may represent a new paradigm for folding of marginally stable proteins. We find that human procollagen triple helix spontaneously folds into its native conformation at 30-34 degrees C but not at higher temperatures, even in an environment emulating Endoplasmic Reticulum (ER). ER-like molecular crowding by nonspecific proteins does not affect triple helix folding or aggregation of unfolded chains. Common ER chaperones may prevent aggregation and misfolding of procollagen C-propeptide in their traditional role of binding unfolded polypeptide chains. However, such binding only further destabilizes the triple helix. We argue that folding of the triple helix requires stabilization by preferential binding of chaperones to its folded, native conformation. Based on the triple helix folding temperature measured here and published binding constants, we deduce that HSP47 is likely to do just that. It takes over 20 HSP47 molecules to stabilize a single triple helix at body temperature. The required 50-200 microM concentration of free HSP47 is not unusual for heat-shock chaperones in ER, but it is 100 times higher than used in reported in vitro experiments, which did not reveal such stabilization.  相似文献   

18.
Chaperones assist in protein folding, but what this common phrase means in concrete terms has remained surprisingly poorly understood. We can readily measure chaperone binding to unfolded proteins, but how they bind and affect proteins along folding trajectories has remained obscure. Here we review recent efforts by our labs and others that are beginning to pry into this issue, with a focus on the chaperones trigger factor and Hsp70. Single-molecule methods are central, as they allow the stepwise process of folding to be followed directly. First results have already revealed contrasts with long-standing paradigms: rather than acting only “early” by stabilizing unfolded chain segments, these chaperones can bind and stabilize partially folded structures as they grow to their native state. The findings suggest a fundamental redefinition of the protein folding problem and a more extensive functional repertoire of chaperones than previously assumed.  相似文献   

19.
The mechanisms responsible for protein folding in the cell can be divided in two groups. The ones in the first group would be those preventing the aggregation of unfolded polypeptide chains or of incompletely folded proteins, as well as the mechanisms which provide for the energy-consuming unfolding of incorrectly folded structures, giving them a chance to begin a new folding cycle. Mechanisms of this type do not affect the rate of folding (it occurs spontaneously), yet considerably increase the efficiency of the entire process. By contrast, the mechanisms belonging to second group actually accelerate protein folding by exerting a direct influence on the rate-limiting steps of the overall reaction. Although not a conventional one, such a classification helps define the topic of this review. Its main purpose is to discuss the ability of chaperonins (and that of some chaperones) to interact directly with substrate proteins in the course of their folding and thus accelerate the rate-limiting steps of that process. (Mechanisms of protein folding acceleration produced by the action of enzymes, e.g., peptidyl-prolyl cis/trans isomerase and protein disulfide isomerase, are not considered in this review.) Specific cases demonstrating an accelerated folding of some proteins encapsulated in the bacterial chaperonin GroEL cavity are considered, and the conditions favoring such acceleration are examined. Experimental data supporting the notion that the structure and functional properties of GroEL are not optimal for an effective folding of many of its substrate proteins is discussed. The current status of research on the mechanism behind the active participation of different subunits of eucaryotic cytosol chaperonin (CCT) in the final steps of the folding of actin and tubulin is reviewed. Particular attention is devoted to steric chaperones, which dramatically accelerate the formation of the native structure of their substrate proteins by stabilizing certain folding intermediates. The structural foundations underlying the effect of the subtilisin pro-domain on the folding of the mature enzyme are considered. The prospects of future studies into the mechanisms responsible for accelerating protein folding in the cell are commented upon.  相似文献   

20.
C Lv  C Tan  M Qin  D Zou  Y Cao  W Wang 《Biophysical journal》2012,102(8):1944-1951
Some small proteins, such as HP35, fold at submicrosecond timescale with low folding cooperativity. Although these proteins have been extensively investigated, still relatively little is known about their folding mechanism. Here, using single-molecule force spectroscopy and steered molecule dynamics simulation, we study the unfolding of HP35 under external force. Our results show that HP35 unfolds at extremely low forces without a well-defined unfolding transition state. Subsequently, we probe the structure of unfolded HP35 using the persistence length obtained in the force spectroscopy. We found that the persistence length of unfolded HP35 is around 0.72 nm, >40% longer than typical unstructured proteins, suggesting that there are a significant amount of residual secondary structures in the unfolded HP35. Molecular dynamics simulation further confirmed this finding and revealed that many native contacts are preserved in HP35, even its two ends have been extended up to 8 nm. Our results therefore suggest that retaining a significant amount of secondary structures in the unfolded state of HP35 may be an efficient way to reduce the entropic cost for the formation of tertiary structure and increase the folding speed, although the folding cooperativity is compromised. Moreover, we anticipate that the methods we used in this work can be extended to the study of other proteins with complex folding behaviors and even intrinsically disordered ones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号