首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Over the last few years, a large number of preclinical and clinical studies have demonstrated the potential of gene therapy applications using adeno-associated viral (AAV) vectors. Gene transfer via AAV vectors has been particularly successful for the treatment or adjunct therapy of several CNS disorders. The present review summarizes the progress on AAV gene delivery models for three different CNS disorders. In particular, we discuss advances in AAV-mediated gene transfer strategies in animal models of Parkinson's disease, Alzheimer's disease and spinal cord trauma and summarize the results from the first clinical studies using AAV systems.  相似文献   

2.
The common marmoset is a small New World primate that has attracted remarkable attention as a potential experimental animal link between rodents and humans. Adeno-associated virus (AAV) vector-mediated expression of a disease-causing gene or a potential therapeutic gene in the brain may allow the construction of a marmoset model of a brain disorder or an exploration of the possibility of gene therapy. To gain more insights into AAV vector-mediated transduction profiles in the marmoset central nervous system (CNS), we delivered AAV serotype 9 (AAV9) vectors expressing GFP to the cisterna magna or the cerebellar cortex. Intracisternally injected AAV9 vectors expanded in the CNS according to the cerebrospinal fluid (CSF) flow, by retrograde transport through neuronal axons or via intermediary transcytosis, resulting in diffuse and global transduction within the CNS. In contrast, cerebellar parenchymal injection intensely transduced a more limited area, including the cerebellar cortex and cerebellar afferents, such as neurons of the pontine nuclei, vestibular nucleus and inferior olivary nucleus. In the spinal cord, both administration routes resulted in labeling of the dorsal column and spinocerebellar tracts, presumably by retrograde transport from the medulla oblongata and cerebellum, respectively. Motor neurons and dorsal root ganglia were also transduced, possibly by diffusion of the vector down the subarachnoid space along the cord. Thus, these two administration routes led to distinct transduction patterns in the marmoset CNS, which could be utilized to generate different disease animal models and to deliver therapeutic genes for the treatment of diseases affecting distinct brain areas.  相似文献   

3.
We administered recombinant SV40-derived viral vectors (rSV40s) intravenously to mice with or without prior intraperitoneal injection of mannitol to deliver transgenes to the central nervous system (CNS). We detected transgene-expressing cells (mainly neurons) most prominently in the cortex and spinal cord; prior intraperitoneal mannitol injection increased CNS gene delivery tenfold. Intravenous injection of rSV40s, particularly with mannitol pretreatment, resulted in extensive expression of multiple transgenes throughout the CNS.  相似文献   

4.
Adeno-associated virus (AAV) has distinct advantages over other viral vectors in delivering genes of interest to the brain. AAV mainly transfects neurons, produces no toxicity or inflammatory responses, and yields long-term transgene expression. In this study, we first tested the hypothesis that AAV serotype 2 (AAV2) selectively transfects neurons but not glial cells in the nucleus tractus solitarii (NTS) by examining expression of the reporter gene, enhanced green fluorescent protein (eGFP), in the rat NTS after unilateral microinjection of AAV2eGFP into NTS. Expression of eGFP was observed in 1–2 cells in the NTS 1 day after injection. The number of transduced cells and the intensity of eGFP fluorescence increased from day 1 to day 28 and decreased on day 60. The majority (92.9 ± 7.0%) of eGFP expressing NTS cells contained immunoreactivity for the neuronal marker, protein gene product 9.5, but not that for the glial marker, glial fibrillary acidic protein. We observed eGFP expressing neurons and fibers in the nodose ganglia (NG) both ipsilateral and contralateral to the injection. In addition, eGFP expressing fibers were present in both ipsilateral and contralateral nucleus ambiguus (NA), caudal ventrolateral medulla (CVLM) and rostral ventrolateral medulla (RVLM). Having established that AAV2 was able to transduce a gene into NTS neurons, we constructed AAV2 vectors that contained cDNA for neuronal nitric oxide synthase (nNOS) and examined nNOS expression in the rat NTS after injection of this vector into the area. Results from RT-PCR, Western analysis, and immunofluorescent histochemistry indicated that nNOS expression was elevated in rat NTS that had been injected with AAV2nNOS vectors. Therefore, we conclude that AAV2 is an effective viral vector in chronically transducing NTS neurons and that AAV2nNOS can be used as a specific gene transfer tool to study the role of nNOS in CNS neurons.  相似文献   

5.

Background

Neuronal transduction by adeno-associated viral (AAV) vectors has been demonstrated in cortex, brainstem, cerebellum, and sensory ganglia. Intrathecal delivery of AAV serotypes that transduce neurons in dorsal root ganglia (DRG) and spinal cord offers substantial opportunities to 1) further study mechanisms underlying chronic pain, and 2) develop novel gene-based therapies for the treatment and management of chronic pain using a non-invasive delivery route with established safety margins. In this study we have compared expression patterns of AAV serotype 5 (AAV5)- and AAV serotype 8 (AAV8)-mediated gene transfer to sensory neurons following intrathecal delivery by direct lumbar puncture.

Results

Intravenous mannitol pre-treatment significantly enhanced transduction of primary sensory neurons after direct lumbar puncture injection of AAV5 (rAAV5-GFP) or AAV8 (rAAV8-GFP) carrying the green fluorescent protein (GFP) gene. The presence of GFP in DRG neurons was consistent with the following evidence for primary afferent origin of the majority of GFP-positive fibers in spinal cord: 1) GFP-positive axons were evident in both dorsal roots and dorsal columns; and 2) dorsal rhizotomy, which severs the primary afferent input to spinal cord, abolished the majority of GFP labeling in dorsal horn. We found that both rAAV5-GFP and rAAV8-GFP appear to preferentially target large-diameter DRG neurons, while excluding the isolectin-B4 (IB4) -binding population of small diameter neurons. In addition, a larger proportion of CGRP-positive cells was transduced by rAAV5-GFP, compared to rAAV8-GFP.

Conclusions

The present study demonstrates the feasibility of minimally invasive gene transfer to sensory neurons using direct lumbar puncture and provides evidence for differential targeting of subtypes of DRG neurons by AAV vectors.  相似文献   

6.
Various regions of the brain have been successfully transduced by recombinant adeno-associated virus (rAAV) vectors with no detected toxicity. When using the cytomegalovirus immediate early (CMV) promoter, a gradual decline in the number of transduced cells has been described. In contrast, the use of cellular promoters such as the neuron-specific enolase promoter or hybrid promoters such as the chicken beta-actin/CMV promoter resulted in sustained transgene expression. The cellular tropism of rAAV-mediated gene transfer in the central nervous system (CNS) varies depending on the serotype used. Serotype 2 vectors preferentially transduce neurons whereas rAAV5 and rAAV1 transduce both neurons and glial cells. Recombinant AAV4-mediated gene transfer was inefficient in neurons and glial cells of the striatum (the only structure tested so far) but efficient in ependymal cells. No inflammatory response has been described following rAAV2 administration to the brain. In contrast, antibodies to AAV2 capsid and transgene product were elicited but no reduction of transgene expression was observed and readministration of vector without loss of efficiency was possible from 3 months after the first injection. Based on the success of pioneer work performed with marker genes, various strategies for therapeutic gene delivery were designed. These include enzyme replacement in lysosomal storage diseases, Canavan disease and Parkinson's disease; delivery of neuroprotective factors in Parkinson's disease, Huntington disease, Alzheimer's disease, amyotrophic lateral sclerosis, ischemia and spinal cord injury; as well as modulation of neurotransmission in epilepsy and Parkinson's disease. Several of these strategies have demonstrated promising results in relevant animal models. However, their implementation in the clinics will probably require a tight regulation and a specific targeting of therapeutic gene expression which still demands further developments of the vectors.  相似文献   

7.
To promote the efficient and safe application of adeno-associated virus (AAV) vectors as a gene transfer tool in the central nervous system (CNS), transduction efficiency and clearance were studied for serotypes commonly used to transfect distinct areas of the brain. As AAV2 was shown to transduce only small volumes in several brain regions, this study compares the transduction efficiency of three AAV pseudotyped vectors, namely AAV2/1, AAV2/5 and AAV2/8, in the ventromedial nucleus of the hypothalamus (VMH). No difference was found between AAV2/1 and AAV2/5 in transduction efficiency. Both AAV2/1 and AAV2/5 achieved a higher transduction rate than AAV2/8. One hour after virus administration to the brain, no viral particles could be traced in blood, indicating that no or negligible numbers of virions crossed the blood-brain barrier. In order to investigate survival of AAV in blood, clearance was determined following systemic AAV administration. The half-life of AAV2/1, AAV2/2, AAV2/5 and AAV2/8 was calculated by determining virus clearance rates from blood after systemic injection. The half-life of AAV2/2 was 4.2 minutes, which was significantly lower than the half-lives of AAV2/1, AAV2/5 and AAV2/8. With a half-life of more than 11 hours, AAV2/8 particles remained detectable in blood significantly longer than AAV2/5. We conclude that application of AAV in the CNS is relatively safe as no AAV particles are detectable in blood after injection into the brain. With a half-life of 1.67 hours of AAV2/5, a systemic injection with 1×109 genomic copies of AAV would be fully cleared from blood after 2 days.  相似文献   

8.
9.
Recombinant adeno-associated viruses (rAAV) are highly efficient vectors for gene delivery into the central nervous system (CNS). However, host inflammatory and immune responses may play a critical role in limiting the use of rAAV vectors for gene therapy and functional genomic studies in vivo. Here, we evaluated the effect of repeated injections of five rAAV vectors expressing different genetic sequences (coding or noncoding) in a range of combinations into the rat brain. Specifically, we wished to determine whether a specific immune or inflammatory response appeared in response to the vector and/or the transgene protein after repeated injections under conditions of mannitol coinjection. We show that readministration of the same rAAV to the CNS is possible if the interval between the first and second injection is more than 4 weeks. Furthermore, our data demonstrate that rAAV vectors carrying different genetic sequences can be administered at intervals of 2 weeks. Our data therefore suggest that the AAV capsid structure is altered by the vector genetic sequence, such that secondary structures of the single-stranded genome have an impact on the antigenicity of the virus. This study provides guidelines for more rational design of gene transfer studies in the rodent brain and, in addition, suggests the use of repeated administration of rAAV as a viable form of therapy for the treatment of chronic diseases.  相似文献   

10.
The pattern of neutrophil recruitment that accompanies inflammation in the CNS depends on the site of injury and the stage of development. The adult brain parenchyma is refractory to neutrophil recruitment and associated damage as compared to the spinal cord or juvenile brain. Using quantitative Taqman RT-PCR and enzyme-liked immunosorbent assay (ELISA), we compared mRNA and protein expression of the rat neutrophil chemoattractant chemokines (CINC) in spinal cord and brain of adult and juvenile rats to identify possible association with the observed differences in neutrophil recruitment. Interleukin-1beta (IL-1beta) injection resulted in up-regulated chemokine expression in both brain and spinal cord. CINC-3 mRNA was elevated above CINC-1 and CINC-2alpha, with expression levels for each higher in spinal cord than in brain. By ELISA, IL-1beta induced greater CINC-1 and CINC-2alpha expression compared to CINC-3, with higher protein levels in spinal cord than in brain. In the juvenile brain, significantly higher levels of CINC-2alpha protein were observed in response to IL-1beta injection than in the adult brain following an equivalent challenge. Correspondingly, neutrophil recruitment was observed in the juvenile brain and adult spinal cord, but not in the adult brain. No expression of CINC-2beta mRNA was detected. Thus differential chemokine induction may contribute to variations in neutrophil recruitment in during development and between the different CNS compartments.  相似文献   

11.
For many metabolic diseases, early treatment is necessary to prevent irreversible developmental damage. This is particularly true for childhood diseases that affect the central nervous system (CNS). The development of effective techniques for gene transfer to the neonatal brain would provide a new set of therapeutic options for many of these disorders. Vectors based on adeno-associated virus (AAV) have shown promise as agents for neonatal CNS transduction. In preclinical animal models, a single treatment with AAV vectors at birth has been shown to produce persistent CNS expression of transduced genes into adulthood. Transduction of the neonatal brain has been accomplished by a variety of methods, including direct intraparenchymal injection, intraventricular infusion, and intravenous administration. Of these methods, intraparenchymal injection provides the highest levels of localized activity, while intraventricular infusion results in a more widespread distribution of activity when performed in the neonate. Here we describe a method for direct, intraparenchymal injection of AAV into the neonatal brain. This technique provides a method for investigators to evaluate the effects of in vivo expression of exogenous genes on the process of early brain development.  相似文献   

12.
Random peptide ligands displayed on viral capsids are emerging tools for selection of targeted gene transfer vectors even without prior knowledge of the potential target cell receptor. We have previously introduced adeno-associated viral (AAV)-displayed peptide libraries that ensure encoding of displayed peptides by the packaged AAV genome. A major limitation of these libraries is their contamination with wild-type (wt) AAV. Here we describe a novel and improved library production system that reliably avoids generation of wt AAV by use of a synthetic cap gene. Selection of targeted AAV vectors from wt-containing and the novel wt-free libraries on cell types with different permissivity for wt AAV2 replication suggested the superiority of the wt-free library. However, from both libraries highly specific peptide sequence motifs were selected which improved transduction of cells with moderate or low permissivity for AAV2 replication. Strong reduction of HeLa cell transduction compared to wt AAV2 and only low level transduction of non-target cells by some selected clones showed that not only the efficiency but also the specificity of gene transfer was improved. In conclusion, our study validates and improves the unique potential of virus display libraries for the development of targeted gene transfer vectors.  相似文献   

13.
Inherited metabolic disorders that affect the central nervous system typically result in pathology throughout the brain; thus, gene therapy strategies need to achieve widespread delivery. We previously found that although intraventricular injection of the neonatal mouse brain with adeno-associated virus serotype 2 (AAV2) results in dispersed gene delivery, many brain structures were poorly transduced. This limitation may be overcome by using different AAV serotypes because the capsid proteins use different cellular receptors for entry, which may allow enhanced global targeting of the brain. We tested this with AAV1 and AAV5 vectors. AAV5 showed very limited brain transduction after neonatal injection, even though it has different transduction patterns than AAV2 in adult brain injections. In contrast, AAV1 vectors, which have not been tested in the brain, showed robust widespread transduction. Complementary patterns of transduction between AAV1 and AAV2 were established and maintained in the adult brain after neonatal injection. In the majority of structures, AAV1 transduced many more cells than AAV2. Both vectors transduced mostly neurons, indicating that differential expression of receptors on the surfaces of neurons occurs in the developing brain. The number of cells positive for a vector-encoded secreted enzyme (beta-glucuronidase) was notably greater and more widespread in AAV1-injected brains. A comprehensive analysis of AAV1-treated brains from beta-glucuronidase-deficient mice (mucopolysaccharidosis type VII) showed complete reversal of pathology in all areas of the brain for at least 1 year, demonstrating that the combination of this serotype and experimental strategy is therapeutically effective for treating global neurometabolic disorders.  相似文献   

14.
Adeno-associated virus vectors for gene transfer to the brain   总被引:4,自引:0,他引:4  
Gene therapy is a novel method under investigation for the treatment of neurological disorders. Considerable interest has focused on the possibility of using viral vectors to deliver genes to the central nervous system. Adeno-associated virus (AAV) is a potentially useful gene transfer vehicle for neurologic gene therapies. The advantages of AAV vector include the lack of any associated disease with a wild-type virus, the ability to transduce nondividing cells, the possible integration of the gene into the host genome, and the long-term expression of transgenes. The development of novel therapeutic strategies for neurological disorder by using AAV vector has an increasing impact on gene therapy research. This article describes methods that can be used to generate rodent and nonhuman primate models for testing treatment strategies linked to pathophysiological events in the ischemic brain and neurodegenerative disorders such as Parkinson's disease.  相似文献   

15.
Recombinant adeno-associated viral (rAAV) vectors are potentially powerful tools for gene therapy of CNS diseases, but their penetration into brain parenchyma is severely limited by the blood-brain barrier (BBB) and current delivery relies on invasive stereotactic injection. Here we evaluate the local, targeted delivery of rAAV vectors into the brains of mice by noninvasive, reversible, microbubble-facilitated focused ultrasound (FUS), resulting in BBB opening that can be monitored and controlled by magnetic resonance imaging (MRI). Using this method, we found that IV-administered AAV2-GFP (green fluorescence protein) with a low viral vector titer (1×109 vg/g) can successfully penetrate the BBB-opened brain regions to express GFP. We show that MRI monitoring of BBB-opening could serve as an indicator of the scale and distribution of AAV transduction. Transduction peaked at 3 weeks and neurons and astrocytes were affected. This novel, noninvasive delivery approach could significantly broaden the application of AAV-viral-vector-based genes for treatment of CNS diseases.  相似文献   

16.
We previously demonstrated safe and reliable gene transfer to the dorsal root ganglion (DRG) using a direct microinjection procedure to deliver recombinant adeno-associated virus (AAV) vector. In this study, we proceed to compare the in vivo transduction patterns of self-complementary (sc) AAV6 and AAV8 in the peripheral sensory pathway. A single, direct microinjection of either AAV6 or AAV8 expressing EGFP, at the adjusted titer of 2×109 viral particle per DRG, into the lumbar (L) 4 and L5 DRGs of adult rats resulted in efficient EGFP expression (48±20% for AAV6 and 25±4% for AAV8, mean ± SD) selectively in sensory neurons and their axonal projections 3 weeks after injection, which remained stable for up to 3 months. AAV6 efficiently transfers EGFP to all neuronal size groups without differential neurotropism, while AAV8 predominantly targets large-sized neurons. Neurons transduced with AAV6 penetrate into the spinal dorsal horn (DH) and terminate predominantly in superficial DH laminae, as well as in the dorsal columns and deeper laminae III-V. Only few AAV8-transduced afferents were evident in the superficial laminae, and spinal EGFP was mostly present in the deeper dorsal horn (lamina III-V) and dorsal columns, with substantial projections to the ventral horn. AAV6-mediated EGFP-positive nerve fibers were widely observed in the medial plantar skin of ipsilateral hindpaws. No apparent inflammation, tissue damage, or major pain behaviors were observed for either AAV serotype. Taken together, both AAV6 and AAV8 are efficient and safe vectors for transgene delivery to primary sensory neurons, but they exhibit distinct functional features. Intraganglionic delivery of AAV6 is more uniform and efficient compared to AAV8 in gene transfer to peripheral sensory neurons and their axonal processes.  相似文献   

17.
18.
Gene delivery to the eye using adeno-associated viral vectors   总被引:14,自引:0,他引:14  
  相似文献   

19.
Widespread gene delivery to the retina is an important challenge for the treatment of retinal diseases, such as retinal dystrophies. We and others have recently shown that the intravenous injection of a self-complementary (sc) AAV9 vector can direct efficient cell transduction in the central nervous system, in both neonatal and adult animals. We show here that the intravenous injection of scAAV9 encoding green fluorescent protein (GFP) resulted in gene transfer to all layers of the retina in adult mice, despite the presence of a mature blood-eye barrier. Cell morphology studies and double-labeling with retinal cell-specific markers showed that GFP was expressed in retinal pigment epithelium cells, photoreceptors, bipolar cells, Müller cells and retinal ganglion cells. The cells on the inner side of the retina, including retinal ganglion cells in particular, were transduced with the highest efficiency. Quantification of the cell population co-expressing GFP and Brn-3a showed that 45% of the retinal ganglion cells were efficiently transduced after intravenous scAAV9-GFP injection in adult mice. This study provides the first demonstration that a single intravenous scAAV9 injection can deliver transgenes to the retinas of both eyes in adult mice, suggesting that this vector serotype is able to cross mature blood-eye barriers. This intravascular gene transfer approach, by eliminating the potential invasiveness of ocular surgery, could constitute an alternative when fragility of the retina precludes subretinal or intravitreal injections of viral vectors, opening up new possibilities for gene therapy for retinal diseases.  相似文献   

20.
Viral vectors have emerged as an important tool for manipulating gene expression in the adult mammalian brain. The adult brain is composed largely of nondividing cells, and therefore DNA viruses have become the vehicle of choice for neurobiologists interested in somatic gene transfer. Recombinant viral vectors based upon adenovirus or herpes simplex virus have been created in which a gene essential for viral replication is removed and a gene of interest is inserted in the viral genome. While this eliminates pathogenicity due to viral replication, retention of viral genes and continued expression of these genes may limit the potential of the current generation of vectors. Defective viral vectors represent a different approach, in which only viral recognition signals are used to allow packaging of foreign DNA into a viral coat while eliminating the possibility of viral gene expression within target cells. The defective HSV vector has been used to transfer genes into the adult rat brain. This vector has also been used for analysis of the preproenkephalin promoterin vivo,and important regions of this promoter have been identified using this technique. A modification ofin situPCR has been developed as an adjunctive tool for sensitively documenting the presence of vector DNA within target cells duringin vivopromoter studies. Finally, the adenoassociated virus vector has been used as the first fully defective DNA viral vector, which also eliminates any contamination by helper viruses. This vector can transfer genes into the mammalian brain and has shown significant behavioral recovery in a rodent model of Parkinson's disease. Future work will undoubtedly result in still more diverse and improved vectors; however, these studies have documented the importance of viral vectors to both basic neurobiology and the potential treatment of neurologic disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号