首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Life sciences》1995,57(19):PL285-PL292
Caffeine injected at doses of 20, 40 and 80 mg/kg increased brain levels of tryptophan, 5-hydroxytryptamine (5-HT) and 5-hydroxyindole acetic acid (5-HIAA) in rat brain. In view of a possible role of 5-HT in caffeine-induced depression the effects of repeated administration of high doses of caffeine on brain 5-HT metabolism are investigated in rats. Caffeine was injected at doses of 80 mg/kg daily for five days. Control animals were injected with sahne daily for five days. On the 6th day caffeine (80 mg/kg) injected to 5 day sahne injected rats increased brain levels of tryptophan, 5-HT and 5-HIAA. Plasma total tryptophan levels were not affected and free tryptophan increased. Brain levels of 5-HT and 5-HIAA but not tryptophan decreased in 5 day caffeine injected rats injected with sahne on the 6th day. Plasma total and free tryptophan were not altered hi these rats. Caffeine-induced increases of brain tryptophan but not 5-HT and 5-HIAA were greater in 5 day caffeine than 5 day sahne injected rats. The findings are discussed as repeated caffeine administration producing adaptive changes in the serotonergic neurons to decrease the conversion of tryptophan to 5-HT and this may precipitate depression particularly in conditions of caffeine withdrawal.  相似文献   

2.
《Life sciences》1996,59(15):PL239-PL246
The effects of single (1mg/kg) and repeated (1mg/kg 21 daily for 4 days) diazepam administration are investigated on brain regional 5-hydroxytryptamine (5-HT; serotonin) and 5-hydroxy indoleacetic acid (5-HIAA) concentration in rats. Daily treatment decreased food intakes but body weights did not decrease. Administration of diazepam (1mg/kg) to 4 day sahne injected rats on the 5th day decreased 5-HT levels in the hippocampus and increased it in the hypothalamus. 5-HIAA levels were increased in the striatum and decreased in the hypothalamus. 4 day diazepam injected rats injected with sahne on the 5th day also exhibited silmilar changes of 5-HT and 5-HIAA. Cortical levels of 5-HIAA were also smaller in these rats. Administration of diazepam to 4 day diazepam injected rats again decreased 5-HT in the hippocampus and 5-HIAA in the hypothalamus. 5-HT and 5-HIAA were both decreased in the striatum. Regionally specific effects of diazepam on brain serotonin metabolism are discussed in relation to their possible functions.  相似文献   

3.
Sprague-Dawley rats were stressed by immobilization from 30 to 300 minutes and the effects on serotonin (5-HT) and 5-hydroxy-indoleacetic acid (5-HIAA) content were determined in the cerebral cortex, diencephalon, striatum, hippocampus and the brain stem. In a subsequent study 5-HT turnover rate in these brain areas was estimated by measuring 5-HIAA accumulation 0, 30, 60 and 90 minutes after probenecid. The content of 5-HIAA and the turnover rate of 5-HT were significantly increased in the cerebral cortex shortly after the onset of immobilization. The content of 5-HIAA in the brainstem was increased by immobilization although 5-HT turnover rate was not increased. Short term increases in 5-HIAA content were observed in the striatum and hippocampus. However, no significant changes in 5-HT turnover rate were observed in either of these 2 brain areas. Immobilization did not affect 5-HIAA content or 5-HT turnover in the diencephalon. The sensitivity of the serotonergic system in the cerebral cortex to immobilization stress suggests that this brain region could be used in future studies of the interrelationships between stress and the brain serotonergic system.  相似文献   

4.
A spectrofluorometric method to determine 5-HT and 5-HIAA in rat diencephalon has been developed, following the criterion of unifying the methodology in determining biogenic amines and their metabolites. Linearity in the method remains in the interval between 0.01 microgram and 0.05 microgram. Recovery is about 70% for amine and about 80% for the metabolite. Highest concentrations of 5-HT appear in one month old female animals, and are significantly higher than those found in the male population of the same age. Concentrations in two month old animals decrease, without significant differences between males and females. Values found for 5-HIAA seem not to change so significantly, although a slight decrease is observed in the elder males.  相似文献   

5.
The effects of acute treatment with p-chloramphetamine, d-fenfluramine, and reserpine on intracellular (brain tissue and whole blood) and extracellular (CSF and platelet-free plasma) compartments of 5-hydroxytryptamine (5-HT) in the brain and blood of the same rats have been examined. These treatments affected 5-HT in brain tissue and whole blood similarly (r = 0.823). Reserpine significantly reduced both intracellular pools at 2 and 24 h. p-Chloroamphetamine and d-fenfluramine were more effective on brain tissue 5-HT. The concentration of 5-HT in CSF was significantly increased by all treatments. p-Chloroamphetamine induced a dramatic 70-fold increase of CSF 5-HT, paralleling a 42% decrease in brain tissue. d-Fenfluramine significantly increased CSF 5-HT to 212% of controls and reduced whole brain 5-HT (-23%). The effects of p-chloroamphetamine and d-fenfluramine on 5-HIAA in brain, CSF, and plasma were nonsignificant. Individual values of 5-hydroxyindoleacetic acid (5-HIAA) in CSF and brain were highly correlated (r = 0.855), indicating that CSF 5-HIAA reflects well the concentration of 5-HIAA in brain tissue. Yet the intra- and extracellular concentrations of 5-HIAA were unrelated to the 5-HT changes. This indicates that CSF 5-HIAA does not reflect the active (extracellular) compartment of 5-HT in brain.  相似文献   

6.
The effect of 5-hydroxytryptamine (5-HT) alteration on brain dopamine (DA), norepinephrine (NE), beta-endorphin (beta E) and immunoreactive insulin (IRI) was studied in Sprague-Dawley diabetic and control rats. Diabetes was induced using alloxan (45 mg/kg), 15 days prior to sacrificing. Both control and diabetic animals were treated with either p-chlorophenylalanine (PCPA, 300 mg/kg) 3 days prior to sacrificing or fluoxetine (10 mg/kg) twice daily for 3 days. PCPA treatment significantly decreased brain content of 5-HT and 5-hydroxyindole acetic acid (5-HIAA) while it caused significant increase and decrease in brain beta E and insulin levels, respectively, in both normal and diabetic rat. Meanwhile, the administration of fluoxetine resulted in significant increase in brain content of 5-HT, DA, NE and insulin but significant decline of beta E in diabetic and saline control rats. The results of this experiment indicate that 5-HT may be regulating both beta E and insulin regardless of the availability of pancreatic insulin.  相似文献   

7.
The effect of adrenalectomy on catecholamine content in the diencephalon and the rest of the brain of male and female rats during the post-natal period was studied. Seven days after adrenalectomy, there is no change in noradrenaline or dopamine content. However, the dopamine levels of both the diencephalon and the rest of the brain decrease with age between days 45 and 60, while noradrenaline content in the diencephalon and the rest of the brain remained unchanged. Thus adrenalectomy significantly affected the developmental pattern of brain dopamine.  相似文献   

8.
1. Endogenous serotonin (5-HT), 5-hydroxyindol acetic acid (5-HIAA) content and exogenous 5-HT uptake (Km and Vmax) were measured in different brain regions (cerebellum, diencephalon, brain stem and telencephalon) of rats fed with a corn diet and restricted protein (8%) diet during 6 weeks. 2. A reduction of 5-HT levels was found in all regions studied of animals fed a corn diet, whereas, 5-HIAA was only decreased in brain stem and diencephalon. 3. An important increase in Km and Vmax were registered in brain stem and diencephalon of protein restricted animals, whereas, an increase of 5-HT uptake affinity in cerebellum, brain stem and telencephalon (35, 42 and 33% respectively) was observed. Simultaneously, under corn diet conditions, the Vmax decreased 40, 30 and 34% respectively in those regions. 4. It is suggested that the brain stem was the more sensitive area under nutritional restricted conditions and the development of some possible compensatory mechanisms of the 5-HTergic system is discussed.  相似文献   

9.
This study investigated: (a) the effects of acute 17alpha-methyltestosterone (MT) or 17beta-estradiol (E(2)) administration on norepinephrine (NE), dopamine (DA), serotonin (5-HT), 3,4, dihydroxyphenylacetic acid (DOPAC), and 5-hydroxyindoleacetic acid (5-HIAA) contents in the hypothalamus, telencephalon and pituitary of previtellogenic female rainbow trout Oncorhynchus mykiss, and (b) the effects of chronic MT administration on the levels of these neurotransmitters in these brain regions in immature male rainbow trout. The acute administration of MT induced a significant decrease in pituitary levels of DOPAC as well as in the DOPAC/DA ratio. On the other hand, the acute administration of E(2) induced an increase in pituitary 5-HT levels as well as a decrease in the 5-HIAA/5-HT ratio. In a second experiment, 20 mg MT per kilogram body weight was implanted for 10, 20 or 40 days into sexually immature male rainbow trout. Implanted rainbow trout showed increased testosterone and decreased E(2) levels. In the pituitary, MT induced long-term decreases in NE, DA, DOPAC and 5-HT levels, as well as in the DOPAC/DA ratio. Hypothalamic and telencephalic DA, NE and 5-HT levels were not affected by MT implantation. However, 5-HIAA levels and the 5-HIAA/5-HT ratio were reduced by MT implantation in both brain regions. These results show that chronic treatment with MT exerts both long-term and region-specific effects on NE, DA, and 5-HT contents and metabolism, and thus that this androgen could inhibit pituitary catecholamine and 5-HT synthesis. A possible role for testosterone in the control of pituitary dopaminergic activity and gonadotropin II release is also discussed.  相似文献   

10.
Abstract: The relations of plasma concentrations of substances claimed to influence brain tryptophan concentration (total tryptophan, free tryptophan, large neutral amino acids) with the concentrations of tryptophan, 5-hydroxytryptamine (5-HT), and 5-hydroxyindoleacetic acid (5-HIAA) in the forebrain were investigated in rats of different ages (from 8 days to 16 months after birth). In brain, tryptophan fell by 46%, whereas 5-HT rose by 20% between 8 and 40/42 days after birth. Thereafter, the levels of both tryptophan and 5-HT remained essentially constant. Brain 5-HIAA showed a more complex pattern, rising by 63% between 8 and 19 days, falling between 19 and 40/42 days, and then gradually rising until values at 16 months were significantly higher than those at 40/42 days. In plasma, the concentrations of free fatty acids, free and total tryptophan, and large neutral amino acids all decreased between 8 and 19 days and thereafter either remained constant or increased slowly, the exception being total tryptophan values, which showed large increases between 28/30 and 60/70 days. Also, the unidirectional uptake of tryptophan from blood to brain was determined using a carotid artery injection technique. Uptake values obtained using a tracer concentration of tryptophan in the injection solution decreased progressively with age. Kinetic analysis of the data in terms of the Michaelis-Menten equation for carrier-mediated transport indicated significantly lower values for Vmax and KD (a component for nonsaturable transport) in 6-month-old rats as compared to 19-day-old suckling rats, whereas Km values were the same at both ages. Detailed analysis of these results indicated that the age-related changes in brain tryptophan were largely explicable in terms of plasma free tryptophan in association with blood-brain transport characteristics; moderate differences in concentration of amino acids competing for transport were without apparent effect between 19 days and 16 months. The larger differences between 8 and 19 days after birth could be important.  相似文献   

11.
Rats after adrenalectomy-testectomy showed a gradual increase in diencephalon 3-oxo-5 alpha-steroid: (acceptor) delta4-oxidoreductase (5 alpha-reductase) activity for 3 days. The activity then returned near to the normal range on the 4th postoperative day. When rats were given testosterone propionate (TP) 3 days after adrenalectomy-testectomy, diencephalon 5 alpha-reductase activity returned to the preoperative range 2 hr after TP administration. Diencephalon 5 alpha-reductase activity showed a highly significant increase (p less than 0.01) after a single administration of carbamazepine, reserpine, diazepam, phenytoin, phenobarbital or disulfiram. A significant increase (p less than 0.05) was also found after a single administration of methylphenidate, caffeine or methamphetamine. Plasma testosterone decreased concurrently after administration of all these agents, except diazepam. Diencephalon enzyme activity decreased significantly after repeated disulfiram administrations (p less than 0.01) but increased significantly after methamphetamine administrations (p less than 0.05). Plasma testosterone showed a tendency to decrease after repeated methamphetamine administrations but tended to increase after repeated disulfiram administrations.  相似文献   

12.
The extracellular concentrations of 5-hydroxytryptamine (5-HT) and its metabolite 5-hydroxyindoleacetic acid (5-HIAA) have been determined in six brain areas of awake rats (frontal cortex, striatum, hypothalamus, hippocampus, inferior colliculus, and raphe nuclei) using intracerebral microdialysis. The extracellular levels of 5-HT showed no significant differences among the brain regions studied. The tissue levels of 5-HT and 5-HIAA as well as the extracellular concentration of 5-HIAA were significantly higher in raphe nuclei. The regional distribution of tissue and extracellular 5-HIAA were very similar, suggesting that extracellular 5-HIAA depends mainly on the output from the intracellular compartment. On the other hand, extracellular 5-HT and tissue 5-HT showed a different distribution pattern. The tissue/extracellular ratio for 5-HT ranged from 739 in frontal cortex to 2,882 in raphe, whereas it only amounted to 1.8-3.6 for 5-HIAA. The relationship between the present results and the density of 5-HT uptake sites in these areas is discussed.  相似文献   

13.
The effect of subcutaneous injections of saline (0.9% NaCl, 10–40 μl/g b. wt) to 5- and 20-day old rats on the concentrations of tyrosine (Tyr) and tryptophan (Trp) in the serum and the brain and on the levels of biogenic amines and their metabolites in the developing brain at 6 h p.i. is described. At day 5 the concentration of Tyr in the blood was decreased (dose-dependent), but the brain concentrations of Tyr and of its amine-metabolites, dopamine (DA), norepinephrine (NE), homovanillic acid (HVA) and dihydroxyphenylacetate (DOPAC) were unaffected. In contrast, in the 20-day old rat, serum Tyr was unaffected by the saline injections, but the Tyr concentration in the brain decreased markedly at the highest saline dose. The concentrations of NE (only at maximum dose) and of DA (independent on the amount of saline injected) were elevated in the brains of saline injected 20-day old rats. The concentrations of Trp and indoles were more affected at day 5 than at day 20: slightly decreased concentration of Trp in the serum but markedly increased concentrations of brain Trp (only at maximum dose), elevated serotonin (5-HT, independent on the amount of saline injected) and 5-hydroxyindoleacetic acid (5-HIAA, at maximum dose) in the brain. If the maximum dose of 40 μl/g body weight was injected to suckling rats repeatedly during the whole suckling period (in 12 h intervals), some effects caused by one single injection of 40 μl/g disappeared (Tyr—depletion in blood or brain, increase in brain NE, DA and Trp), but other additional effects appeared (decreased DA and increased DOPAC, decreased 5-HT and 5-HIAA). The results show that saline injections do cause characteristic, age-dependent alterations of precursor availability as well as of the rate of synthesis and degradation of catecholamine and 5-HT. Repeated treatments have different effects than one single treatment on the precursor availability and the metabolism of monoamines. These alterations must be taken into account if the effects of certain “specific” treatments are compared and discussed in relation to saline “controls”.  相似文献   

14.
The present study was undertaken to determine cerebrospinal fluid (CSF) and brain levels of norepinephrine (NE), serotonin (5-HT) and their metabolites--3,4-dihydroxyphenylacetic acid (DOPAC), 4-hydroxy-3-methoxyphenylacetic acid (HVA) and 5-hydroxyindole-3-acetic acid (5-HIAA)--in rats pretreated with 6-hydroxydopamine (6-OHDA) or 5,7-dihydroxytryptamine (5,7-DHT). In the 6-OHDA pretreated rats, both CSF and brain concentrations of NE, DOPAC and HVA sustained significant decreases as compared with those in non-treated rats. Positive and significant correlations between CSF and brain levels were observed in respect to NE, DOPAC and HVA. In 5,7-DHT pretreated rats, both CSF and brain concentrations of 5-HT and 5-HIAA were significantly decreased. A positive and significant correlation between CSF and brain levels in respect to 5-HT and 5-HIAA was observed. Further studies were carried out to determine ACh levels of both the CSF and the brain in microspheres (MS)-treated rats, which are used as a model of microembolization. The CSF ACh concentrations in MS-treated groups were significantly decreased as compared with those in non-treated rats. The brain ACh contents also tended to decrease in this group. A positive and significant correlation was observed between CSF and brain levels of ACh. These findings suggest that NE, 5-HT and ACh concentrations in the CSF are direct indications of central noradrenergic, serotonergic and cholinergic nerve activity, respectively.  相似文献   

15.
Abstract— 5-HT was injected intravenously in rats (10 mg/kg) and a marked increase in brain 5-HT and 5-HIAA was observed. For the first 10 min after injection the penetration of 5-HT into the brain and formation of 5-HIAA is evident. After 10 min degradation of exogenous 5-HT and elimination of 5-HIAA are prominent. Metabolism of exogenous 5-HT in the brain is very fast (half-life between 5 and 10 min; completely metabolized in approximately 80 min). The importance of these results in explaining the permeability of blood-brain barrier to 5-HT is discussed. Experiments on brain slices show that 5-HT is more readily metabolized in brain tissue than eliminated into incubation medium. In contrast, 5-HIAA very easily leaves brain tissue.  相似文献   

16.
The influence of early thyroidectomy (Tx) on changes in dopamine (DA) and noradrenaline (NA) during the postnatal period (30, 45 and 60 days old) was studied in the diencephalon and the rest of the brain of male and female rats. Thyroidectomy interfered with the normal growth of the animals, decreased brain weight and markedly influenced the developmental pattern of both DA and NA in the diencephalon. When compared with control values, the DA concentration, in 45- and 60-day-old Tx male rats, was 29 and 43% lower, respectively, and 21 and 43% lower, respectively, in Tx females. Diencephalic NA levels in Tx rats were also lower than those observed in controls, 15% inferior in 45- and 60-day-old males; 27 and 22% lower, respectively, in females. Thyroidectomy does not significantly alter the level of either amine in the rest of the brain.  相似文献   

17.
Stenfors C  Ross SB 《Life sciences》2002,71(24):2867-2880
The effect of repeated treatment with the selective serotonin reuptake inhibitor fluoxetine on synthesis and turnover of 5-hydroxytryptamine (5-HT) was studied in the mouse brain in vivo. The concentration of 5-hydroxytryptophan (5-HTP), 5-hydroxyindoleacetic acid (5-HIAA) and 5-HT was measured in hypothalamus, hippocampus and frontal cortex after inhibition of the aromatic amino acid decarboxylase activity with m-hydroxybenzylhydrazine (NSD 1015). Fluoxetine 6.9 mg/kg s.c. was injected once daily for three weeks. Three days after the final daily injection of fluoxetine 5-HT synthesis (5-HTP accumulation) and turnover (5-HIAA/5-HT ratio) were significantly enhanced compared with saline-treated mice. The 5-HIAA/5-HT ratio was already significantly elevated after 3 days of fluoxetine treatment and continued to increase during treatment for 2-3 weeks. The increase in 5-HIAA/5-HT ratio was considerably larger (150-200% of controls) than the increase in 5-HTP accumulation (110-120%), which reached significance only after 3 weeks of treatment. The increase in 5-HT synthesis may be secondary to that of the turnover. The 5-HIAA/5-HT ratio returned to control values after a 14 days washout period. Simultaneous treatment with the long-acting 5-HT(1B)-receptor antagonist, SB 224289 for 14 days counteracted the fluoxetine-induced increase in 5-HIAA/5-HT ratio that indicates involvement of 5-HT(1B) autoreceptors in the development of this increase. It is proposed that the fluoxetine-induced enhancement of 5-HT turnover was evoked by the long-lasting stimulation of 5-HT(1B) autoreceptors that resulted in an intraneuronal compensatory adaptation of the basal 5-HT release.  相似文献   

18.
5-Hydroxytryptamine (5-HT) turnover and dopamine (DA) turnover values were obtained in individual conscious rats by measuring the rates of accumulation of 5-hydroxyindoleacetic acid (5-HIAA), 3,4-dihydroxyphenylacetic acid (DOPAC), and homovanillic acid (HVA) in cisternal CSF samples taken from each rat at 0, 30, and 60 min after probenecid (200 mg/kg i.p.) administration. In a separate experiment, 5-HT and DA turnover values were determined in CSF, striatum, and rest of brain of groups of rats killed 0, 30, or 60 min after probenecid. Whole brain turnover values were calculated from striatal and rest of brain values. Mean turnover values using CSF were comparable with both procedures. DA turnover values were greater when based on total (i.e., free + conjugated) DA metabolites than when based on free metabolites. After partial inhibition of monoamine synthesis with the decarboxylase inhibitor DL-alpha- monofluoromethyl -DOPA ( MFMD , 100 mg/kg p.o.) DA and 5-HT turnover values were comparably reduced in whole brain, rest of brain, and CSF but more markedly reduced in the striatum. Mean DA and 5-HT turnover values obtained using CSF were similar with probenecid doses over the range 150-250 mg/kg i.p. but were variable when repeatedly determined in the same rats after administration of 200 mg/kg probenecid. Results in general show that the CSF procedure may be used to determine concurrently both 5-HT and DA turnover (when estimated from the sum of total but not free metabolites) and that it provides a good index of whole brain turnover of these transmitters in the conscious individual rat.  相似文献   

19.
When 5-HT platelet uptake was inhibited in rats by single or repeated oral administration of 4-[2-(3-indolyl)ethyl]piperidine (LM 5008), 5-hydroxy-indole-acetic acid (5-HIAA) and 5-HT platelet concentration decreased. An oral administration of LM 5008 (10 mg/kg) to rats whose platelets were previously labeled with tritiated 5-HT provoked an increase in plasma free 5-HT and 5-HIAA. The maximum rise in 5-HT occured at 15 min while that of 5-HIAA appeared later (30 min). Concurrently urinary excretion of 5-HT was dramatically increased (about 5 times the control value) which indicates that 5-HT metabolism was not stimulated. According to the similarity between blood platelets and tryptaminergic neurons, plasma free 5-HT variations appeat to reflect changes of the neurotransmitter level into the synaptic cleft. Moreover, the excess of plasma free 5-HT induced by LM 5008 could improve 5-HT effects on vascular tone and pain.  相似文献   

20.
大鼠脑内5-羟色胺在应激性溃疡形成中的作用   总被引:9,自引:0,他引:9  
杨红  张席锦 《生理学报》1985,37(5):416-424
通过神经化学和神经药理学的方法,在大鼠观察了冷冻加束缚应激性溃疡的形成过程中,脑内5-羟色胺(5-HT)的作用。结果如下:1.在应激过程中,脑内5-HT 及其主要代谢产物5-羟吲哚乙酸(5-HIAA)的含量明显升高,特别是5-HIAA 的含量随着应激时间的延长持续上升,说明5-HT 的代谢加快。2.脑内5-HT 或5-HIAA 含量在应激45min 时与溃疡指数呈明显的负相关,而在应激180min 时则与溃疡指数呈明显的正相关。3.侧脑室注射5-HT或其前体5-羟色氨酸(5-HTP),对应激性溃疡的形成呈双重作用,小剂量时减轻而大剂量时加重溃疡的形成。4.腹腔注射5-HT 合成阻断剂对氯苯丙氨酸(pCPA)可降低大鼠脑内5-HT 和5-HIAA 含量,使应激60min 鼠的溃疡形成加重,而使应激180min 鼠的溃疡形成减轻。以上结果提示,在大鼠的冷冻加束缚应激性溃疡的形成过程中,脑内5-HT 起着一定的作用,它很可能在应激早期减轻而在应激晚期加重溃疡的形成。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号