首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
DNA adenine methyltransferase (Dam methylase) has been crosslinked with its cofactor S-adenosyl methionine (AdoMet) by UV irradiation. About 3% of the enzyme was radioactively labelled after the crosslinking reaction performed either with (methyl-3H)-AdoMet or with (carboxy-14C)-AdoMet. Radiolabelled peptides were purified after trypsinolysis by high performance liquid chromatography in two steps. They could not be sequenced due to radiolysis. Therefore we performed the same experiment using non-radioactive AdoMet and were able to identify the peptide modified by the crosslinking reaction by comparison of the separation profiles obtained from two analytical control experiments performed with 3H-AdoMet and Dam methylase without crosslink, respectively. This approach was possible due to the high reproducibility of the chromatography profiles. In these three experiments only one radioactively labelled peptide was present in the tryptic digestions of the crosslinked enzyme. Its sequence was found to be XA-GGK, corresponding to amino acids 10-14 of Dam methylase. The non-identified amino acid in the first sequence cycle should be a tryptophan, which is presumably modified by the crosslinking reaction. The importance of this region near the N-terminus for the structure and function of the enzyme was also demonstrated by proteolysis and site-directed mutagenesis experiments.  相似文献   

2.
Methylenetetrahydrofolate reductase commits tetrahydrofolate-bound one carbon units to use in the regeneration of the methyl group of adenosylmethionine (AdoMet) in eucaryotes and its activity is allosterically inhibited by AdoMet. Limited proteolysis and scanning transmission electron microscopy have been employed to show that the enzyme is a dimer of identical subunits and that each subunit is composed of spatially distinct domains with molecular masses of approximately 40 and 37 kDa (Matthews, R. G., Vanoni, M. A., Hainfeld, J. F., and Wall, J. (1984) J. Biol. Chem. 259, 11647-11650). We now report the use of the photoaffinity label 8-azido-S-adenosylmethionine (8-N3AdoMet) to locate the binding site for the allosteric inhibitor on the 37-kDa domain. In the absence of light, 8-N3AdoMet is itself an inhibitor of methylenetetrahydrofolate reductase activity, with a Ki value 4.8-fold higher than AdoMet, and like AdoMet it induces slow transitions between active and inactive forms. Photoaffinity labeling is dependent on irradiation with ultraviolet light and is prevented by AdoMet but not by ATP. Limited proteolysis of the photolabeled enzyme results in the formation of a labeled 37-kDa fragment which is further processed to a labeled 34-kDa fragment. On conversion of the 34-kDa fragment to a 31-kDa polypeptide, all label is lost, suggesting that the labeling is restricted to an approximately 3-kDa region near one end of the 37-kDa polypeptide. Limited proteolysis of the native enzyme, while completely desensitizing the enzyme to inhibition by AdoMet or 8-N3AdoMet, does not prevent subsequent photolabeling of the 37-kDa peptide fragment. This photolabeling does not occur in the presence of excess AdoMet. These latter experiments suggest that the desensitization of the enzyme eliminates the ability of allosteric effectors to stabilize an inactive form of the enzyme, but does not abolish specific binding of 8-N3AdoMet or AdoMet.  相似文献   

3.
On the basis of amino acid sequence alignments and structural data of related enzymes, we have performed a mutational analysis of 14 amino acid residues in the catalytic domain of the murine Dnmt3a DNA-(cytosine C5)-methyltransferase. The target residues are located within the ten conserved amino acid sequence motifs characteristic for cytosine-C5 methyltransferases and in the putative DNA recognition domain of the enzyme (TRD). Mutant proteins were purified and tested for their catalytic properties and their abilities to bind DNA and AdoMet. We prepared a structural model of Dnmt3a to interpret our results. We demonstrate that Phe50 (motif I) and Glu74 (motif II) are important for AdoMet binding and catalysis. D96A (motif III) showed reduced AdoMet binding but increased activity under conditions of saturation with S-adenosyl-L-methionine (AdoMet), indicating that the contact of Asp96 to AdoMet is not required for catalysis. R130A (following motif IV), R241A and R246A (in the TRD), R292A, and R297A (both located in front of motif X) showed reduced DNA binding. R130A displayed a strong reduction in catalytic activity and a complete change in flanking sequence preferences, indicating that Arg130 has an important role in the DNA interaction of Dnmt3a. R292A also displayed reduced activity and changes in the flanking sequence preferences, indicating a potential role in DNA contacts farther away from the CG target site. N167A (motif VI) and R202A (motif VIII) have normal AdoMet and DNA binding but reduced catalytic activity. While Asn167 might contribute to the positioning of residues from motif VI, according to structural data Arg202 has a role in catalysis of cytosine-C5 methyltransferases. The R295A variant was catalytically inactive most likely because of destabilization of the hinge sub-domain of the protein.  相似文献   

4.
Polyamines are present in high concentrations in archaea, yet little is known about their synthesis, except by extrapolation from bacterial and eucaryal systems. S-Adenosylmethionine (AdoMet) decarboxylase, a pyruvoyl group-containing enzyme that is required for spermidine biosynthesis, has been previously identified in eucarya and Escherichia coli. Despite spermidine concentrations in the Methanococcales that are several times higher than in E. coli, no AdoMet decarboxylase gene was recognized in the complete genome sequence of Methanococcus jannaschii. The gene encoding AdoMet decarboxylase in this archaeon is identified herein as a highly diverged homolog of the E. coli speD gene (less than 11% identity). The M. jannaschii enzyme has been expressed in E. coli and purified to homogeneity. Mass spectrometry showed that the enzyme is composed of two subunits of 61 and 63 residues that are derived from a common proenzyme; these proteins associate in an (alphabeta)(2) complex. The pyruvoyl-containing subunit is less than one-half the size of that in previously reported AdoMet decarboxylases, but the holoenzyme has enzymatic activity comparable to that of other AdoMet decarboxylases. The sequence of the M. jannaschii enzyme is a prototype of a class of AdoMet decarboxylases that includes homologs in other archaea and diverse bacteria. The broad phylogenetic distribution of this group suggests that the canonical SpeD-type decarboxylase was derived from an archaeal enzyme within the gamma proteobacterial lineage. Both SpeD-type and archaeal-type enzymes have diverged widely in sequence and size from analogous eucaryal enzymes.  相似文献   

5.
Evande R  Blom H  Boers GH  Banerjee R 《Biochemistry》2002,41(39):11832-11837
Human cystathionine beta-synthase is a heme protein that catalyzes the condensation of serine and homocysteine to form cystathionine in a pyridoxal phosphate-dependent reaction. Mutations in this enzyme are the leading cause of hereditary hyperhomocysteinemia with attendant cardiovascular and other complications. The enzyme is activated approximately 2-fold by the allosteric regulator S-adenosylmethionine (AdoMet), which is presumed to bind to the C-terminal regulatory domain. The regulatory domain exerts an inhibitory effect on the enzyme, and its deletion is correlated with a 2-fold increase in catalytic activity and loss of responsiveness to AdoMet. A mutation in the C-terminal regulatory domain, D444N, displays high levels of enzyme activity, yet is pathogenic. In this study, we have characterized the biochemical penalties associated with this mutation and demonstrate that it is associated with a 4-fold lower steady-state level of cystathionine beta-synthase in a fibroblast cell line that is homozygous for the D444N mutation. The activity of the recombinant D444N enzyme mimics the activity of the wild-type enzyme seen in the presence of AdoMet and can be further activated approximately 2-fold in the presence of supraphysiolgical concentrations of the allosteric regulator. The mutation increases the K(act) for AdoMet from 7.4 +/- 0.2 to 460 +/- 130 microM, thus rendering the enzyme functionally unresponsive to AdoMet under physiological concentrations. These results indicate that the D444N mutation partially abrogates the intrasteric inhibition imposed by the C-terminal domain. We propose a model that takes into account the three kinetically distinguishable states that are observed with human cystathionine beta-synthase: "basal" (i.e., wild-type enzyme as isolated), "activated" (wild-type enzyme + AdoMet or the D444N mutant as isolated), and superactivated (D444N mutant + AdoMet or wild-type enzyme lacking the C-terminal regulatory domain).  相似文献   

6.
7.
8.
Although the physical and kinetic properties of S-adenosylmethionine (AdoMet) synthetases from different sources are quite different, it appears that these enzymes have structurally or antigenically conserved regions as demonstrated by studies with AdoMet synthetase specific antibodies. Polyclonal anti-human lymphocyte AdoMet synthetase crossreacted with enzyme from rat liver (beta isozyme), Escherichia coli and yeast. In addition, polyclonal anti-E. coli enzyme and antibodies to synthetic peptides copying several regions of the yeast enzyme reacted with the human gamma and rat beta isozymes. Antibodies to yeast SAM1 encoded protein residues 6-21, 87-113 and 87-124 inhibited the activity of human lymphocyte AdoMet synthetase, while antibodies to residues 272-287 had no effect on the enzyme activity. Our results suggest that these conserved regions may be important in enzyme activity.  相似文献   

9.
Crystallographic studies of Escherichia coli S-adenosylmethionine synthetase (ATP:L-methionine S-adenosyltransferase, MAT) have defined a flexible polypeptide loop that can gate access to the active site without contacting the substrates. The influence of the length and sequence of this active site loop on catalytic efficiency has been characterized in a mutant in which the E. coli MAT sequence (DRADPLEQ) has been replaced with the distinct sequence of the corresponding region of the otherwise highly homologous rat liver enzyme (HDLRNEEDV). Four additional mutants in which the entire DRADPLEQ sequence was replaced by five, six, seven, or eight glycines have been studied to unveil the effects of loop length and the influence of side chains. In all of the mutants, the maximal rate of S-adenosylmethionine formation (k(cat)) is diminished by more than 200-fold whereas the rate of hydrolysis of the tripolyphosphate intermediate is decreased by less than 3-fold. Thus, the function of the loop is localized to the first step in the overall reaction. The K(m) for methionine increases in all of the oligoglycine mutants, whereas the K(m) values for ATP are not substantially different. The k(cat) for the wild-type enzyme is decreased by increases in solution microviscosity with 55% of the maximal dependence. Thus, a diffusional event is coupled to the chemical step of AdoMet formation, which is known to be rate-limiting. The results indicate that a conformational change, possibly loop closure, is associated with AdoMet synthesis. The data integrate a previously discovered conformational change associated with PPP(i) binding to the E x AdoMet complex into the reaction sequence, reflecting a difference in protein conformation in the E x AdoMet x PPP(i) complex whether it is formed from the E x ATP x methionine complex or from binding of exogenous PPP(i). The temperature dependence of the k(cat) for S-adenosylmethionine formation shows that the removal of the side chains in the glycine mutants causes the activation enthalpy of the reaction to approximately double in each case, while the activation entropy changes from negative in the wild-type enzyme to positive in the mutants. The favorable activation entropy in the mutant-catalyzed reactions may reflect release of water during catalysis, while the negative activation entropy in the reaction catalyzed by the wild-type enzyme apparently reflects reorganization of the loop. The observations point to how nature can fine-tune the activity of an enzyme by modifying substrate and product access to the active site rather than by altering the enzyme x substrate contacts or the catalytic machinery itself.  相似文献   

10.
11.
KpnI DNA-(N(6)-adenine)-methyltransferase (KpnI MTase) is a member of a restriction-modification (R-M) system in Klebsiella pneumoniae and recognizes the sequence 5'-GGTACC-3'. It modifies the recognition sequence by transferring the methyl group from S-adenosyl-l-methionine (AdoMet) to the N(6) position of adenine residue. KpnI MTase occurs as a dimer in solution as shown by gel filtration and chemical cross-linking analysis. The nonlinear dependence of methylation activity on enzyme concentration indicates that the functionally active form of the enzyme is also a dimer. Product inhibition studies with KpnI MTase showed that S-adenosyl-l-homocysteine is a competitive inhibitor with respect to AdoMet and noncompetitive inhibitor with respect to DNA. The methylated DNA showed noncompetitive inhibition with respect to both DNA and AdoMet. A reduction in the rate of methylation was observed at high concentrations of duplex DNA. The kinetic analysis where AdoMet binds first followed by DNA, supports an ordered bi bi mechanism. After methyl transfer, methylated DNA dissociates followed by S-adenosyl-l-homocysteine. Isotope-partitioning analysis showed that KpnI MTase-AdoMet complex is catalytically active.  相似文献   

12.
S Friedman  S Som    L F Yang 《Nucleic acids research》1991,19(19):5403-5408
Binding of the EcoRII DNA methyltransferase to azacytosine-containing DNA protects the enzyme from digestion by proteases. The limit digest yields a product having a Mr on SDS-PAGE 20% less than the intact protein. The N terminus of the tryptic digestion product was sequenced and found to be missing the N terminal 82 amino acids. Under the conditions used unbound enzyme was digested to small peptides. Protection of the enzyme from protease digestion implies that the enzyme undergoes major conformational changes when bound to DNA. The trypsin sensitive region of the EcoRII methyltransferase occurs prior to the first constant region shared with other procaryotic DNA(cytosine-5)methyltransferases. To determine if this region played a role in substrate binding or specificity, N-terminal deletion mutants were studied. Deletion of 97 amino acids resulted in a decrease of enzyme activity. Further deletions caused a complete loss of activity. Enzyme deleted through amino acid 85 was purified and found to have the same specificity as wild type however there was an increase in Km for both S-adenosylmethionine (AdoMet) and DNA of 27 and 18 fold respectively. The N-terminus of the EcoRII methylase, although a variable region present in many procaryotic DNA(cytosine-5)methylases, plays no role in determining enzyme specificity, although it does contribute to the interaction with both AdoMet and DNA.  相似文献   

13.
The properties of the interaction of 5-fluorocytosine-containing DNA with the EcoRII methyltransferase were studied. The DNA used was either a polymer synthesized in vitro, or a 20-mer containing one CCA/TGG sequence. The DNA could be methylated by the enzyme. In the process the enzyme formed a tight binding adduct with the DNA that could be identified by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Enzyme activity was inhibited by this interaction. The 20-mer could be used to titrate the active site of the enzyme. The DNA polymer formed a tight binding complex that could be identified following digestion of the DNA with pancreatic deoxyribonuclease or micrococcal nuclease. A peptide-DNA adduct could be isolated after digestion of the EcoRII-DNA adduct with staphylococcal protease V8 by high pressure liquid chromatography and polyacrylamide gel electrophoresis. Sequencing of the peptide indicated the DNA bound to a region of the protein that is conserved in all procaryotic DNA(cytosine-5)-methyltransferases. We have previously shown that this region contains a cysteine that can be photomethylated with adenosylmethionine. This region, in addition to forming part of, or being adjacent to, the AdoMet binding site, also forms part of the DNA binding site.  相似文献   

14.
Eighteen subclasses of S-adenosyl-l-methionine (AdoMet) radical proteins have been aligned in the first bioinformatics study of the AdoMet radical superfamily to utilize crystallographic information. The recently resolved X-ray structure of biotin synthase (BioB) was used to guide the multiple sequence alignment, and the recently resolved X-ray structure of coproporphyrinogen III oxidase (HemN) was used as the control. Despite the low 9% sequence identity between BioB and HemN, the multiple sequence alignment correctly predicted all but one of the core helices in HemN, and correctly predicted the residues in the enzyme active site. This alignment further suggests that the AdoMet radical proteins may have evolved from half-barrel structures (alphabeta)4 to three-quarter-barrel structures (alphabeta)6 to full-barrel structures (alphabeta)8. It predicts that anaerobic ribonucleotide reductase (RNR) activase, an ancient enzyme that, it has been suggested, serves as a link between the RNA and DNA worlds, will have a half-barrel structure, whereas the three-quarter barrel, exemplified by HemN, will be the most common architecture for AdoMet radical enzymes, and fewer members of the superfamily will join BioB in using a complete (alphabeta)8 TIM-barrel fold to perform radical chemistry. These differences in barrel architecture also explain how AdoMet radical enzymes can act on substrates that range in size from 10 atoms to 608 residue proteins.  相似文献   

15.
Restriction endonucleases serve as a very good model for studying specific protein–DNA interaction. MmeI is a very interesting restriction endonuclease, but although it is useful in Serial Analysis of Gene Expression, still very little is known about the mechanism of its interaction with DNA. MmeI is a unique enzyme as besides cleaving DNA it also methylates specific sequence. For endonucleolytic activity MmeI requires Mg(II) and S-adenosyl-l-methionine (AdoMet). AdoMet is a methyl donor in the methylation reaction, but its requirement for DNA cleavage remains unclear. In the present article we investigated MmeI interaction with DNA with the use of numerous methods. Our electrophoretic mobility shift assay revealed formation of two types of specific protein–DNA complexes. We speculate that faster migrating complex consists of one protein molecule and one DNA fragment whereas, slower migrating complex, which appears in the presence of AdoMet, may be a dimer or multimer form of MmeI interacting with specific DNA. Additionally, using spectrophotometric measurements we showed that in the presence of AdoMet, MmeI protein undergoes conformational changes. We think that such change in the enzyme structure, upon addition of AdoMet, may enhance its specific binding to DNA. In the absence of AdoMet MmeI binds DNA to the much lower extent.  相似文献   

16.
Threonine synthase (TS) is a fold-type II pyridoxal phosphate (PLP)-dependent enzyme that catalyzes the ultimate step of threonine synthesis in plants and microorganisms. Unlike the enzyme from microorganisms, plant TS is activated by S-adenosylmethionine (AdoMet). The mechanism of activation has remained unknown up to now. We report here the crystallographic structures of Arabidopsis thaliana TS in complex with PLP (aTS) and with PLP and AdoMet (aTS-AdoMet), which show with atomic detail how AdoMet activates TS. The aTS structure reveals a PLP orientation never previously observed for a type II PLP-dependent enzyme and explains the low activity of plant TS in the absence of its allosteric activator. The aTS-AdoMet structure shows that activation of the enzyme upon AdoMet binding triggers a large reorganization of active site loops in one monomer of the structural dimer and allows the displacement of PLP to its active conformation. Comparison with other TS structures shows that activation of the second monomer may be triggered by substrate binding. This structure also discloses a novel fold for two AdoMet binding sites located at the dimer interface, each site containing two AdoMet effectors bound in tandem. Moreover, aTS-AdoMet is the first structure of an enzyme that uses AdoMet as an allosteric effector.  相似文献   

17.
18.
S-Adenosylmethionine (AdoMet) is the most widely used alkyl group donor in biological systems. The formation of AdoMet from ATP and L-methionine is catalyzed by S-adenosylmethionine synthetase (AdoMet synthetase). Elucidation of the conformations of enzyme-bound substrates, product, and inhibitors is important for the understanding of the catalytic mechanism of the enzyme and the design of new inhibitors. To obtain structural data for enzyme-bound substrates and product, we have used two-dimensional transferred nuclear Overhauser effect spectroscopy to determine the conformation of enzyme-bound AdoMet and 5'-adenylyl imidodiphosphate (AMPPNP). AMPPNP, an analogue of ATP, is resistant to the ATP hydrolysis activity of AdoMet synthetase because of the presence of a nonhydrolyzable NH-link between the beta- and gamma-phosphates but is a substrate for AdoMet formation during which tripolyphosphate is produced. AdoMet and AMPPNP both bind in an anti conformation about the glycosidic bond. The ribose rings are in C3'-exo and C4'-exo conformations in AdoMet and AMPPNP, respectively. The differences in ribose ring conformations presumably reflect the different steric requirements of the C5' substituents in AMPPNP and AdoMet. The NMR-determined conformations of AdoMet and AMPPNP were docked into the E. coli AdoMet synthetase active site taken from the enzyme.ADP. Pi crystal structure. Since there are no nonexchangeable protons either in the carboxy-terminal end of the methionine segment of AdoMet or in the tripolyphosphate segment of AMPPNP, these portions of the molecules were modeled into the enzyme active site. The interactions of AdoMet and AMPPNP with the enzyme predict the location of the methionine binding site and suggest how the positive charge formed on the sulfur during AdoMet synthesis is stabilized.  相似文献   

19.
硫腺苷甲硫氨酸作为甲基供体在转甲基反应中起到重要作用.为了解硫腺苷甲硫氨酸在盐地碱蓬(Suaedasalsa (L.)Pall)耐盐中的作用,我们对可能编码硫腺苷甲硫氨酸合成酶的基因(SsSAMS2)进行了分析.该基因在经400 mmol/L NaCl处理的盐地碱蓬地上部分的λ-Zap cDNA文库中克隆到,其插入片段全长1 531 bp,包含一个395个氨基酸的开放阅读框架,该基因推断的分子量约为43 kD.SsSAMS2与长春花(Catharanthus roseus)的SAMS2在氨基酸水平上的一致性为93%.Southern杂交显示,SsSAMS2在盐地碱蓬基因组中可能是两个拷贝.Northern分析显示硫腺苷甲硫氨酸合成酶基因受NaCl等胁迫的正调控.酶活性检测表明,NaCl胁迫条件下该酶活性增强.  相似文献   

20.
We have purified S-adenosylmethionine (AdoMet) synthetase about 3000-fold from bovine brain extract. The Km values of the enzyme for L-methionine and ATP were 10 and 50 microM, respectively. An apparent molecular mass of the enzyme was estimated to be 160 kDa by gel filtration on a Sephacryl S-200 column. Sucrose density gradient centrifugation gave a sedimentation coefficient of 8 S. Polyacrylamide gel electrophoresis of the purified enzyme in native system revealed a single protein band, whereas two polypeptide bands with molecular masses of 48 kDa (p48) and 38 kDa (p38) were observed in sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the purified enzyme. Antibody against bovine brain AdoMet synthetase was prepared by injecting the purified enzyme into a rabbit. Immunoblot analysis revealed that the antibody recognized both p48 and p38 in the impure enzyme preparations from bovine brain as well as in the purified enzyme. Specific antibodies against p48 and p38 were separated from the immunoglobulin fraction by an affinity purification, both of which inhibited the enzyme activity. These results indicate that AdoMet synthetase from bovine brain consists of two different polypeptides, p48 and p38.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号