首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Synaptic proteins synucleins are found in pathologic aggregates in human brain during neurodegenerative diseases and in some tumors. Normal functions of these proteins in synapses are still unclear. In the present study, we used cDNA cloning to determine amino acid sequences of synucleins in the central nervous system of river lamprey (Lampetra fluviatilis), which is used as a model organism to study molecular mechanisms of synaptic transmission. Three genes are identified. High similarity in amino acid sequences as compared to other vertebrate species is revealed. The bioinformatic analysis predicts that the river lamprey synucleins relate to the group of gamma-synucleins. High homology with human alpha-synuclein is reported. The hydrophobic region required for the formation of alpha-synuclein amyloid fibers is also present in the river lamprey synucleins. The latter suggests that this region appeared at early stages of evolution. The obtained amino acid sequences of synucleins in the river lamprey brain will allow generating novel molecular tools for dissecting physiological functions of these proteins.  相似文献   

2.
3.
Synucleins comprise a family of small intracellular proteins that have recently attracted considerable attention because of their involvement in human diseases. Mutations of alpha-synuclein has been found in several families with hereditary early-onset Parkinson's disease and accumulation of this protein in characteristic cytoplasmic inclusions is a pathohistological hallmark of several neurodegenerative diseases that have been recently classified as 'alpha;-synucleinopathies' (reviewed in Brain Res. Bull. 50 (1999) 465; J. Neurosci. Res. 58 (1999) 120; Philos. Trans. R. Soc. Lond. Biol. Sci. 354 (1999) 1101; Brain Pathol. 9 (1999) 733). Aggregates of beta-synuclein and persyn (gamma-synuclein) also have been found in dystrophic neurites associated with Parkinson's and other neurodegenerative diseases (Proc. Natl. Acad. Sci. USA 96 (1999) 13450; and our unpublished observations). Moreover, persyn has been implicated in malignization of breast tumours (Cancer Res. 57 (1997) 759; Cancer Res. 59 (1999) 742; Hum. Mol. Genet. 7 (1998) 1417). All synucleins have distinct, although overlapping, patterns of expression in the embryonic, postnatal and adult mammalian nervous systems, suggesting important, although still not clear, biological functions in neuronal developing. Chicken embryo is a unique object for developmental studies that allows in vivo manipulations not always possible for mammalian embryos. Studies of synucleins expression in this model system could shed light on their functions in the developing nervous system. We cloned three chicken synucleins from the embryonic neural cDNA libraries and studied their expression in normal chicken embryonic tissues by Northern and in situ hybridization with specific probes. Our results demonstrate that primary structures and expression patterns of synucleins are similar in birds and mammals, suggesting that conserved function of synucleins is important for embryonic development of vertebrates.  相似文献   

4.
G protein-coupled receptor kinases (GRKs) specifically recognize and phosphorylate the agonist-occupied form of numerous G protein-coupled receptors (GPCRs), ultimately resulting in desensitization of receptor signaling. Until recently, GPCRs were considered to be the only natural substrates for GRKs. However, the recent discovery that GRKs also phosphorylate tubulin raised the possibility that additional GRK substrates exist and that the cellular role of GRKs may be much broader than just GPCR regulation. Here we report that synucleins are a novel class of GRK substrates. Synucleins (alpha, beta, gamma, and synoretin) are 14-kDa proteins that are highly expressed in brain but also found in numerous other tissues. alpha-Synuclein has been linked to the development of Alzheimer's and Parkinson's diseases. We found that all synucleins are GRK substrates, with GRK2 preferentially phosphorylating the alpha and beta isoforms, whereas GRK5 prefers alpha-synuclein as a substrate. GRK-mediated phosphorylation of synuclein is activated by factors that stimulate receptor phosphorylation, such as lipids (all GRKs) and Gbetagamma subunits (GRK2/3), suggesting that GPCR activation may regulate synuclein phosphorylation. GRKs phosphorylate synucleins at a single serine residue within the C-terminal domain. Although the function of synucleins remains largely unknown, recent studies have demonstrated that these proteins can interact with phospholipids and are potent inhibitors of phospholipase D2 (PLD2) in vitro. PLD2 regulates the breakdown of phosphatidylcholine and has been implicated in vesicular trafficking. We found that GRK-mediated phosphorylation inhibits synuclein's interaction with both phospholipids and PLD2. These findings suggest that GPCRs may be able to indirectly stimulate PLD2 activity via their ability to regulate GRK-promoted phosphorylation of synuclein.  相似文献   

5.
Synucleins are a family of small intracellular proteins expressed mainly in the nervous system. The involvement of synucleins in neurodegeneration and malignancy has been demonstrated, but the physiological functions of these proteins remain elusive. Further studies including generation of animals with modified persyn expression are necessary to clarify the functions of these proteins and the mechanisms of their involvement in human diseases. We cloned and determined the organization and chromosomal localization of the mouse gene coding for persyn, a member of the synuclein family. The gene is composed of five exons, and its general structure is very similar to that of the human persyn gene. Using fluorescence in situ hybridization, we assigned the persyn gene to the boundary of bands B and C on mouse chromosome 14. We found a fragment of the gene that directs expression of the persyn protein in sensory neurons and could be used for generation of transgenic animals.  相似文献   

6.
The synucleins are a family of proteins involved in numerous neurodegenerative pathologies [α-synuclein and β-synuclein (βS)], as well as in various types of cancers [γ-synuclein (γS)]. While the connection between α-synuclein and Parkinson's disease is well established, recent evidence links point mutants of βS to dementia with Lewy bodies. Overexpression of γS has been associated with enhanced metastasis and cancer drug resistance. Despite their prevalence in such a variety of diseases, the native functions of the synucleins remain unclear. They have a lipid-binding motif in their N-terminal region, which suggests interactions with biological membranes in vivo. In this study, we used fluorescence correlation spectroscopy to monitor the binding properties of βS and γS to model membranes and to determine the free energy of the interactions. Our results show that the interactions are most strongly affected by the presence of both anionic lipids and bilayer curvature, while membrane fluidity plays a very minor role. Quantifying the lipid-binding properties of βS and γS provides additional insights into the underlying factors governing the protein-membrane interactions. Such insights not only are relevant to the native functions of these proteins but also highlight their contributions to pathological conditions that are either mediated or characterized by perturbations of these interactions.  相似文献   

7.
In humans, three genes encode the related alpha-, beta-, and gamma-synucleins, which function as lipid-binding proteins in vitro. They are being widely studied, mainly because of the central involvement of alpha-synuclein in a number of neurodegenerative diseases, including Parkinson's disease, dementia with Lewy bodies, and multiple system atrophy. In these diseases, the normally soluble alpha-synuclein assembles into abnormal filaments. Here, we have identified and characterized the synuclein gene family from the pufferfish Fugu rubripes. It consists of four genes, which encode alpha-, beta-, gamma1-, and gamma2-synucleins. They range from 113 to 127 amino acids in length and share many of the characteristics of human synucleins, including the presence of imperfect amino-terminal repeats of 11 amino acids, a hydrophobic middle region, and a negatively charged carboxy-terminus. All four synucleins are expressed in the Fugu brain. Recombinant Fugu synucleins exhibited differential liposome binding, which was strongest for alpha-synuclein, followed by beta-, gamma2-, and gamma1-synucleins. In assembly experiments, Fugu alpha-, gamma1-, and gamma2-synucleins formed filaments more readily than human alpha-synuclein. Fugu beta-synuclein, by contrast, failed to assemble in bulk. Filament assembly of synucleins was directly proportional to their degree of hydrophobicity and their tendency to form beta-sheet structure, and correlated inversely with their net charge.  相似文献   

8.
Chaperone-like activity of synucleins   总被引:15,自引:0,他引:15  
Synucleins are a family of small proteins that are predominantly expressed in neurons. The functions of the synucleins are not entirely understood, but they have been implicated in the pathogenesis of several neurodegenerative diseases. Our data show that alpha-, beta- or gamma-synuclein suppresses the aggregation of thermally denatured alcohol dehydrogenase and chemically denatured insulin. The A53T but not the A30P mutant alpha-synuclein was able to inhibit the aggregation of insulin and the chaperone-like activity of alpha-synuclein was lost upon removal of its C-terminal residues 98-140. These results demonstrate that synucleins with the exception of the A30P mutant possess chaperone-like activity.  相似文献   

9.
Alpha-synuclein is a presynaptic protein of vertebrates that belongs to the family of synucleins. Normal functions of synucleins remain unknown. Alpha-synuclein is one of the causative factors of the familial and idiopathic forms of Parkinson’s disease (PD). The progressive loss of dopaminergic (DA) neurons is characteristic of PD and the most severe damage occurs in the substantia nigra (SN). This leads to an erraticism of the synthesis and synaptic secretion of the neurotransmitters, subsequently resulting in the loss of the connections between brain areas. This work shows that alpha-synuclein is directly involved in the formation of the mature DA neurons of the midbrain at different stages of the ontogenesis and these findings are consistent with data obtained in other studies. Thus, alpha-synuclein may have a varying modulating effect on the growth dynamics and the fate of populations of DA neurons.  相似文献   

10.
Synucleins constitute a group of unique, evolutionarily conserved proteins that are expressed predominantly in neurons of the central and peripheral nervous system. Although the normal cellular functions of synucleins are not clear, these proteins have been implicated in various neurodegenerative conditions in humans. We found that persyn, a recently characterized member of the synuclein family, is expressed not only in the nervous system but also in the stratum granulosum of the epidermis of neonatal and adult mice. This finding together with our recent observations that persyn influences neurofilament network integrity in sensory neurons raises the possibility that persyn in skin could be involved in modulation of the keratin network.  相似文献   

11.
A long-term cell culture system was used to study maturation, aging, and death of cortical neurons. Mouse cortical neurons were maintained in culture in serum-free medium (Neurobasal supplemented with B27) for 60 days in vitro (DIV). The levels of several proteins were evaluated by immunoblotting to demonstrate that these neurons matured by developing dendrites and synapses and remained continuously healthy for 60 DIV. During their maturation, cortical neurons showed increased or stable protein expression of glycolytic enzyme, synaptophysin, synapsin IIa, alpha and beta synucleins, and glutamate receptors. Synaptogenesis was prominent during the first 15 days and then synaptic markers remained stable through DIV60. Very early during dendritic development at DIV3, beta-synuclein (but not alpha-synuclein) was localized at the base of dendritic growth cones identified by MAP2 and alpha-amino-3-hydroxy-5-methyl-4-isoxazole (AMPA) receptor GluR1. In mature neurons, alpha and beta synucleins colocalized in presynaptic axon terminals. Expression of N-methyl-D-aspartate (NMDA) and AMPA receptors preceded the formation of synapses. Glutamate receptors continued to be expressed strongly through DIV60. Cortical neurons aging in vitro displayed a complex profile of protein damage as identified by protein nitration. During cortical neuron aging, some proteins showed increased nitration, while other proteins showed decreased nitration. After exposure to DNA damaging agent, young (DIV5) and old (DIV60) cortical neurons activated apoptosis mechanisms, including caspase-3 cleavage and poly(ADP)-ribose polymerase inactivation. We show that cultured mouse cortical neurons can be maintained for long term. Cortical neurons display compartmental changes in the localization of synucleins during maturation in vitro. These neurons sustain protein nitration during aging and exhibit age-related variations in the biochemistry of neuronal apoptosis.  相似文献   

12.
Detergent-stable multimers of alpha-synuclein have been found specifically in the brains of patients with Parkinson's disease and other neurodegenerative diseases. Here we show that recombinant alpha-synuclein forms multimers in vitro upon exposure to vesicles containing certain polyunsaturated fatty acid (PUFA) acyl groups, including arachidonoyl and docosahexaenoyl. This process occurs at physiological concentrations and much faster than in aqueous solution. PUFA-induced aggregation involves physical association with the vesicle surface via the large apolipoprotein-like lipid-binding domain that constitutes the majority of the protein. beta- and gamma-synucleins, as well as the Parkinson's disease-associated alpha-synuclein variants A30P and A53T, show similar tendencies to multimerize in the presence of PUFAs. Multimerization does not require the presence of any tyrosine residues in the sequence. The membrane-based interaction of the synucleins with specific long chain polyunsaturated phospholipids may be relevant to the protein family's physiological functions and may also contribute to the aggregation of alpha-synuclein observed in neurodegenerative disease.  相似文献   

13.
Synaptic re-uptake of dopamine is dependent on the dopamine transporter (DAT), which is regulated by its distribution to the cell surface. DAT trafficking is modulated by the Parkinson''s disease-linked protein alpha-synuclein, but the contribution of synuclein family members beta-synuclein and gamma-synuclein to DAT trafficking is not known. Here we use SH-SY5Y cells as a model of DAT trafficking to demonstrate that all three synucleins negatively regulate cell surface distribution of DAT. Under these conditions the synucleins limit export of DAT from the endoplasmic reticulum (ER) by impairment of the ER-Golgi transition, leading to accumulation of DAT in this compartment. This mechanism for regulating DAT export indirectly through effects on ER and Golgi function represents a previously unappreciated role for the extended synuclein family that is likely applicable to trafficking of the many proteins that rely on the secretory pathway.  相似文献   

14.
A long‐term cell culture system was used to study maturation, aging, and death of cortical neurons. Mouse cortical neurons were maintained in culture in serum‐free medium (Neurobasal supplemented with B27) for 60 days in vitro (DIV). The levels of several proteins were evaluated by immunoblotting to demonstrate that these neurons matured by developing dendrites and synapses and remained continuously healthy for 60 DIV. During their maturation, cortical neurons showed increased or stable protein expression of glycolytic enzyme, synaptophysin, synapsin IIa, α and β synucleins, and glutamate receptors. Synaptogenesis was prominent during the first 15 days and then synaptic markers remained stable through DIV60. Very early during dendritic development at DIV3, β‐synuclein (but not α‐synuclein) was localized at the base of dendritic growth cones identified by MAP2 and α‐amino‐3‐hydroxy‐5‐methyl‐4‐isoxazole (AMPA) receptor GluR1. In mature neurons, α and β synucleins colocalized in presynaptic axon terminals. Expression of N‐methyl‐D ‐aspartate (NMDA) and AMPA receptors preceded the formation of synapses. Glutamate receptors continued to be expressed strongly through DIV60. Cortical neurons aging in vitro displayed a complex profile of protein damage as identified by protein nitration. During cortical neuron aging, some proteins showed increased nitration, while other proteins showed decreased nitration. After exposure to DNA damaging agent, young (DIV5) and old (DIV60) cortical neurons activated apoptosis mechanisms, including caspase‐3 cleavage and poly(ADP)‐ribose polymerase inactivation. We show that cultured mouse cortical neurons can be maintained for long term. Cortical neurons display compartmental changes in the localization of synucleins during maturation in vitro. These neurons sustain protein nitration during aging and exhibit age‐related variations in the biochemistry of neuronal apoptosis. © 2002 Wiley Periodicals, Inc. J Neurobiol 51: 9–23, 2002  相似文献   

15.
16.
17.
Presenilin-1 null mutation (PS1 -/-) in mice is associated with morphological alterations and defects in cleavage of transmembrane proteins. Here, we demonstrate that PS1 deficiency also leads to the formation of degradative vacuoles and to the aberrant translocation of presynaptic alpha- and beta-synuclein proteins to these organelles in the perikarya of primary neurons, concomitant with significant increases in the levels of both synucleins. Stimulation of autophagy in control neurons produced a similar mislocalization of synucleins as genetic ablation of PS1. These effects were not the result of the loss of PS1 gamma-secretase activity; however, dysregulation of calcium channels in PS1 -/- cells may be involved. Finally, colocalization of alpha-synuclein and degradative organelles was observed in brains from patients with the Lewy body variant of AD. Thus, aberrant accumulation of alpha- and beta-synuclein in degradative organelles are novel features of PS1 -/- neurons, and similar events may promote the formation of alpha-synuclein inclusions associated with neurodegenerative diseases.  相似文献   

18.
The protein alpha-synuclein is considered to play a major role in the etiology of Parkinson's disease. Because it is found in a classic amyloid fibril form within the characteristic intra-neuronal Lewy body deposits of the disease, aggregation of the protein is thought to be of critical importance, but the context in which the protein undergoes aggregation within cells remains unknown. The normal function of synucleins is poorly understood, but appears to involve membrane interactions, and in particular reversible binding to synaptic vesicle membranes. Structural studies of different states of alpha-synuclein, in the absence and presence of membranes or membrane mimetics, have led to models of how membrane-bound forms of the protein may contribute both to functional properties of the protein, as well as to membrane-induced self-assembly and aggregation. This article reviews this area, with a focus on a particular model that has emerged in the past few years. This article is part of a Special Issue entitled: Protein Folding in Membranes.  相似文献   

19.
Pioneer longitudinal axons grow long distances parallel to the floor plate and precisely maintain their positions using guidance molecules released from the floor plate. Two receptors, Robo1 and Robo2, are critical for longitudinal axon guidance by the Slit family of chemorepellents. Previous studies showed that Robo1−/−;2−/− double mutant mouse embryos have disruptions in both ventral and dorsal longitudinal tracts. However, the role of each Robo isoform remained unclear, because Robo1 or 2 single mutants have mild or no errors. Here we utilized a more sensitive genetic strategy to reduce Robo levels for determining any separate functions of the Robo1 and 2 isoforms. We found that Robo1 is the predominant receptor for guiding axons in ventral tracts and prevents midline crossing. In contrast, Robo2 is the main receptor for directing axons within dorsal tracts. Robo2 also has a distinct function in repelling neuron cell bodies from the floor plate. Therefore, while Robo1 and 2 have some genetic overlap to cooperate in guiding longitudinal axons, each isoform has distinct functions in specific longitudinal axon populations.  相似文献   

20.
Synucleins and apolipoproteins have been implicated in a number of membrane and lipid trafficking events. Lipid interaction for both types of proteins is mediated by 11 amino acid repeats that form amphipathic helices. This similarity suggests that synucleins and apolipoproteins might have comparable effects on lipid membranes, but this has not been shown directly. Here, we find that α-synuclein, β-synuclein, and apolipoprotein A-1 have the conserved functional ability to induce membrane curvature and to convert large vesicles into highly curved membrane tubules and vesicles. The resulting structures are morphologically similar to those generated by amphiphysin, a curvature-inducing protein involved in endocytosis. Unlike amphiphysin, however, synucleins and apolipoproteins do not require any scaffolding domains and curvature induction is mediated by the membrane insertion and wedging of amphipathic helices alone. Moreover, we frequently observed that α-synuclein caused membrane structures that had the appearance of nascent budding vesicles. The ability to function as a minimal machinery for vesicle budding agrees well with recent findings that α-synuclein plays a role in vesicle trafficking and enhances endocytosis. Induction of membrane curvature must be under strict regulation in vivo; however, as we find it can also cause disruption of membrane integrity. Because the degree of membrane curvature induction depends on the concerted action of multiple proteins, controlling the local protein density of tubulating proteins may be important. How cellular safeguarding mechanisms prevent such potentially toxic events and whether they go awry in disease remains to be determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号