首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The possible effect of cholera toxin (CTX) on hormonal inhibition of adenylyl cyclase in somatostatin (SST)-sensitive GH3 cells was quantitatively evaluated. The toxin treatment employed led to an essentially complete ADP ribosylation of all alpha s subunits of the stimulatory regulatory component (Gs) of the system and to ca. 5- to 7-fold increases in the activity measured, yet it failed to affect the inhibitory action of SST regardless of whether analyzed in terms of degree of inhibition (ca. 60%) that is attainable or in terms of the apparent Kact with which the inhibitory hormone elicits its action. In absolute terms the activity inhibited after CTX was ca. 6 times larger than that inhibited under control conditions, indicating that SST is equally effective in regulating control and CTX-stimulated adenylyl cyclase system and that interpretations are independent of possible intramembraneous compartmentalizations of adenylyl cyclase and its various regulatory components. Since CTX-mediated ADP ribosylation of the alpha-subunits of Gs has been demonstrated to result in an at least 10-fold decrease in the potency (i.e. EC50) with which the beta gamma-complexes of G proteins act to stabilize preactivated purified alpha-subunits of Gs and in an approximately 300-fold decrease in the potency with which exogenously added beta gamma-complexes act to prevent activation of Gs in intact membranes, the present data indicate that beta gamma-complexes cannot be mediating the inhibitory effects of hormones by interfering with activation of the Gs of adenylyl cyclase.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
The putative guanine nucleotide binding (G)-protein involved in transduction of signals from the TCR/CD3 complex has not been identified. We have used a UV-photoaffinity labeling technique to covalently attach [alpha-32P]GTP to human lymphocyte and thymocyte membrane proteins. Ten bands specifically labeled with [32P]GTP were detected by SDS-PAGE and autoradiography in T lymphocyte membranes. Among these, a 40-kDa protein was identified by immunoblotting as the alpha-subunit of the adenylate cyclase-inhibiting G-protein, Gi, and two proteins of 44 and 46 kDa were identified as the alpha-subunits of adenylate cyclase stimulating G-protein (Gs). These proteins also served as substrates for ADP-ribosylation by pertussis toxin and cholera toxin, respectively. Comparison of GTP-labeled membrane proteins from immature and more mature thymocytes and blood T lymphocytes, revealed that bands of 26, 30, 34, 40, 44 and 46 kDa were absent or weakly labeled in immature thymocytes, intermediate in mature thymocytes, and strongest in blood T cells. Similar increases were seen in ADP ribosylation of the substrates for pertussis, cholera, and botulinum C3 toxin. However, corresponding quantitative changes in Gi and Gs were not detected by immunoblotting, which suggests that the increased labeling is caused by enhanced affinity of the proteins for GTP rather than by increased amount of protein during thymic maturation. A concomitant maturation of GTP-induced cAMP production was seen in the cell populations, but no such change occurred in direct activation of adenylate cyclase by forskolin. The changes in some (but not all) GTP-binding proteins during acquisition of immunocompetence indicates their importance in T lymphocyte physiology.  相似文献   

3.
1. An ADP-ribosyltransferase activity which appears to be capable of activating adenylyl cyclase was identified in a plasma membrane fraction from rabbit corpora lutea and partially characterized by comparing the properties of the luteal transferase with those of cholera toxin. 2. Incubation of luteal membranes in the presence of GTP and varying concentrations of NAD resulted in concentration-dependent increases in adenylyl cyclase activity. 3. Stimulation of adenylyl cyclase by NAD and cholera toxin plus NAD was observed in the presence of GTP but not in the presence of guanosine-5'-O-(2-thiodiphosphate) or guanyl-5'-yl imidodiphosphate. 4. NAD or cholera toxin plus NAD reduced the Kact values for luteinizing hormone to activate adenylyl cyclase 3- to 3.5-fold. 5. NAD or cholera toxin plus NAD increased the extent to which cholate extracts from luteal membranes were able to reconstitute adenylyl cyclase activity in S49 cyc- mouse lymphoma membranes. 6. It was necessary to add ADP-ribose and arginine to the incubation mixture in order to demonstrate cholera toxin-specific ADP-ribosylation of a protein corresponding to the alpha subunit of the stimulatory guanine nucleotide-binding regulatory component (alpha Gs). 7. Treatment of luteal membranes with NAD prior to incubation in the presence of [32P]NAD plus cholera toxin resulted in reduced labeling of alpha Gs. 8. Endogenous ADP-ribosylation of alpha Gs was enhanced by Mg but was not altered by guanine nucleotide, NaF or luteinizing hormone and was inhibited by cAMP. 9. Incubation of luteal membranes in the presence of [32P]ADP-ribose in the absence and presence of cholera toxin did not result in the labeling of any membrane proteins.  相似文献   

4.
Cyclic AMP accumulation in response to forskolin, cholera toxin, or isoproterenol is dramatically increased in HIT T-15 cells, a clonal cell line of Syrian hamster pancreatic islet beta cells, as a function of passage number. Forskolin and cholera toxin elevate cyclic AMP levels 5- to 10-fold higher in later passages (87-100) than in earlier passages (70-80). A similar phenomenon is observed with isoproterenol (10 microM) which increases cyclic AMP levels 56-fold in older HIT cells (passage 94), whereas only marginally stimulating cyclic AMP production in younger cells (passage 70-82). To determine whether a change in the stimulatory or inhibitory guanine nucleotide regulatory proteins, Gs or Gi, was responsible for these observations, ADP-ribosylation of HIT cell membranes with cholera toxin and pertussis toxin was examined. All passages contained two cholera toxin substrates at 52 and 45 kDa. The amount of 52 kDa did not appear to change with passage number, but the amount of 45 kDa increased in the later passages (89 and 94). The ratio of 45 to 52 kDa cholera toxin substrate, as determined by densitometric analysis, increased from 0.1 in passages 70, 75, and 82 to 0.45 at passage 89. No passage related changes in a 40-kDa pertussis toxin substrate were observed. An increase in the amount of the 45-kDa alpha-subunit of Gs was confirmed on immunoblots using antisera specific for the alpha-subunits of Gs. The amount of functional Gs present in various HIT cell passages was examined by determining the extent to which extracts from HIT cell membranes reconstituted guanine nucleotide-sensitive adenylyl cyclase in S49 cyc- membranes. Extracts derived from passage 94 reconstituted three to four times more adenylyl cyclase activity in cyc- membranes than extracts from passages 70, 75, and 82. These data indicate that an increase in functional Gs in later passages may be the underlying cause for the increased responsiveness to isoproterenol and forskolin in later passages. These data also suggest that functional differences exist between the Gs alpha-subunits, with the smaller 45-kDa subunit being more efficacious in coupling to cyclic AMP synthesis than the larger 52-kDa subunit. This is a departure from the commonly held view that the two subunits have similar efficacies in stimulating adenylyl cyclase.  相似文献   

5.
We have introduced two types of mutations into cDNAs that encode the alpha subunit of Gs, the guanine nucleotide-binding regulatory protein that stimulates adenylyl cyclase. The arginine residue (Arg187) that is the presumed site of ADP-ribosylation of Gs alpha by cholera toxin has been changed to Ala, Glu, or Lys. The rate constant for hydrolysis of GTP by all of these mutants is reduced approximately 100-fold compared with the wild-type protein. As predicted from this change, these proteins activate adenylyl cyclase constitutively in the presence of GTP. Despite these substitutions, cholera toxin still catalyzes the incorporation of 0.2-0.3 mol of ADP-ribose/mol of mutant alpha subunit. The sequence near the carboxyl terminus of Gs alpha was altered to resemble those in Gi alpha polypeptides, which are substrates for pertussis toxin. Despite this change, the mutant protein is a poor substrate for pertussis toxin. Although this protein has unaltered rates of GDP dissociation and GTP hydrolysis, its ability to activate adenylyl cyclase in the presence of GTP is enhanced by 3-fold when compared with the wild-type protein but only when these assays are performed after reconstitution of Gs alpha into cyc- (Gs alpha-deficient) S49 cell membranes.  相似文献   

6.
Phytomonas sp. membranes have an adenylyl cyclase activity which is greater in the presence of Mn2+ than with Mg2+. The Mg2+ and Mn2+ activity ratio varies from one membrane preparation to another, suggesting that the adenylyl cyclase has a variable activation state. A[35S]GTP-gamma-S-binding activity with a Kd of 171 nM was detected in Phytomonas membranes. Incubation of these membranes with activated cholera or pertussis toxin and [adenylate 23P]NAD+ led to incorporation of radioactivity into bands of about 40-44 kDa. Crude membranes were electrophoresed on SDS-polyacrylamide gels and analyzed, by Western blotting, with the 9188 anti-alpha[s] antibody and the AS/7 antibody (anti-alpha[i], anti-alpha[i1], and anti-alpha[i2]. These procedures resulted in the identification of polypeptides of approximately 40-44 kDa. Phytomonas adenylyl cyclase could be activated by treatment of membrane preparations with cholera toxin, in the presence of NAD+, while similar treatment with pertussis toxin did not affect this enzyme activity. These studies indicate that in Phytomonas, adenylyl cyclase activity is coupled to an unknown receptor entity through G alpha[s] proteins.  相似文献   

7.
Prolonged treatment of human platelets with the prostacyclin analog iloprost led to desensitization of the response to various prostaglandin derivatives. However, basal adenylyl cyclase activity and stimulation by agents acting directly via Gs, the stimulatory guanine-nucleotide-binding regulatory protein of adenylyl cyclase, were likewise decreased. Reconstitution of desensitized membranes with purified Gs from turkey erythrocytes indicated no alteration in the catalyst itself. However, the function of Gs (in cholate extracts) appeared to be severely impaired when reconstituted with adenylyl cyclase catalyst. Modification of Gs was also indicated by its altered sedimentation in sucrose density gradients. From Western blots, the alpha subunit of Gs, alpha s, from control platelets sedimented as a 5.6S species, while that from desensitized cells appeared at higher S values (in a polydisperse distribution). Activation by guanosine 5'-[gamma-thio]triphosphate of Gs from control platelets shifted alpha s to 3.5-3.7S, while activation of Gs from desensitized platelets induced such shift only for a minor portion of alpha s. This small fraction alone appeared to be susceptible to ADP-ribosylation by cholera toxin/[32P]NAD. Furthermore, an antibody directed against the C-terminal hexadecapeptide of alpha s precipitated much less alpha s from cholate extracts derived from desensitized platelets. Modification of alpha s during desensitization was also suggested from cross-linking experiments using the homobifunctional agent bismaleimidohexane: alpha s from desensitized platelets formed a single product of 80 kDa, while that from untreated platelets yielded a doublet (100 kDa and 110 kDa).  相似文献   

8.
Cholera toxin causes the devastating diarrheal syndrome characteristic of cholera by catalyzing the ADP-ribosylation of Gs alpha, a GTP-binding regulatory protein, resulting in activation of adenylyl cyclase. ADP-ribosylation of Gs alpha is enhanced by 19 kDa guanine nucleotide-binding proteins known as ADP-ribosylation factors or ARFs. We investigated the effects of agents known to alter toxin-catalyzed activation of adenylyl cyclase on the stimulation of toxin- and toxin subunit-catalyzed ADP-ribosylation of Gs alpha and other substrates by an ADP-ribosylation factor purified from a soluble fraction of bovine brain (sARF II). In the presence of GTP, sARF II enhanced activity of both the toxin catalytic unit and a reduced and alkylated fragment ('A1'), as a result of an increase in substrate affinity with no significant effects on Vmax. Activation of toxin was independent of Gs alpha and was stimulated 4-fold by sodium dodecyl sulfate, but abolished by Triton X-100. sARF II therefore serves as a direct allosteric activator of the A1 protein and may thus amplify the pathological effects of cholera toxin.  相似文献   

9.
Two distinct light-regulated G-proteins were found in octopus photoreceptors. Gip, a 41 kDa protein from washed microvilli, was ADP ribosylated by pertussis toxin in the presence of GDP in the dark. Light and GTP analogues were inhibitory as with transducin (Gt; G-protein in vertebrate photoreceptors). G34, a 34 kDa protein from fresh octopus retina, was ADP ribosylated by both cholera and pertussis toxin in the dark. Light inhibited labeling of the 34 kDa protein by both toxins. Unlike Gip, G34 is soluble and is very labile to heat, freezing and thawing. Prolonged incubation of octopus retina with cholera toxin and labeled NAD produced an additional radioactive band at 46 kDa. Labeling of the 46 kDa protein, Gsp, was greatly enhanced by GTP analogues, but inhibited by a GDP analogue as with Gs in hormone-sensitive adenylate cyclase. In contrast to Gip and G34, labeling of the 46 kDa protein (Gsp) was not influenced by light. The two distinct light-regulated G-proteins, Gip and G34, found in octopus photoreceptors might be involved in either phototransduction or photoadaptation. The function of Gsp is not known.  相似文献   

10.
Coupling of the three alpha 2-adrenergic receptor (alpha 2AR) subtypes to Gi and Gs was studied in membranes from transfected CHO cells. We observed that in the presence of low concentrations of the alpha 2AR agonist UK-14304, alpha 2C10 mediated inhibition of adenylyl cyclase activity, whereas at high concentrations of agonist, alpha 2C10 mediated stimulation of adenylyl cyclase activity. We considered that this biphasic response was due to the coupling of alpha 2C10 to both Gi and Gs. To isolate functional Gs and Gi coupling, cells were treated with pertussis toxin or cholera toxin in doses sufficient to fully ADP-ribosylate the respective G-proteins. Following treatment with cholera toxin, agonists elicited only alpha 2C10-mediated inhibition (approximately 50%) of adenylyl cyclase while after pertussis toxin treatment, agonists elicited only alpha 2C10-mediated stimulation (approximately 60%) of adenylyl cyclase. Incubation of membranes with antisera directed against the carboxyl-terminal portion of Gs alpha blocked this functional alpha 2AR.Gs coupling to the same extent as that found for beta 2AR.Gs coupling. In addition to functional Gs coupling, we also verified direct, agonist-dependent, physical coupling of alpha 2AR to Gs alpha. In agonist-treated membranes, an agonist-receptor-Gs alpha complex was immunoprecipitated with a specific alpha 2C10 antibody, and the Gs component identified by both western blots using Gs alpha antibody, and cholera toxin mediated ADP-ribosylation. Due to the differences in primary amino acid structure in a number of regions of the alpha 2AR subtypes, we investigated whether G-protein coupling was subtype-selective, using UK-14304 and cells with the same alpha 2AR expression levels (approximately 5 pmol/mg). Coupling to Gi was equivalent for alpha 2C10, alpha 2C4, and alpha 2C2: 53.4 +/- 8.8% versus 54.9 +/- 1.0% versus 47.6 +/- 3.5% inhibition of adenylyl cyclase, respectively. In marked contrast, distinct differences in coupling to Gs were found between the three alpha 2AR subtypes: stimulation of adenylyl cyclase was 57.9 +/- 6.3% versus 30.7 +/- 1.1% versus 21.8 +/- 1.7% for alpha 2C10, alpha 2C4, and alpha 2C2, respectively. Thus, alpha 2AR have the potential to couple physically and functionally to both Gi and Gs; for Gi coupling we found a rank order of alpha 2C10 = alpha 2C4 = alpha 2C2, while for Gs coupling, alpha 2C10 greater than alpha 2C4 greater than alpha 2C2.  相似文献   

11.
This study was carried out to clarify the way in which thyrotropin (TSH) and forskolin regulate the adenylylcyclase complex in thyroid follicle cells. We examined the effects of chronic treatment of pig thyroid follicles with TSH or forskolin on the state of G proteins by (a) assaying adenylylcyclase activity, (b) analyzing the ADP-ribosylation of stimulatory G protein (Gs) by cholera toxin, and (c) quantifying the Gs subunits by Western blotting with antipeptide antibodies. Chronic exposure (18 h) of thyroid follicles to a low concentration of TSH (0.01-0.1 milliunit/ml) enhanced the subsequent response of adenylylcyclase to TSH. Higher concentration of TSH (1 milliunit/ml) induced a homologous desensitization of this response. In cells pretreated with forskolin, the TSH-stimulated adenylylcyclase activity was higher than in control cells. The forskolin-or guanosine 5'-(beta, gamma-imido) triphosphate (Gpp(NH)p)-stimulated adenylylcyclase activity was always significantly increased after chronic treatment of cells with TSH or forskolin. Treatment of cultured thyroid follicle membranes with [32P]NAD and cholera toxin resulted in labeling of the Gs alpha (45-52-kDa) component. Culturing follicles with TSH (0.001-1 milliunit/ml) or forskolin (0.01-10 microM) greatly affected the cholera toxin-mediated ADP-ribosylation of the Gs alpha subunit. Gs alpha labeling increased progressively to level off at 1 milliunit/ml TSH or 1 microM forskolin (150-200%). Gs alpha immunoreactivity was increased in parallel (200-300%). The immunoreactivity of G beta subunits in cells cultured with TSH or forskolin was also increased compared with control cells. Cycloheximide abolished the effects of TSH and forskolin on the follicles, suggesting that new protein synthesis is required. These results indicate that Gs protein subunits are up-regulated by TSH and forskolin and suggest that their synthesis in thyroid cells is mediated, at least in part, by a cyclic AMP-dependent mechanism.  相似文献   

12.
Forskolin (40 μM) stimulated adenylate cyclase activities of bovine thyroid plasma membranes without pthe addition of guanine nucleotides. GDP had little effect on the forskolin-stimulated adenylate cyclase activity while Gpp[NH]p (0.1–1.0 μM) decreased it. In the presence of TSH (10 mU/0.11), Gpp[NH]p no longer caused inhibition. Forskolin did not affect phosphodiesterase activities of thyroid homogenates. Forskolin (10 μM) rapidly increased cAMP levels in bovine thyroid slices both in the absence and presence of a phosphodiesterase inhibitor. The effect of TSH (50 mU/ml) on cAMP levels was additive or greater than additive to that of forskolin. An initial 2-h incubation of slices with forskolin did not decrease their subsequent cAMP responses to either forskolin and/or TSH while similar treatment of slices with TSH induced desensitization of the cAMP response to TSH, but not to forskolin. Forskolin (10 μM) as well as TSH (50 mU/ml) activated cAMP-dependent protein kinase of slices in the absence of a phosphodiesterase inhibitor. Although forskolin activated the adenylate cyclase cAMP system, it did not stimulate iodide organification or glucose oxidation, effects which have been attributed to cAMP. In fact, forskolin inhibited these parameters and 32P incorporation into phospholipids as well as their stimulation by TSH. These results indicate that an increase in cAMP levels and cAMP-dependent protein kinase activity in thyroid slices may not necessarily reproduce the effects of TSH on the thyroid.  相似文献   

13.
Guanine nucleotide regulatory proteins (G-proteins) play an important role in the onset and progression of malignancy. We hypothesized that alterations in inhibitory G-protein (Gi) expression and/or function may contribute to cellular invasion and formation of hepatocellular carcinoma (HCC). H4IIE hepatoma cells were inoculated directly into the liver parenchyma of ACI strain rats, and membranes were prepared from HCC livers and adjacent nonneoplastic livers 12 days following the initial inoculation. Expression of inhibitory Giα proteins was determined by Western blot analysis and changes in the functional activity of these proteins confirmed by pertussis toxin catalyzed ADP ribosylation and adenylyl cyclase activity. Inhibitory Giα1, Giα1/2, and Giα3 protein expression was significantly elevated in HCC when compared to adjacent nonneoplastic liver and sham-operated hepatic tissue. Pertussis toxin catalyzed ADP ribosylation of Giα substrates was significantly enhanced in HCC concomitant with increased basal and stimulated adenylyl cyclase activity following uncoupling of Gi-proteins with manganese ions. The role of Gi-proteins in cellular proliferation was confirmed using cultured H4IIE cells and normal hepatocytes. In quiescent H4IIE cells, mastoparan (Giα activator) increased [3H] thymidine incorporation and cell growth in a dose-dependent manner, whereas both pertussis toxin (a Gi-protein inhibitor) and 8-bromo-cAMP inhibited mitogenesis. In contrast, in isolated cultured hepatocytes, mastoparan inhibited [3H] thymidine incorporation, while pertussis toxin and 8-bromo-cAMP were mitogenic. We conclude that HCC is associated with marked changes in Giα-protein expression in vivo and in vitro, direct activation of which leads to increased mitogenesis in H4IIE cells in vitro. J. Cell. Physiol. 175:295–304, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

14.
1. Some of the actions of pertussis toxin on the rabbit luteal adenylyl cyclase system were analyzed. 2. Incubation of luteal membranes with pertussis toxin and [32P]NAD resulted in the [32P]ADP-ribosylation of a 40,000 Da protein that is distinct from the proteins ADP-ribosylated by cholera toxin. 3. Pertussis toxin specific [32P]ADP-ribosylation was time-dependent and dependent upon the concentration of pertussis toxin present during the incubation. 4. Pertussis toxin mediated [32P]ADP-ribosylation was enhanced by ATP, ADP, adenylyl imidodiphosphate, GTP, guanosine-5'-O-(2-thiodiphosphate), guanosine-5'-O-(3-thiotriphosphate), and NaF but not AMP or guanylyl imidodiphosphate [GMP-P(NH)P]. 5. Treatment of luteal membranes with NAD and pertussis toxin prevents GTP and enkephalin but not GMP-P(NH)P mediated inhibition of forskolin stimulated adenylyl cyclase, demonstrating the existence of a functional Gi in the rabbit corpus luteum.  相似文献   

15.
A significant increase of guanylylimidodiphosphate (GppNHp)-, fluoride-, and forskolin-stimulated adenylyl cyclase was observed in synaptic membrane preparations from rat cerebral cortex subsequent to chronic electroconvulsive shock (ECS) treatment. This effect required at least five treatments over a course of 10 days. The inhibition of adenylyl cyclase induced by GppNHp was not affected by these treatments. The dissociation constant (KD) and maximal binding for the photoaffinity GTP analog, [32P]P3-(4-azidoanilido)-P1-5'-GTP [( 32P]AAGTP), to each of the synaptic membrane G proteins also were unchanged after ECS treatment. Nonetheless, the transfer of [32P]AAGTP from Gi to Gs, which we suggest is indicative of the coupling between Gs and the adenylyl cyclase catalytic moiety, was accelerated by chronic ECS treatment but not by acute or sham treatment. Furthermore, chemical uncoupling of Gs from adenylyl cyclase rendered membranes from treated animals indistinguishable from controls. Finally, in all cases tested, membranes prepared from animals subjected to chronic treatment with amitriptyline or iprindole showed similar changes in the Gs-mediated activation of adenylyl cyclase. Acute treatments produced effects similar to controls, and liver and kidney membranes from animals receiving chronic treatment showed no changes in adenylyl cyclase despite the marked changes seen in brain. These results suggest that chronic administration of ECS enhances coupling between Gs and adenylyl cyclase enzyme and modifies interactions between Gs and Gi.  相似文献   

16.
In membranes of myeloid differentiated HL-60 cells, the chemotactic peptide N-formyl-methionyl-leucyl-phenylalanine stimulates phospholipase C via a pertussis toxin-sensitive G-protein but does not inhibit adenylyl cyclase. In these membranes, the chemotactic peptide markedly stimulates the cholera toxin-dependent [32P]ADP-ribosylation of two proteins with approximate molecular masses of 40 and 41 kDa, respectively. The radiolabeled proteins comigrate on sodium dodecyl sulfate-polyacrylamide gels with the two pertussis toxin substrates present in HL-60 membranes, alpha i2 and alpha i3. The effect of the chemotactic peptide is blocked by treatment of intact HL-60 cells with pertussis toxin. Peptide mapping studies using Staphylococcus aureus protease V8 reveal that the two radiolabeled proteins are structurally distinct. Thus, the agonist-activated formyl peptide receptor functionally interacts with two distinct pertussis toxin substrates, most likely with Gi2 and Gi3. As the third Gi protein, Gi1, appears to be absent from both HL-60 cells and from systems that clearly reveal hormonal inhibition of adenylyl cyclase, the results strongly suggest that primary structure alone does not suffice to determine which effector mechanism is regulated by a given Gi-protein.  相似文献   

17.
Preadipocytes of rats were obtained from the stromal-vascular fraction of collagenase-digested perirenal fat pads and grown in serum-containing medium. By day 8 of culture the cells reached confluence and by 12 days were lipid-laden. The adenylyl cyclase of the plasma membranes was compared to that of mature fat cells. Unlike the membranes from adipocytes, the preadipocytes showed adenylyl cyclase activity that was stimulated by GTP. Stimulation of preadipocyte membranes by Gpp(NH)p, NaF, and forskolin was comparable to that of membranes from adipocytes, but the response to epinephrine and isoproterenol was minimal (approximately 1.5-fold for preadipocytes vs. 4-5-fold for adipocytes). In contrast, GTP-dependent stimulation of adenylyl cyclase of preadipocytes by PGE1 was nearly 8-fold. Stimulation occurred even in the presence of both GTP and 140 mM NaCl, a condition that leads to inhibition by PGE1 of adenylyl cyclase in membranes of adipocytes. Other characteristics of the adenylyl cyclase of preadipocyte membranes that differ from those of adipocytes include lack of inhibition by GTP of forskolin-activated activity, and, following treatment with pertussis toxin, enhanced stimulation by PGE1. ADP-ribosylation of Gi and Gs with pertussis and cholera toxins, respectively, indicated that the membranes of preadipocytes contained only 5-11% of the Gi of adipocytes and a much lower ratio of Gi:Gs. These findings suggest that cultured preadipocytes have an incompletely developed Gi pathway that may account for the stimulatory effect of prostaglandins on the adenylyl cyclase of these cells as opposed to the inhibitory action of PG in mature fat cells.  相似文献   

18.
We studied the consequences of infection of L6E9 myoblasts with T. cruzi on the adenylate cyclase complex to test the hypothesis that infection alters the functional properties of the guanine nucleotide regulatory proteins, Ns and Ni. Stimulating activities of adenylate cyclase due to isoproterenol, isoproterenol plus Gpp(NH)p, or forskolin (activities mediated by Ns) are not altered by infection. However, inhibitory activities mediated by Ni [Gpp(NH)p, acetylcholine, and adenosine inhibition of forskolin-dependent adenylate cyclase activity] are compromised by infection. The reduction in adenosine's inhibition of forskolin-dependent adenylate cyclase activity is seen throughout the effective concentration range of adenosine. Pertussis toxin does not change basal or stimulated adenylate cyclase activity in infected cells compared with normal uninfected cells, nor does it alter the inhibiting action of adenosine. To evaluate the coupling proteins (Ns and Ni) involved in the stimulation and inhibition of adenylate cyclase more directly, cholera- and pertussis-toxin-dependent ADP ribosylation studies were performed. The incorporation of [32P]ADP ribose in the presence (specific) or absence (nonspecific) of the toxins was markedly decreased in membranes prepared from infected cells. However, in membranes prepared from infected or uninfected cells previously treated with pertussis toxin, there was a significant reduction in specific pertussis-toxin dependent ADP ribosylation. The infection-associated diminution in toxin-dependent ADP ribosylation complements the impaired inhibition of adenylate cyclase data. Collectively, the data further substantiate an infection-associated alteration in the adenylate cyclase complex, probably at the level of the guanine nucleotide binding proteins.  相似文献   

19.
Cholera toxin induces cAMP-independent degradation of Gs   总被引:8,自引:0,他引:8  
Cholera toxin stimulates adenylyl cyclase by catalyzing ADP-ribosylation of the alpha chain (alpha s) of Gs, a guanine nucleotide binding regulatory protein. In a rat pituitary cell line, GH3, the toxin-induced increase in GTP-dependent adenylyl cyclase activity is maximal at 1 h; adenylyl cyclase remains elevated for at least 32 h. Surprisingly, cholera toxin also induces a 74-95% decrease in the amount of immunoreactive alpha s in the same cells, as assessed on immunoblots probed with either of two antisera directed against separate alpha s peptide sequences. The decrease in immunoreactive alpha s, which begins after 1 h of toxin treatment and is complete by 8 h, is accompanied by a comparable decrease in the amount of biochemically active alpha s, as assessed by its ability to complement the biochemical defect of alpha s-deficient S49 cyc- membranes. Cholera toxin induces similar decreases in alpha s in wild type S49 lymphoma cells, in S49 kin- mutants, which lack cAMP-dependent protein kinase, and in S49 H21 a mutants, in which alpha s is unable to assume an active conformation upon binding GTP. The toxin-induced decrease in alpha s is somewhat temperature-dependent, but is not blocked by agents that increase lysosomal pH or by colchicine, which promotes breakdown of microtubules. alpha s in detergent-solubilized GH3 membranes is susceptible to proteolysis by an endogenous protease; this susceptibility is markedly increased in membranes from cells previously exposed to cholera toxin for 1 h. Taken together, these results suggest that cholera toxin-induced covalent modification of alpha s marks the protein for accelerated degradation. In addition, the persistence of elevated GTP-dependent adenylyl cyclase activity despite loss of a substantial fraction of alpha s suggests that the amount of alpha s membranes is greater than the amount necessary for maximal activation of cAMP synthesis by cholera toxin.  相似文献   

20.
Incubation of membranes of human erythrocytes and platelets but not of human neutrophils with [32P]NAD leads to covalent modification of various membrane proteins and of added albumin. In membranes of all three cell types, pertussis toxin (PT), in the presence of NAD, specifically labelled a 40 kDa peptide, i.e. the alpha-subunit of a guanine nucleotide-binding protein. This effect of PT was slightly reduced by NADP, whereas modification of other membrane proteins and of albumin was largely suppressed, independent of whether PT was present or not. Labelling of cytosolic proteins in the presence of NAD was marginal; only in neutrophil cytosol, PT modified a 40 kDa peptide. Membranes of erythrocytes and platelets exhibited NAD-degrading activity, which was inhibited by NADP. The data suggest a high substrate specificity of PT for NAD. Inhibition of endogenous enzymes by NADP may prove useful for the evaluation of PT substrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号