首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Scanning and transmission electron microscope studies were carried out on the rapid cell surface responses of cultured newborn rat sympathetic neurons to nerve growth factor (NGF), a substance that promotes their survival and differentiation. The somas of sympathetic neurons continuously exposed to NGF or deprived of the factor for 4-5 h have a very smooth surface. After readdition of NGF to the latter type of cultures, there is rapidly initiated a transient, sequential change in the cell surface. Microvilli and small ruffles appear within 30 s and are most prominent by 1 min. By 3 min of exposure, the microvilli and ruffles decrease in prominence, and by 7 min the somal surface is again smooth. By 30 s after NGF readdition, as increase in the number of 60- tp 130-nm coated pits is also detectable. This increase reaches a maximum of about threefold from 0.5 to 3 min and then gradually decreases. Alterations in the surface did not occur on the nonneuronal cell types present in the cultures and were not observed in response to another basic protein (cytochrome c) or to physical manipulation. Changes in cell surface architecture induced by NGF in normal sympathetic neurons and, as previously described, in PC12 pheochromocytoma cells indicate that such responses may present or reflect primary events in the mechanism of the factor's action.  相似文献   

2.
Scanning electron microscopy was used to study regulation of growth cone shape and surface morphology by nerve growth factor (NGF). The growth cones of cultured rat sympathetic neurons and neuronally-differentiated PC12 cells were observed under conditions of continuous NGF exposure, NGF withdrawal, and NGF readdition. Growth cones of cells cultured in the continuous presence of NGF were mostly spread in shape and about 60% possessed surface ruffles. Ruffles appeared to be largely restricted to growth cones in that few were observed on cell bodies and neurites. Withdrawal of NGF for 4–5 hr caused most of the growth cones to take on a non-spread or contracted appearance and to lose their ruffles. Readdition of NGF promoted rapid changes in growth cone properties. Within 30 sec, ruffling was again evident on the growth cones and remained prominent there throughout the course of treatment (up to 5 hr). This was in contrast to cell bodies on which, as previously reported, ruffling also occurred following NGF readdition, but only transiently (for less than 15 min). Respreading of growth cones also occurred under these conditions. This was evident within 1 min of NGF readdition and reached the levels observed in continuously-treated cultures within 1–2 hr. Neurites were also examined. Ruffles were only rarely present in the continuous presence of NGF and were absent after NGF withdrawal. NGF readdition elicited ruffling along neurites within 30 sec; the prevalence of such ruffles diminished to that seen in continuously-treated cultures within about an hour. As evidence of the specificity of these NGF effects, epidermal growth factor and dibutyryl cAMP, agents that elicit responses in PC12 cells, but do not promote their neuronal differentiation, had no observable effect on NGF-deprived growth cones. These findings demonstrate that NGF exerts very rapid effects on growth cone shape and surface morphology. Such actions may play roles in regulation of growth cone movement and guidance by NGF.Special Issue dedicated to Dr. E. M. Shooter and Dr. S. Varon.  相似文献   

3.
The effect of nerve growth factor (NGF), a substance that promotes the differentiation and maintenance of certain neurons, was studied via scanning electron microscopy utilizing the PC12 clonal NGF-responsive pheochromocytoma cell line. After 2-4 d of exposure to NGF, these cells acquire many of the properties of normal sympathic neurons. However, by phase microscopy, no changes are discernible within the first 12-18 h. Since the primary NGF receptor appears to be a membrane receptor, it seemed likely that some of the initial responses to the factor may be surface related. PC12 cells maintained without NGF are round to ovoid and have numerous microvilli and small blebs. After the addition of NGF, there is a rapidly initiated sequential change in the cell surface. Ruffles appear over the dorsal surface of the cells with 1 min, become prominent by 3 min, and almost disappear by 7 min. Microvilli, conversely, disappear as the dorsal ruffles become prominent. Ruffles are seen at the the periphery of cell at 3 min, are prominent on most of the cells by 7 min and are gone by 15 min. The surface remains smooth from 15 min until 45 min when large blebs appear. The large blebs are present on most cells at 2 h and are gone by 4 h. The surface remains relatively smooth until 6-7 h of NGF treatment, when microvilli reappear as small knobs. These microvilli increase in both number and length to cover the cell surface by 10 h. These changes were not observed with other basic proteins, with α-bungarotoxin (which binds specifically to PC12 membranes), and were not affected by an RNA synthesis inhibitor that blocks initiation of neurite outgrowth. Changes in the cell surface architecture appear to be among the earlist NGF responses yet detected and may represent or reflect primary events in the mechanism of the factor’s action.  相似文献   

4.
Rat pheochromocytoma cells (clone PC12) possess functional surface receptors for both nerve growth factor (NGF) and epidermal growth factor (EGF). PC12 cells respond to NGF as well as to dibutyryl cyclic AMP (dbcAMP) by arrest of cell proliferation and initiation of morphological differentiation, while EGF acts as a mitogen. Exposure of PC12 cells to NGF for several days resulted in a complete loss of rapid EGF responses, such as membrane ruffling and activation of active K+ transport. EGF binding studies revealed that this loss of EGF responses was due to an almost complete reduction of the number of EGF binding sites. In contrast, exposure of PC12 cells to dbcAMP for 2 days did not affect the rapid EGF responses, despite the morphological differentiation. Moreover, EGF binding studies demonstrated a twofold increase in the number of high-affinity binding sites and a small increase in the number of low-affinity sites. In addition, exposure of the cells to dbcAMP caused a twofold increase of EGF-receptor phosphotyrosine kinase activity. These results indicate that neither EGF-binding or the presence of EGF receptors nor the rapid EGF responses are sufficient for persistent proliferation, on one hand, or sufficient to avoid morphological differentiation, on the other.  相似文献   

5.
By the use of rhodamine-phalloidin, the distribution of actin in A-431 cells during the action of epidermal growth factor (EGF) has been studied. Changes in the pattern of staining are observed in 30-60 s after addition of the EGF. Microvilli and wrinkles are created on the cell surface. Following a 5-10 min action of EGF, rhodamine-phalloidin stained intensely ruffles and cell borders. After 60 min, the ruffling of cell surface disappeared, and actin was seen concentrating on the cell borders only. Electron microscopy of the EGF-treated A-431 cells lysed by Triton X-100 also revealed some vigorous fibrillar bunches on the cell edges.  相似文献   

6.
Four mutant PC12 pheochromocytoma cell lines that are nerve growth factor (NGF)-nonresponsive (PC12nnr) have been selected from chemically mutagenized cultures by a double selection procedure: failure both to grow neurites in the presence of NGF and to survive in NGF-supplemented serum-free medium. The PC12nnr cells were deficient in all additional NGF responses surveyed: abatement of cell proliferation, changes in glycoprotein composition, induction of ornithine decarboxylase, rapid changes in protein phosphorylation, and cell surface ruffling. However, PC12nnr cells closely resembled non-NGF-treated PC12 cells in most properties tested: cell size and shape; division rate; protein, phosphoprotein, and glycoprotein composition; and cell surface morphology. All four PC12nnr lines differed from PC12 cells in three ways in addition to failure of NGF response: PC12nnr cells failed to internalize bound NGF by the normal, saturable, high-affinity mechanism present in PC12 cells. The PC12nnr cells bound NGF but entirely, or nearly entirely, at low-affinity sites only, whereas PC12 cells possess both high- and low-affinity NGF binding sites. The responses to dibutyryl cyclic AMP that were tested appeared to be enhanced or altered in the PC12nnr cells compared to PC12 cells. Internalization of, and responses to, epidermal growth factor were normal in the PC12nnr cells ruling out a generalized defect in hormonal binding, uptake, or response mechanisms. These findings are consistent with a causal association between the presence of high-affinity NGF receptors and of NGF responsiveness and internalization. A possible relationship is also suggested between regulation of cAMP responses and regulation of NGF responses or NGF receptor affinity.  相似文献   

7.
Rat pheochromocytoma (PC12) cells contain specific plasma membrane receptors for both epidermal growth factor (EGF) and nerve growth factor (NGF). Whereas EGF addition to PC12 cells causes a persistent enhancement of proliferation. NGF addition induces a transient stimulation of growth, followed by growth arrest and neuronal differentiation. Despite these differences in biological response, EGF and NGF share a number of early receptor-mediated responses, which are likely te be related to their effect on cell proliferation. In this paper we show that EGF, but not NGF, is able to stimulate the phosphorylation of membrane proteins. In addition, EGF was able to stimulate phosphorylation of a synthetic peptide (RR-SRC) by PC12 membranes in a concentration-dependent manner. Kinetic analysis of the phosphorylation reaction indicated that EGF increased the Vmax from 13 to 70 pmoles/min/mg protein, while no change was observed in Km. Furthermore, EGF was able to stimulate tyrosine phosphorylation of angiotensin I and II, to the same extent as RR-SRC. In contrast no effects of NGF on peptide phosphorylation by PC12 membranes were observed. Cross-linking experiments demonstrated the presence of receptors for both NGF and EGF in PC12 membranes. These different effects of NGF and EGF on activation of membrane-associated protein-kinase activity demonstrate that NGF might be able to stimulate growth transiently without stimulating protein kinase activity.  相似文献   

8.
The rat PC12 pheochromocytoma cell line exhibits biological responses to both nerve growth factor (NGF) and epidermal growth factor (EGF). The existence of receptors and biological responses on a common cell for these two well-characterized polypeptide growth factors makes this an attractive system for comparison of ligand binding and processing. Both NGF and EGF are bound to PC12 cells in a competable form at 4 degrees C. At 37 degrees C both ligands are "sequestered," but at different rates and to different extents. While sequestration happens rapidly and nearly quantitatively for bound EGF, the dissociation reaction appears to compete favorably with NGF sequestration. Both EGF and NGF are degraded by PC12 cells. Sequestered EGF, however, is degraded to a greater extent than sequestered NGF.  相似文献   

9.
Insulin-like growth factor (IGF) I (greater than or equal to 10(-10)M, insulin-like growth factor II (greater than or equal to 10(-9) M), insulin (greater than or equal to 10(-9) M, and epidermal growth factor (EGF, greater than or equal to 10(-11) M) caused rapid membrane ruffling in KB cells. The morphological change was observed within 1 min after the addition of these growth factors and was accompanied by microfilament reorganization, but not by microtubule reorganization. IGF-I, IGF-II, and insulin induced morphologically very similar or identical membrane ruffles with the order of potency IGF-I greater than IGF-II greater than insulin, whereas EGF-induced membrane ruffles were morphologically different. KB cells possessed EGF receptors, type I IGF receptors, and insulin receptors, but few or no type II IGF receptors. Monoclonal antibody against type I IGF receptors, which completely inhibited the binding of 125I-IGF-I to the cells but did not inhibit the binding of 125I-insulin, caused marked inhibition of IGF-I (10(-8) M)-stimulated membrane ruffling. IGF-II (10(-8) M)-stimulated membrane ruffling was partially inhibited in the presence of this antibody, but insulin (10(-7) M)-stimulated membrane ruffling was only slightly inhibited. In contrast, monoclonal antibody against insulin receptors blocked insulin (10(-7) M) stimulation, but not IGF-I (10(-8) M) stimulation, of membrane ruffling. Thus, this study provides evidence that IGF-I and insulin act mostly through their own (homologous) receptors and that IGF-II acts by cross-reacting with both type I IGF and insulin (heterologous) receptors in causing rapid alterations in cytoskeletal structure.  相似文献   

10.
We have used a permeabilized cell assay and a synthetic peptide substrate (KRTLRR) to specifically monitor the activity of protein kinase C in PC12 cells preincubated with nerve growth factor (NGF), epidermal growth factor (EGF), or phorbol esters. Pretreatment of PC12 cells with 1 microM 12-O-tetradecanoylphorbol 13-acetate or 1 microM phorbol dibutyrate stimulated the rate of KRTLRR peptide phosphorylation 4.8- and 2.6-fold, respectively. Furthermore, pretreatment of cells with NGF or EGF transiently increased the KRTLRR peptide kinase activity. Peak stimulations of KRTLRR peptide kinase (1.3-2-fold) were observed after 1-5 min of growth factor treatment and returned to control levels within 15-20 min. The KRTLRR peptide kinase activity fulfilled two criteria of protein kinase C. A synthetic peptide inhibitor of protein kinase C inhibited both growth factor- and phorbol ester-stimulated KRTLRR peptide kinase activity. In addition, growth factors and phorbol esters failed to stimulate KRTLRR peptide kinase activity in cells rendered protein kinase C-deficient by long-term treatment with 1 microM 12-O-tetradecanoylphorbol 13-acetate. In contrast to the transient activation of protein kinase C, ribosomal S6 kinase, assayed with the synthetic peptide RRLSSLRA, was persistently activated by NGF and EGF. The findings indicate that protein kinase C serves an early and transient role in the molecular actions of NGF and EGF in PC12 cells.  相似文献   

11.
Confluent and proliferatively quiescent T51B rat liver epithelial cells provide a cellular model for the study of epidermal growth factor (EGF) effects in non-neoplastic cells. Immunoreactive calpactin II, a well-known substrate for EGF-receptor kinase, was found predominantly in the cytosol, although a second immunoreactive pool was found in a Triton X-100-extractable membrane fraction. Stimulation with EGF resulted in a rapid and transient (2-5 min) formation of ruffles at the cell surface and at the cell-cell contacts. Both calpactin II and filamentous actin were found co-localized at the membrane ruffles. Immunoprecipitations of membrane-bound calpactin II from 32P-labeled cells indicate a transient EGF-dependent phosphorylation of calpactin II correlating with membrane ruffling. These results suggest a temporal (2-5 min) function for calpactin II at the plasma membrane during the EGF-induced mitogenesis of T51B cells.  相似文献   

12.
Neurite outgrowth of PC12 cells is induced by nerve growth factor (NGF) but not by epidermal growth factor (EGF). This differential response has been explained by the duration of mitogen-activated protein kinase (MAPK) activation; NGF induces sustained MAPK activation but EGF leads short-lived activation. However, precise mechanisms have not yet been understood. Here we demonstrate the difference between NGF and EGF in regulation of Rac1, a small GTPase involved in neurite outgrowth, in PC12 cells. NGF phosphoinositide 3-kinase dependently induces transient activation of Rac1 and accumulation of active Rac1 at protrusion sites on the cell surface, inducing filamentous actin-rich protrusions and subsequent neurite formation in a Rac1-dependent manner. On the other hand, EGF phosphoinositide 3-kinase independently induces more transient Rac1 activation but neither accumulates active Rac1 nor forms Rac1- and filamentous actin-rich protrusions. Difference in the Rac1 localization between NGF and EGF was also observed with the localization of exogenously expressed green fluorescent protein-tagged Rac1. The Rac1-mediated protrusion by NGF is independent of MAPK cascade, but the subsequent neurite extension requires the cascade. Thus, the differential activation of Rac1 and localization of active Rac1 contribute to the difference in the ability of NGF and EGF to induce neurite outgrowth, and we propose that the MAPK cascade-independent prompt activation of Rac1 and recruitment of active Rac1 at the protrusion sites trigger the initiation of neurite formation.  相似文献   

13.
In this study, we examined the role of specific protein kinase C (PKC) isoforms in the differentiation of PC12 cells in response to nerve growth factor (NGF) and epidermal growth factor (EGF). PC12 cells express PKC-alpha, -beta, -gamma, -delta, -epsilon, -mu, and -zeta. For PKC-delta, -epsilon, and -zeta, NGF and EGF exerted differential effects on translocation. Unlike overexpression of PKC-alpha and -delta, overexpression of PKC-epsilon caused enhanced neurite outgrowth in response to NGF. In the PKC-epsilon-overexpressing cells, EGF also dramatically induced neurite outgrowth, arrested cell proliferation, and induced a sustained phosphorylation of mitogen-activated protein kinase (MAPK), in contrast to its mitogenic effects on control cells or cells overexpressing PKC-alpha and -delta. The induction of neurite outgrowth by EGF was inhibited by the MAPK kinase inhibitor PD95098. In cells overexpressing a PKC-epsilon dominant negative mutant, NGF induced reduced neurite outgrowth and a more transient phosphorylation of MAPK than in controls. Our results suggest an important role for PKC-epsilon in neurite outgrowth in PC12 cells, probably via activation of the MAPK pathway.  相似文献   

14.
Rat pheochromocytoma cells (clone PC12) respond to nerve growth factor (NGF) by the acquirement of a phenotype resembling neuronal cells. In an earlier study we showed that NGF causes an increase in Na+,K+ pump activity, as monitored by ouabain-sensitive Rb+ influx. Here we show that addition of epidermal growth factor (EGF) to PC12 cells resulted in a stimulation of Na+,K+ pump activity as well. The increase of Na+,K+ pump activity by NGF or EGF was due to increased Na+ influx. This increased Na+ influx was sensitive to amiloride, an inhibitor of Na+,H+ exchange. Furthermore, no changes in membrane potential were observed upon addition of NGF or EGF. Amiloride-sensitive Na+,H+ exchange in PC12 cells was demonstrated by H+ efflux measurements and the effects of weak acids on Na+ influx. These observations suggest that both NGF and EGF activate an amiloride-sensitive, electroneutral Na+,H+ exchange mechanism in PC12 cells. These findings were surprising in view of the opposite ultimate biological effects of NGF and EGF, e.g., growth arrest vs. growth stimulation. However, within 24 h after addition, NGF was found to stimulate growth of PC12 cells, comparable to EGF. In the presence of amiloride, this stimulated growth by NGF and EGF was abolished. In contrast, amiloride did not affect NGF-induced neurite outgrowth of PC12 cells. From these observations it is concluded that in PC12 cells: (a) NGF has an initial growth stimulating effect; (b) neurite outgrowth is independent of increased amiloride-sensitive Na+ influx; and (c) growth stimulation by NGF and EGF is associated with increased amiloride-sensitive Na+ influx.  相似文献   

15.
We have studied the effects of nerve growth factor (NGF) and basic fibroblast growth factor (bFGF) on epidermal growth factor (EGF) binding to PC12 cells. We show that NGF and bFGF rapidly induce a reduction in 125I-EGF binding to PC12 cells in a dose-dependent manner. This decrease amounts to 50% for NGF and 35% for bFGF. Both factors appear to act through a protein kinase C(PKC)-independent pathway, because their effect persists in PKC-downregulated PC12 cells. Scatchard analysis indicates that NGF and bFGF decrease the number of high affinity EGF binding sites. In addition to their effect on EGF binding, NGF and bFGF activate in intact PC12 cells one or several serine/threonine kinases leading to EGF receptor threonine phosphorylation. Using an in vitro phosphorylation system, we show that NGF- or bFGF-activated extracellular regulated kinase 1 (ERK1) is able to phosphorylate a kinase-deficient EGF receptor. Phosphoamino acid analysis indicates that this phosphorylation occurs mainly on threonine residues. Furthermore, two comparable phosphopeptides are observed in the EGF receptor, phosphorylated either in vivo after NGF treatment or in a cell-free system by NGF-activated ERK1. Finally, a good correlation was found between the time courses of ERK1 activation and 125I-EGF binding inhibition after NGF or bFGF treatment. In conclusion, in PC12 cells the NGF- and bFGF-stimulated ERK1 appears to be involved in the induction of the threonine phosphorylation of the EGF receptor and the decrease in the number of high affinity EGF binding sites.  相似文献   

16.
Addition of EGF to human carcinoma A-431 cells is known to induce membrane ruffling after approximately 2 min (Chinkers, M., J. A. McKanna, and S. Cohen. 1979. J. Cell Biol. 83:260-265) and the phosphorylation of a protein referred to as p81, a known substrate for various protein-tyrosine kinases (Cooper, J. A., D. F. Bowen-Pope, E. Raines, R. Ross, and T. Hunter. 1982. Cell. 31:263-273). Ezrin, a Mr approximately 80,000 cytoskeletal protein of the isolated chicken microvillar core, is present in actin-containing cell surface structures of a wide variety of cells (Bretscher, A. 1983. J. Cell Biol. 97:425-432). Ezrin was then found to be homologous to p81 and to be phosphorylated on tyrosine in response to EGF (Gould, K. L., J. A. Cooper, A. Bretscher, and T. Hunter. 1986. J. Cell Biol. 102:660-669). Here, the purification of ezrin from human placenta is described. Antibodies to human ezrin, together with antibodies to other microfilament-associated proteins, were used to follow the distribution and phosphorylation of these proteins in A-431 cells after EGF treatment. EGF induces the formation of microvillar-like surface structures on these cells within 30 s and these give way to membrane ruffles at approximately 2-5 min after EGF addition; the cells then round up after approximately 10-20 min. Ezrin is recruited into the microvillar-like structures and the membrane ruffles, and is phosphorylated on tyrosine and serine in a time course that parallels the formation and disappearance of these surface structures. Spectrin is recruited into the membrane ruffles and shows a similar rapid kinetics of phosphorylation, but only on serine residues, and remains phosphorylated through the rounding up of the cells. The microvillar- like structures and membrane ruffles are also enriched in fimbrin and alpha-actinin. Myosin becomes rapidly reorganized into a striated pattern that is consistent with it playing a role in cell rounding. These results show that two cortical proteins, ezrin and spectrin, become phosphorylated in a time course coincident with remodeling of the cell surface. The results are consistent with the notion that ezrin phosphorylation may play a role in the formation of cell surface projections whereas spectrin phosphorylation may be involved in remodelling of more planar areas of the cell surface.  相似文献   

17.
The phorbol ester tumor promoter 12-0-tetradecanoylphorbol-13-acetate (TPA) specifically inhibited the binding of radioiodinated epidermal growth factor (125I-EGF) to rat pheochromocytoma (PC12) cells in a noncompetitive fashion with an apparent Ki of 11–26 nM. Both TPA and EGF elicited similar biological responses in PC12 cells including enhanced incorporation of 3H-choline and 32P-orthophosphate into macromolecules, induction of ornithine decarboxylase, and stimulation of the phosphorylation of a 30,000 MW nonhistone, chromosome-associated protein. These effects were also elicited by nerve growth factor (NGF) which, in contrast to the former agents, is a differentiating stimulus for the PC12 cells. The effects of TPA were additive or more than additive to the effects of NGF and EGF. When PC12 cells were induced to differentiate by treatment with NGF for 72 hours, the binding of 125I-EGF and responses to EGF were reduced by approximately 70%. The response of PC12 cells to the tumor promoter TPA was unaffected by treatment with NGF. Thus, the qualitatively similar effects of TPA and EGF seemed to be mediated through separate receptor systems with only the EGF receptor system reduced by NGF treatment.  相似文献   

18.
Nerve growth factor (NGF) induced the activities of acetylcholinesterase (AChE) and Na+,K+-ATPase concomitant with neurite outgrowth in PC12h cells, while dibutyryl cyclic AMP (DBcAMP) caused the induction of AChE activity and neurite outgrowth but not Na+,K+-ATPase activity. A nonproteinaceous extract isolated from the inflamed skin of rabbits inoculated with vaccinia virus (Neurotropin) induced neurite outgrowth and cell surface change similar to NGF without affecting AChE activity. The results suggest that NGF, DBcAMP and Neurotropin act on PC12h cells through different mechanisms.  相似文献   

19.
Cells of the rat pheochromocytoma clone PC12 possess receptors for both nerve growth factor (NGF) and epidermal growth factor (EGF), thus enabling the study of the interaction of these receptors in the regulation of proliferation and differentiation. Treatment of the cells with NGF induces a progressive and nearly total decrease in the specific binding of EGF beginning after 12 h and completed within 4 d. Three different measures of receptor show that the decreased binding capacity represents, in fact, a decreased amount of receptor: (a) affinity labeling of PC12 cell membranes by cross-linking of receptor-bound 125I-EGF showed a 60-90% decrease in the labeling of 170- and 150-kD receptor bands in cells treated with NGF for 1-4 d; (b) EGF-dependent phosphorylation of a src-related synthetic peptide or EGF receptor autophosphorylation with membranes from NGF-differentiated cells showed a decrease of 80 and 90% in the tyrosine kinase activity for the exogenous substrate and for receptor autophosphorylation, respectively; (c) analysis of 35S-labeled glycoproteins isolated by wheat germ agglutinin-Sepharose chromatography from detergent extracts of PC12 membranes showed a 70-90% decrease in the 170-kD band in NGF-differentiated cells. These findings permit the hypothesis that long-term heterologous down-regulation of EGF receptors by NGF in PC12 cells is mediated by an alteration in EGF receptor synthesis. It is suggested that this heterologous down-regulation is part of the mechanism by which differentiating cells become insensitive to mitogens.  相似文献   

20.
We studied whether nerve growth factor (NGF) can affect the membrane potential and conductance of PC12 cells. We demonstrate that NGF depolarizes the membrane of PC12 cells within a minute and by using transfected NIH 3T3-Trk and -p75 cells we show that both the high affinity NGF receptor p140(trk) and the low affinity NGF receptor or p75(NGF) may be involved in the depolarization. Tyrosine kinase inhibitor, K252a, partially inhibited the depolarization, but two agents affecting intracellular calcium movements, Xestospongin C (XeC) and thapsigargin, did not. The early depolarization was eliminated in Na+ free solutions and under this condition, a 'prolonged' (> 2 min) hyperpolarization was observed in PC12 cells in response to NGF. This hyperpolarization was also induced in PC12 cells by epidermal growth factor (EGF). Voltage clamp experiments showed that NGF produced a late (> 2 min) increase in membrane conductance. The Ca2+-dependent BK-type channel blocker, iberiotoxin, and the general Ca2+-dependent K+ channel blocker, TEA, attenuated or eliminated the hyperpolarization produced by NGF in sodium free media. Under pretreatment with the non-selective cation channel blockers La3+ and Gd3+, NGF hyperpolarized the membrane of PC12 cells. These results suggest that three different currents are implicated in rapid NGF-induced membrane voltage changes, namely an acutely activated Na+ current, Ca2+-dependent potassium currents and non-selective cation currents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号