首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
目的:探讨腺病毒介导人肝细胞生长因子(Ad-HGF)对体外无血清培养所致大鼠皮层神经元损伤的保护作用.方法:用流式细胞仪测定不同感染强度(MOI)条件下携带绿色荧光蛋白的重组腺病毒(Ad-GFP)(25,50,100,200pfu/cell)对皮层神经元的转染效率,确定最佳MOI;ELISA测定Ad-HGF在最佳感染强度下皮层神经元中的表达规律;通过中性红染色和PI-Hoechst33342双染色法比较转染Ad-HGF组与对照组(转染Ad-GFP组和空白对照组)间无血清培养后6 h、12 h、24 h和48 h细胞的存活情况.结果:在感染强度为50 pfu/cell时,重组腺病毒对皮层神经元的转染率达99.3%,Ad-HGF能在皮层神经元中有效而持久地表达,接种后2 h转染Ad-HGF组的细胞死亡率和凋亡率在无血清培养后12 h明显低于两对照组(P<0.05).结论:Ad-HGF对接种后2 h转染组无血清培养所致的损伤有显著的保护作用,对接种后第5 d转染的皮层神经元无血清所致的损伤虽亦具有一定的保护作用,但不明显.  相似文献   

2.
BACKGROUND: Increasing the local blood flow is a critical factor for long-term survival of skin flaps. Thus, a molecular therapy to increase the blood flow by means of an angiogenic factor is considered to be a useful strategy to improve skin flap survival. We focused on a combined strategy to stimulate not only angiogenesis, but also vasodilation of local microvessels, using co-transfection of the hepatocyte growth factor (HGF) and prostacyclin synthase (PGIS) genes to enhance the survival of random-pattern skin flaps. METHODS AND RESULTS: A 2 x 8 cm full thickness cranial pedicled random-pattern flap was made on the back of each 12-week-old male rat. At 3 days before operation, 400 microg of human HGF and PGIS naked plasmid DNA or control plasmid was transfected into the flaps by needle-less injection using a Shima Jet, resulting in successful expression of human HGF and PGIS in the skin flaps. Transfection of both genes into the distal half of skin flaps at 3 days prior to operation significantly increased the survival rate of skin flaps, while transfection all over the flaps did not. In addition, transfection prior to operation was more effective than simultaneous treatment. Moreover, co-transfection of these genes improved the survival area of skin flaps, accompanied by an increase in blood flow of skin flaps, even in a diabetic model. CONCLUSIONS: Overall, these results indicate that combination treatment with HGF and PGIS genes by Shima Jet could be an effective strategy to improve skin flap survival.  相似文献   

3.
A complementary DNA (cDNA) encoding human hepatocyte growth factor was introduced into a replication-defective type 5 adenovirus (lacking E1, E3 domains) vector by homologous recombination of intracellular plasmid DNA, thus a recombinant vector containing HGF (Ad-HGF) was obtained. Ad-HGF and Ad-GFP (adenovirus vector carrying green fluorescence protein gene) were expanded in 293 cells and purified by cesium chloride gradient centrifugation for large-scale preparation, then were infected to the primarily cultured scar fibroblast of rabbit ear to observe the transfer efficiency and expression level of HGF in vitro. To evaluate the effect of Ad-HGF on established scar Ad-HGF solution was injected into excessively formed scar, which bears some clinical and histologic similarities to human hypertrophic scars. The results showed that: (i) the transfer efficiency was 36.8% ±14.1% on day 3 in primarily cultured scar fibroblasts treated with Ad-GFP and lasted more than 20 d; (ii) high-level expression of HGF protein was detected by means of ELISA in supernatant of scar fibroblasts treated with Ad-HGF, the amount of expression was 76 ng/4.0 x 105 cells on day 3; (iii) on day 32 after a single intradermal injection of Ad-HGF at different doses (8.6 x 109 pfu, 8.6 x 108 pfu, 8.6 x 107 pfu, 8.6 x 106 pfu) per scar, most of the scars in the former two dose groups were dramatically flattened, some were even similar to that of the normal skin. The value of Hl (hypertrophie index) showed that there was a therapeutic effect of Ad-HGF on scars at the dose of 109 pfu and 108 pfu. Whereas no therapeutic effects were seen at lower dose (107 pfu and 106 pfu of Ad-HGF) groups. In addition, clusters of hair were observed to different extent on healed wound treated with Ad-HGF. Histopathologic examination revealed that in most healed wounds of Ad-HGF treated group, the dermal layer was thinner, the amount of fibrous tissue was much fewer, and hair follicles growth and sebaceous glands were observed. In Sirius red-stained sections the amount of type I collagen in the Ad-HGF-treated scars was diminished markedly, compared to that in Ad-GFP group, in which a huge amount of type I collagen was still observed; (iv) immune response against HGF was absent. Antibody against HGF was not detectable by ELISA in serum from rabbit treated with Ad-HGF; (v) no local or systemic side-effects and toxicity associated with the gene transfer were found. These results demonstrated the potential use of treating pathologic scar by Ad-HGF, an alterative strategy of gene therapy for scar in clinical practice.  相似文献   

4.
Pathologic scar, characterized by excessive dermal fibrosis and scarring, is a common im-portant clinical sequela after wound healing. It often appears during wound healing after deep burn, surgical cutting and other injured skin. Accumulation of extracellular matrix (ECM) proteins is a manifestation of increased collagen synthesis and/or reduced matrix degradation, resulting in excessive scarring with a deformed appearance and dysfunction[1]. To date, treatment modalities to scar include sur…  相似文献   

5.
6.
7.
利用无血清原代培养大鼠肝细胞,观察重组人肝细胞生长因子(rhHGF)对CCl4染毒肝细胞的保护作用。结果表明:(1)rhHGF(5ng/ml)预自理后可显著提高CCl4(15mmol/L)染毒肝细胞存活率,降低细胞内丙氨酸氨基转移酶(ALT)、K^+的漏出;(2)表皮生长因子(EGF,50ng/ml)和rhHGF(5ng/ml)合用预处理肝细胞,CCl4染毒后细胞内ALT、K^+漏出较rhHGF和  相似文献   

8.
Bone marrow‐derived mesenchymal stem cells (BM‐MSCs ) transplantation has been reported to be a promising therapy for myocardial infarction (MI). However, low survival rate of BM‐MSCs in infarcted heart is one of the major limitations for the perspective clinical application. In this study, we aimed to investigate the effect of hepatocyte growth factor (HGF) on left ventricular function improvement of HGF gene‐modified BM‐MSCs (HGF‐MSCs) after its delivery into the infarcted rat hearts. BM‐MSCs were isolated with fibroblast‐like morphology and expressed CD44+CD29+CD90+/CD34‐CD45‐CD31‐CD11a. After 5‐azacytidine induction in vitro, 20%–30% of the cells were positively stained for desmin, cardiac‐specific cardiac troponin I and connexin‐43. Histological staining revealed that 2 weeks after MI is an optimal time point with decreased neutrophil infiltration and increased vascular number. Minimal infarct size and best haemodynamic analysis were also observed after cell injection at 2 weeks compared with that of 1 h, 1 week or 4 weeks. Echocardiogram confirmed that transplantation with HGF‐MSCs significantly improved left ventricular function compared with other groups in rat MI models. MSCs and HGF‐MSCslabelled with DAPI were detected 4 weeks after MI in the infarcted area. Decreased infarcted scar area and increased angiogenesis formation could be found in HGF‐MSCs group than in other groups as demonstrated by hematoxylin and eosin (H&E) staining and factor VIII staining. These results indicate that HGF‐MSCs transplantation could enhance the contractile function and attenuate left ventricular remodelling efficiently in rats with MI. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
10.
Alagille syndrome (AGS, MIM 118450) is an autosomal dominant inherited disease. Paucity of interlobular bile ducts is one of the major abnormalities. To explore the molecular mechanism by which mutation in the human Jagged 1 gene (JAG1, MIM 601920) causes liver defects, we investigated the gene regulation of JAG1 to hepatocyte growth factor gene (HGF). By transfecting wild-type and mutant JAG1 into COS-7 cells in vitro, we found that HGF is a target gene of JAG1 downstream. Wild-type JAG1 is inhibitory for HGF expression and mutant JAG1s relieve the inhibition. Several domain disruptions in mutant JAG1 protein reveal a reduced inhibition to HGF expression at different levels. JAG1 mutations actually result in HGF overexpression. Furthermore, JAG1 controls HGF expression by a dosage-dependent regulation and Notch2 signaling seems to mediate JAG1 function. Given that HGF plays a critical role in differentiation of hepatic stem cells, overexpression of HGF acts on off-balanced cell fate determination in AGS patients. Hepatic stem cells may differentiate towards more hepatocytes but less biliary cells, thus causing the paucity of interlobular bile ducts in liver development of AGS. Our novel findings demonstrated that dosage-dependent regulation by mutations of JAG1 is a fundamental mechanism for liver abnormality in AGS.  相似文献   

11.
血管内皮生长因子对猪心肌侧枝血管生成的作用   总被引:11,自引:2,他引:9  
Zhang DZ  Gai LY  Chen YW  Fan RY  Wen YF  Dong W 《生理学报》2001,53(3):183-187
为检测血管内皮生长因子165(VEGF165)能否促进冠状动脉侧枝血管形成,实验在成功制作小型猪慢性心肌缺血模型后,将以复制缺陷复组腺病毒为载体的人VEGF165互补脱氧核糖核酸[(cDNA)Ad-VEGF165]直接注入左回旋支(LCX)分布的缺血心肌内,以心电图门控单光子发射计算机断层摄影和离体太动脉造影检测冠状动脉侧枝形成,心肌灌注和功能变化,结果显示,与对照组和自身给预Ad-VEGF165前比较,给予Ad-VEGF165四周后心肌缺血面积(P<0.01)和最大缺血程度(P<0.01)明显减小,左心室射血分数(P<0.01)TCX区局部心室壁运动(P<0.05)明显改善,治疗组侧枝血管生成明显多于对照组(P<0.05),表明Ad-VEGF165能诱导心肌侧肢血管形成并改善心肌灌注与运动功能。  相似文献   

12.
13.
C2.8 mouse embryo hepatocytic cells, acutely required exogenous hepatocyte growth factor (HGF) to survive and proliferate in serum-free Dulbecco's modified Eagle's medium supplemented with insulin, transferrin and Na-selenite. Greater than 90% of cultured C2.8 cells died within 48 hours from plating in the absence of HGF. Conversely, HGF prolonged maintenance of life and stimulated cell proliferation. Removal of HGF from the medium of cultures that had grown to confluency, also resulted in a rapid decreased cell survival. In the last circumstance, light microscopic observations revealed, with high frequency, morphological features characteristic of apoptosis. DNA within the affected cells underwent rapid fragmentation, revealed as a ladder of DNA fragments in multiples of about 200 base pairs. HGF prevented loss of cell viability, morphological damages and retarded DNA fragmentation in confluent C2.8 cells. Cycloheximide delayed cell death caused by HGF deprivation.  相似文献   

14.
15.
BACKGROUND: Acidic fibroblast growth factor (FGF-1) has been identified as a potent mitogen for vascular cells, inducing formation of mature blood vessels in vitro and in vivo and represents one of the most promising approaches for the treatment of ischemic cardiovascular diseases by gene therapy. Nevertheless, and most probably due to the few experimental models able to address the issue, no study has described the therapeutic effects of FGF-1 gene transfer in subjects with peripheral arterial disease (PAD) exhibiting a clinically relevant cardiovascular pathology. METHODS: In order to assess the potency of FGF-1 gene transfer for therapeutic angiogenesis in ischemic skeletal muscles displaying decreased gene expression levels and sustained impaired formation of collateral vessels and arterioles, we developed a model of PAD in hamsters with a background of hypercholesterolemia. Hamsters fed a cholesterol-rich diet and subjected to hindlimb ischemia exhibit a sustained impaired angiogenic response, as evidenced by decreased angiographic score and histological quantification of arterioles in the ischemic muscles. RESULTS: In this model, we demonstrate that NV1FGF (a human FGF-1 expression plasmid), given intramuscularly 14 days after induction of hindlimb ischemia, promoted the formation of both collateral vessels and arterioles 14 days after treatment (i.e. 28 days post-ischemia). CONCLUSIONS: Our data provide evidence that NV1FGF can reverse the cholesterol-induced impairment of revascularization in a hamster model of hindlimb ischemia by promoting the growth of both collateral vessels and arterioles in ischemic muscles exhibiting significantly decreased levels of gene expression compared with control muscles. Therefore, this study underscores the relevance of NV1FGF gene therapy to overcome perfusion defects in patients with PAD.  相似文献   

16.
Adenovirus-mediated gene transfer is a promising method for studies of vascular biology and potentially for gene therapy. Intravascular approaches for gene transfer to blood vessels in vivo generally require interruption of blood flow and have several limitations. We have used two alternative approaches for gene transfer to blood vessels in vivo using perivascular application of vectors. First, replication-deficient adenovirus expressing nuclear-targeted bacterial b-galactosidase was injected into cerebrospinal fluid via the cisterna magna of rats. Leptomeningeal cells over the major arteries were efficiently transfected, and adventitial cells of large vessels and smooth muscle cells of small vessels were occasionally stained. When viral suspension was injected with the rat in a lateral position, the reporter gene was expressed extensively on the ipsilateral surface of the brain. Thus, adenovirus injected into cerebrospinal fluid provides gene transfer in vivo to cerebral blood vessels and, with greater efficiency, to perivascular tissue. Furthermore, positioning of the head may target specific regions of the brain. Second, vascular gene delivery was accomplished by perivascular injection of virus in peripheral vessels. Injection of the adenoviral vector within the periarterial sheath of monkeys resulted in gene transfer to the vessel wall that was substantial in magnitude although limited to cells in the adventitia. Approximately20% of adventitial cells expressed the transgene, with no gene transfer to cells in the intima or media. These approaches may provide alternative approaches for gene transfer to blood vessels, and may be useful for studies of vascular biology and perhaps vascular gene therapy.  相似文献   

17.
AdVEGF165 gene transfer increases survival in overdimensioned skin flaps   总被引:2,自引:0,他引:2  
BACKGROUND: Vascular endothelial growth factor (VEGF) is a key regulator of angiogenesis. VEGF A also plays an important role in wound healing of the skin by promoting angiogenesis and by stimulating blood vessel growth. Therefore we tested the hypothesis that flap survival could be increased by the preoperative injection of AdVEGF(165). METHODS: We studied the effect of AdVEGF(165) in an overdimensioned ischemic random-pattern-flap model in the rat (n = 50) with a length-to-width ratio of 4 : 1. VEGF cDNA was administered in two concentrations of 5 x 10(8) plaque-forming units (pfU) and 1 x 10(9) pfU using a recombinant adenoviral vector. Recombinant virus was injected subdermally 7, 3 or 0 days prior to flap harvest for the lower concentration and 7 days prior for the higher concentration. Flap survival and necrosis were observed at day 7, the day the animals were sacrificed. RESULTS: Adenoviral gene transfer with VEGF(165) 3 and 7 days before flap harvest showed a significantly increased flap survival of 50% together with a significantly reduced necrosis (p < 0.01). Injection using a titer of 1 x 10(9) pfU 7 days prior to surgery increased flap survival even more, though failing to reach statistical significance compared to the lower concentration. VEGF protein concentration in the injected skin was significantly higher than in controls (p < 0.01). Flap perfusion was increased as well, demonstrated by indocyanine green (ICG) fluoroscopy (p < 0.001). CONCLUSIONS: Our results confirm the important role of VEGF(165) on angiogenesis in ischemic flaps. Indeed by injecting VEGF(165) at 3 to 7 days preoperatively in a concentration of 1 x 10(9) pfU our data show that length-to-width ratio for random-pattern-flaps could be increased from 2 : 1 to 3 : 1 and therefore may allow a wider range of applications of this simple flap technique.  相似文献   

18.
BACKGROUND: Vascular endothelial growth factor (VEGF) gene transfer with recombinant adeno-associated viral (rAAV) vector for ischemia heart disease therapy is being increasingly studied. However, uncontrolled long-term expression of VEGF may cause some side effects. Therefore, an attempt to develop an effective gene control system for safeguarding against such side effects should be made. Pathphysiologically, an ideal control system for VEGF gene expression is letting it respond to hypoxia. We used nine copies of hypoxic response element (HRE) to regulate expression of hVEGF(165) in the myocardium, and tried to elucidate the feasibility and safety of the application of the HIF-1-HRE system. METHODS: Cardiomyocytes of neonatal Sprague Dawley rats were cultured and incubated with rAAV-9HRE-hVEGF(165), and pig ischemic heart models were established and rAAV-9HRE-hVEGF(165) was injected into ischemia myocardium. RT-PCR, Western blot, ELISA, and immunohistochemistry were used to determine hVEGF(165) expressions of cultured cardiomyocytes and myocardium under hypoxic and reoxygenation conditions. RESULTS: The results of RT-PCR and ELISA determinations revealed that, in cultured cardiomyocytes, expressions of hVEGF(165)mRNA and protein were up-regulated under hypoxic conditions. After 4 h of reoxygenation, hVEGF(165)mNRA expression was decreased, and disappeared following 8 to 12 h of reoxygenation (P < 0.01). RT-PCR and Western blot also showed that, under myocardial ischemia, hVEGF(165) expression was increased significantly (P < 0.01). Following myocardial reperfusion, both hVEGF(165)mRNA and protein expressions were inhibited (P < 0.01). The new vessels in the reperfusion condition were decreased. CONCLUSIONS: This study suggested that 9HRE can effectively control hVEGF(165) gene expression in vivo and in vitro. It has feasibility for using the HIF-1-HRE system for regulation of angiogenic factor expression in ischemia heart.  相似文献   

19.
Summary We investigated the effects of human placental scatter factor (hSF), mouse scatter factor (mSF) and recombinant human hepatocyte growth factor (HGF) on motility and morphology of individual Madin-Darby canine kidney cells using a computerized cell tracking system. All three factors increased the velocity of individual cells and the ratio of moving to stationary cells. Similarly, all three factors caused changes in morphologic features of cells, leading to increased area, flatness, and polarity. Increases in area and flatness but not polarity were slightly greater with HGF than with hSF or mSF. These results suggest that SFs and HGF have similar effects on motility and morphology of isolated epithelial cells.  相似文献   

20.
Inflammatory bowel disease is incurable and relapsing disease. In order to clarify the effect of HGF gene therapy for inflammatory bowel disease, the adenoviral-mediated HGF gene was intrarectally administered into TNBS-colitis-induced Balb/c mice. Adenoviral-mediated gene delivery targetted its expression mainly to intestinal epithelial cells. Mucosal damage of HGF-treated intestine was significantly improved, and compared with LacZ-treated and saline administered mice (P<0.05, each). The mice treated with intrarectal administration of pAxCAHGF showed an increased average of body weight in comparison with that of pAxCALacZ-treated and saline-treated mice (P<0.05, each). The PCNA-positive cells in pAxCALacZ-treated mice were 44.7+/-4.9%, 51.7+/-6.6%, and 53.9+/-4.5% at 10, 15, and 21 days after TNBS administration, however those in pAxCAHGF-treated mice were increased to 74.3+/-5.1%, 67.1+/-2.6%, and 69.2+/-4.6% (P<0.05, each). The TUNEL-positive cells in pAxCALacZ-treated mice were 13.3+/-5.2%, 11.5+/-2.1%, and 7.2+/-5.2%, respectively. However, those in pAxCAHGF-treated mice at 10, 15, and 21 days were significantly decreased to 5.4+/-1.8%, 3.8+/-1.3%, and 5.7+/-2.8% (P<0.05, respectively). Expression of ERK1/2 was stronger in pAxCAHGF mice than in pAxCALacZ. These data suggest that adenoviral-mediated HGF gene therapy via an intrarectal route is a promising therapy for inflammatory bowel disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号