首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Models of mastication require knowledge of fiber lengths and physiological cross-sectional area (PCS): a proxy for muscle force. Yet only a small number of macaques of various species, ages, and sexes inform the previous standards for masseter muscle architecture. I dissected 36 masseters from 30 adult females of 3 macaque species—Macaca fascicularis, M. mulatta, M. nemestrina—using gross and chemical techniques and calculated PCS. These macaques have mechanically similar dietary niches and exhibit no significant difference in masseter architecture or fiber length. Intramuscular tendons effectively compartmentalize macaque masseters from medial to lateral. Fiber lengths vary by muscle subsection but are relatively conservative among species. Fiber length does not scale with body size (mass) or masseter muscle mass. However, PCS scales isometrically with body size; larger animals have greater force production capabilities. PCS scales positively allometrically with facial size; animals with more prognathic faces and taller mandibular corpora have greater PCS, and hence force, values. This positive allometry counters the less efficient positioning of masseter muscles in longer-faced animals. In each case, differences in PCS among species result from differences in muscle mass not fiber length. Masseter PCS is only weakly correlated with bone proxies previously used to estimate muscle force. Thus predictions of muscle force from bone parameters will entail large margins of errors and should be used with caution.  相似文献   

2.
Rosette strain gage, electromyography (EMG), and cineradiographic techniques were used to analyze loading patterns and jaw movements during mastication in Macaca fascicularis. The cineradiographic data indicate that macaques generally swallow frequently throughout a chewing sequence, and these swallows are intercalated into a chewing cycle towards the end of a power stroke. The bone strain and jaw movement data indicate that during vigorous mastication the transition between fast close and the power stroke is correlated with a sharp increase in masticatory force, and they also show that in most instances the jaws of macaques are maximally loaded prior to maximum intercuspation, i.e. during phase I (buccal phase) occlusal movements. Moreover, these data indicate that loads during phase II (lingual phase) occlusal movements are ordinarily relatively small. The bone strain data also suggest that the duration of unloading of the jaw during the power stroke of mastication is largely a function of the relaxation time of the jaw adductors. This interpretation is based on the finding that the duration from 100% peak strain to 50% peak strain during unloading closely approximates the half-relaxation time of whole adductor jaw muscles of macaques. The EMG data of the masseter and medial pterygoid muscles have important implications for understanding both the biomechanics of the power stroke and the external forces responsible for the "wishboning" effect that takes place along the mandibular symphysis and corpus during the power stroke of mastication. Although both medial pterygoid muscles reach maximum EMG activity during the power stroke, the activity of the working-side medial pterygoid peaks after the balancing-side medial pterygoid. Associated with the simultaneous increase of force of the working-side medial pterygoid and the decrease of force of the balancing-side medial pterygoid is the persistently high level of EMG activity of the balancing-side deep masseter (posterior portion). This pattern is of considerable significance because the direction of force of both the working-side medial pterygoid and the balancing-side deep masseter are well aligned to aid in driving the working-side lower molars across the upper molars in the medial direction during unilateral mastication.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
Physiological cross-section of the human jaw muscles   总被引:2,自引:0,他引:2  
The cross-sectional areas of the masseter, temporalis, medial pterygoid and lateral pterygoid muscles were determined by means of computer tomography in 16 male subjects with healthy dentitions. The physiological cross-section (PCS) of these muscles was predicted from the previously determined relationship between PCS and scan cross-sections. In our subjects, mean total PCS of the jaw muscles was twice as high as in cadavers with few natural teeth. The average distribution of total PCS over the four muscles was the same in the two groups. There was considerable individual variation. Strong correlations in cross-sectional area were only found between the masseter and medial pterygoid muscles. Variation in PCS of these two muscles determines 80% of the variation in combined cross-sectional area.  相似文献   

4.
The relationship between human craniofacial morphology and the biomechanical efficiency of bite force generation in widely varying muscular and skeletal types is unknown. To address this problem, we selected 22 subjects with different facial morphologies and used magnetic resonance imaging, cephalometric radiography, and data from dental casts to reconstruct their craniofacial tissues in three dimensions. Conventional cephalometric analyses were carried out, and the cross-sectional sizes of the masseter and medial pterygoid muscles were measured from reconstituted sections. The potential abilities of the muscles to generate bite forces at the molar teeth and mandibular condyles were calculated according to static equilibrium theory using muscle, first molar, and condylar moment arms. On average, the masseter muscle was about 66% larger in cross section than the medial pterygoid and was inclined more anteriorly relative to the functional occlusal plane. There was a significant positive correlation (P less than 0.01) between the cross-sectional areas of the masseter and medial pterygoid muscles (r = 0.75) and between the bizygomatic arch width and masseter cross-sectional area (r = 0.56) and medial pterygoid cross-sectional area (r = 0.69). The masseter muscle was always a more efficient producer of vertically oriented bite force than the medial pterygoid. Putative bite force from the medial pterygoid muscle alone correlated positively with mandibular length and inversely with upper face height. When muscle and tooth moment arms were considered together, a system efficient at producing force on the first molar was statistically associated with a face having a large intergonial width, small intercondylar width, narrow dental arch, forward maxilla, and forward mandible. There was no significant correlation between muscle cross-sectional areas and their respective putative bite forces. This suggests that there is no simple relationship between the tension-generating capacity of the muscles and their mechanical efficiency as described by their spatial arrangement. The study shows that in a modern human population so many combinations of biomechanically relevant variables are possible that subjects cannot easily be placed into ideal or nonideal categories for producing molar force. Our findings also confirm the impression that similar bite-force efficiencies can be found in subjects with disparate facial features.  相似文献   

5.
W A Weijs  B Hillen 《Acta anatomica》1984,118(3):129-138
Physiological cross-section (PCS) and cross-sectional area in computer tomograms made at right angles to the mean fibre direction were compared in the masseter, temporalis and pterygoid muscles of six human cadavers. PCS was determined as (1) total cross-section of teased fibre bundles (2) total fibre weight divided by mean fibre length. The two measures correlated strongly, but the first was always 25% lower than the second, irrespective of the muscle concerned. The cross-sections in the tomograms (SCS) were smaller than the PCS, except in the lateral pterygoid. In all muscles, a statistically significant correlation was found between SCS and PCS. The SCS can be used to predict PCS, with an error of 0.3-1.0 cm2. In our material, cross-sections were about 20% higher than reported in the literature. It is suggested, that this discrepancy is caused by the loss of natural teeth.  相似文献   

6.
To gain a better understanding of biting and chewing performance, the size and orientation of the masseter and medial pterygoid muscles in living humans were studied. Twenty-seven young males having complete dentition, class I dental occlusion and normal muscle and jaw function were examined using magnetic resonance images of the head between the zygomatic arch and hyoid bone. The sections were parallel to the palatal plane, and the thickness was 3 mm without a gap. A computer software program (Medical Dental Image, MDI) was developed to identify and calculate the area of each cross section of the muscle, and the volume of the muscle was then estimated. The axis of the muscle was determined by connecting the centroids of the sections in the lower and upper 1/3 of the whole muscle. The effective muscle cross section area was then calculated by resectioning the muscle perpendicularly to the muscle axis. It was found that the mean masseter muscle volume was around 31 cm3, and that the mean medial pterygoid muscle volume was 11 cm3. Their mean effective cross section areas were around 6.2 cm2 and 3.5 cm2, respectively. The axis of the masseter muscle was more perpendicular to the palatal plane and parallel to the sagittal plane than was the medial pterygoid muscle. The results suggest that the use of magnetic resonance images (MRI) is an effective noninvasive measurement technique for determining the size and orientation of masseter and medial pterygoid muscles. This technique can be employed in future studies on human bite force evaluation and masticatory function.  相似文献   

7.
The lack of specific data correlating activity in the human medial pterygoid muscle with displacement of the jaw during mastication, and the hint of possible differences in function between certain mammalian species, prompted a study of unilateral mastication in six adult subjects. Muscle activity in the medial pterygoid, masseter, and anterior temporal muscles was recorded simultaneously with three-dimensional movement of an incisor point on the mandible. Signals from muscles and displacement transducer were sampled by a disc-based computer system programmed to analyze data averaged over 30 chewing cycles on each side and in some instances over 30 open-close and clench cycles. Patterns of medial pterygoid activity were consistent for the group as a whole, demonstrating activation of both muscles early in the closing cycle with strong ipsilateral muscle activity before and throughout the intercuspal phase of mastication. By contrast contralateral activity ceased during the crushing phase of the cycle, reappearing in some subjects just before the end of intercuspation. Medial pterygoid activity mirrored masseter and anterior temporal activity only during certain phases of the closing cycle, suggesting that these muscles should be considered as being selectively coactivated with, rather than synergists of, the major elevators of the jaw. The muscles were active during horizontal components of movement of the incisor teeth in chewing, but were inactive during the open-close and clench task despite vigorous contraction of the masseter muscles. Overall, the observations complement previous reports of medial pterygoid muscle activity in humans. They also confirm, for these muscles at least, a general similarity between man and the little brown bat, a relationship hitherto suspected but unsubstantiated.  相似文献   

8.
In musculoskeletal models of the human temporomandibular joint (TMJ), muscles are typically represented by force vectors that connect approximate muscle origin and insertion centroids (centroid-to-centroid force vectors). This simplification assumes equivalent moment arms and muscle lengths for all fibers within a muscle even with complex geometry and may result in inaccurate estimations of muscle force and joint loading. The objectives of this study were to quantify the three-dimensional (3D) human TMJ muscle attachment morphometry and examine its impact on TMJ mechanics. 3D muscle attachment surfaces of temporalis, masseter, lateral pterygoid, and medial pterygoid muscles of human cadaveric heads were generated by co-registering measured attachment boundaries with underlying skull models created from cone-beam computerized tomography (CBCT) images. A bounding box technique was used to quantify 3D muscle attachment size, shape, location, and orientation. Musculoskeletal models of the mandible were then developed and validated to assess the impact of 3D muscle attachment morphometry on joint loading during jaw maximal open-close. The 3D morphometry revealed that muscle lengths and moment arms of temporalis and masseter muscles varied substantially among muscle fibers. The values calculated from the centroid-to-centroid model were significantly different from those calculated using the ‘Distributed model’, which considered crucial 3D muscle attachment morphometry. Consequently, joint loading was underestimated by more than 50% in the centroid-to-centroid model. Therefore, it is necessary to consider 3D muscle attachment morphometry, especially for muscles with broad attachments, in TMJ musculoskeletal models to precisely quantify the joint mechanical environment critical for understanding TMJ function and mechanobiology.  相似文献   

9.
Three-dimensional osseous surface re-formation imaging from CT scans was used to examine the facial skeletons of 14 living patients with mandibulofacial dysostosis. Partial to complete aplasia of the zygomatic process of the temporal bone, mild hypoplasia to aplasia of the frontal process of the zygoma, antimongoloid slant of the transverse orbital axis, and hypoplasia of the medial pterygoid plates and muscles are common to all patients examined. Deformities of the zygoma, zygomatic process of the frontal bone, mandible, and lateral pterygoid plates and muscles vary from minimal to severe, including aplasia. The body of the zygoma is the least affected part of the bone. Right-left asymmetry characterizes these deformities in all patients. The most consistent skeletal aplasia (cleft) in mandibulofacial dysostosis involves the zygomatic process of the temporal bone rather than the zygoma itself.  相似文献   

10.
Summary Tissue capillarity and diffusion distances were determined for red and white skeletal muscles of adult birds ranging in mass from 10.8 to 6200 g. In addition, literature values for capillarity and diffusion distances in skeletal muscles of mammals were incorporated into the data set. Muscle mass was closely coupled to body mass. However, no significant allometric relations were found for any of the other variables measured. Number of capillaries per fiber was not correlated with cross sectional area of individual muscle fibers. Thus, capillary density decreased in a hyperbolic manner against fiber area and diffusion distance decreased in a hyperbolic manner against the number of capillaries per muscle fiber. Red muscles had significantly higher numbers of capillaries per fiber and significantly shorter diffusion distances than did white muscles. The patterns for tissue capillarity and diffusion distances in avian muscle reported here are similar to values reported previously for mammalian muscles. In both taxanomic groups capillarity and diffusion distances are independent of body mass. In addition, diffusion distances are characteristic of capillaries distributed in random arrays through the muscle cross section.Abbreviations ALD muscle anterior latissimus dorsi - CD numerical density of capillaries in muscle cross section - C/F number of capillaries per individual muscle fiber - FCSA fiber cross sectional area - GST muscle gastrocnemius - LGST lateral head of muscle gastrocnemius - MGST medial head of muscle gastrocnemius - MM muscle mass - PLD muscle posterior latissimus dorsi  相似文献   

11.
Skeletal muscle is the most abundant tissue in the body and serves various physiological functions including the generation of movement and support. Whole body motor function requires adequate quantity, geometry, and distribution of muscle. This raises the question: how do muscles scale with subject size in order to achieve similar function across humans? While much of the current knowledge of human muscle architecture is based on cadaver dissection, modern medical imaging avoids limitations of old age, poor health, and limited subject pool, allowing for muscle architecture data to be obtained in vivo from healthy subjects ranging in size. The purpose of this study was to use novel fast-acquisition MRI to quantify volumes and lengths of 35 major lower limb muscles in 24 young, healthy subjects and to determine if muscle size correlates with bone geometry and subject parameters of mass and height. It was found that total lower limb muscle volume scales with mass (R2=0.85) and with the height–mass product (R2=0.92). Furthermore, individual muscle volumes scale with total muscle volume (median R2=0.66), with the height–mass product (median R2=0.61), and with mass (median R2=0.52). Muscle volume scales with bone volume (R2=0.75), and muscle length relative to bone length is conserved (median s.d.=2.1% of limb length). These relationships allow for an arbitrary subject's individual muscle volumes to be estimated from mass or mass and height while muscle lengths may be estimated from limb length. The dataset presented here can further be used as a normative standard to compare populations with musculoskeletal pathologies.  相似文献   

12.
Length-force relations, both active and passive, and twitch contraction characteristics were quantified for left medial gastrocnemius muscles of four young, four adult, and four old male Wistar rats. Muscle and bundle optimum length and muscle weight were also determined and subsequently used for calculation of a number of morphological characteristics of the muscles. Fiber optimum length was derived from muscle bundle optimum length. Generally, physiological characteristics remained constant during growth. There was no change either in active tension at muscle optimum length or in active working range relative to fiber optimum length, relative passive fiber stiffness, active force relative to passive force at optimum length, twitch contraction time and twitch half relaxation time at optimum length. A number of morphological changes, however, did take place in the medial gastrocnemius muscle during growth. Fiber optimum length increased but only by about 2 mm from youth to old age, whereas muscle optimum length increased by approximately 14 mm, presumably owing to extensive hypertrophy of the muscle fibers during growth. The priority for force of the medial gastrocnemius muscle (defined as the quotient of physiological cross-sectional area of a muscle and the cubed root of its volume, a measure independent of architecture and dimensions of muscles) increased during growth. This increase indicates that during growth the muscle shifts relatively more towards force generation than towards excursion generation. These findings are discussed in view of existing scaling theories.  相似文献   

13.
A computer assisted three-dimensional model of the jaw, based on linear programming, is presented. The upper and lower attachments of the muscles of mastication have been measured on a single human skull and divided into thirteen independent units on each side--a total of 26 muscle elements. The direction (in three dimensions) and maximum forces that could be developed by each muscle element, the bite reaction and two joint reactions are included in the model. It is shown for symmetrical biting that a model which minimizes the sum of the muscle forces used to produce a given bite force activates muscles in a way which corresponds well with previous observations on human subjects. A model which minimizes the joint reactions behaves differently and is rejected. An analysis of the way the chosen model operates suggests that there are two types of jaw muscles, power muscles and control muscles. Power muscles (superficial masseter, medial pterygoid and some of temporalis) produce the bite force but tend to displace the condyle up or down the articular eminence. This displacement is prevented by control muscles (oblique temporalis and lateral pterygoid) which have very poor moment arms for generating usual bite forces, but are efficient for preventing condylar slide. The model incorporates the concept that muscles consist of elements which can contract independently. It predicts that those muscle elements with longer moment arms relative to the joint are the first to be activated and, as the bite force increases, a ripple of activity spreads into elements with shorter moment arms. In general, the model can be used to study the three-dimensional activity in any system of joints and muscles.  相似文献   

14.
The aim of this study was to estimate the heritability and describe the correlates of bone marrow lesions in knee subchondral bone. A sibpair design was used. T2- and T1-weighted MRI scans were performed on the right knee to assess bone marrow lesions at lateral tibia and femora and medial tibia and femora, as well as chondral defects. A radiograph was taken on the same knee and scored for individual features of osteoarthritis (radiographic osteoarthritis; ROA) and alignment. Other variables measured included height, weight, knee pain, and lower-limb muscle strength. Heritability was estimated with the program SOLAR (Sequential Oligogenetic Linkage Analysis Routines). A total of 115 siblings (60 females and 55 males) from 48 families, representing 95 sib pairs, took part. The adjusted heritability estimates were 53 ± 28% (mean ± SEM; p = 0.03) and 65 ± 32% (p = 0.03) for severity of bone marrow lesions at lateral and medial compartments, respectively. The estimates were reduced by 8 to 9% after adjustment for chondral defects and ROA (but not alignment). The adjusted heritability estimate was 99% for prevalent bone marrow lesions at both lateral and medial compartments. Both lateral and medial bone marrow lesions were significantly correlated with age, chondral defects, and ROA of the knee (all p < 0.05). Medial bone marrow lesions were also more common in males and were correlated with body mass index (BMI). Thus, bone marrow lesions have a significant genetic component. They commonly coexist with chondral defects and ROA but only share common genetic mechanisms to a limited degree. They are also more common with increasing age, male sex, and increasing BMI.  相似文献   

15.
Wear facets on molars of the Eocene primate Adapis magnus are described. Striations on these wear facets indicate three separate directions of mandibular movement during mastication. One direction corresponds to a first stage of mastication involving orthal retraction of the mandible. The remaining two directions correspond to buccal and lingual phases of a second stage of mastication involving a transverse movement of the mandible. The mechanics of jaw adduction are analysed for both the orthal retraction and transverse stages of mastication. During the orthal retraction stage the greatest component of bite force is provided by the temporalis muscles acting directly against the food with the mandible functioning as a link rather than as a lever. A geometrical argument suggests that during the transverse stage of mastication bite force is provided by the temporalis muscles of both sides, the ipsilateral medial and lateral pterygoid muscles, and the contralateral masseter muscle.  相似文献   

16.
Mandibular distraction osteogenesis lengthens not only the affected skeleton but also the associated muscles of mastication. The purpose of this study was to determine medial pterygoid volume before and after distraction by using computed tomography. Using computed tomographic scans, the volume of the medial pterygoid muscle was determined before and after mandibular distraction in six pediatric patients. In four unilateral distraction patients (average age, 65 months), the average increase of the medial pterygoid muscle on the distracted side of the mandible was 29 percent, and on the contralateral nondistracted side, 10 percent. The average increase in medial pterygoid muscle volume in two bilateral distraction patients (each aged 8 months) was 75 percent. Results of this study demonstrate that distraction osteogenesis of the human mandible not only lengthens deficient bone, but it also increases the volume of the attached musculature.  相似文献   

17.
We investigated patterns of jaw-muscle coordination during rhythmic mastication in three species of ungulates displaying the marked transverse jaw movements typical of many large mammalian herbivores. In order to quantify consistent motor patterns during chewing, electromyograms were recorded from the superficial masseter, deep masseter, posterior temporalis and medial pterygoid muscles of goats, alpacas and horses. Timing differences between muscle pairs were evaluated in the context of an evolutionary model of jaw-muscle function. In this model, the closing and food reduction phases of mastication are primarily controlled by two distinct muscle groups, triplet I (balancing-side superficial masseter and medial pterygoid and working-side posterior temporalis) and triplet II (working-side superficial masseter and medial pterygoid and balancing-side posterior temporalis), and the asynchronous activity of the working- and balancing-side deep masseters. The three species differ in the extent to which the jaw muscles are coordinated as triplet I and triplet II. Alpacas, and to a lesser extent, goats, exhibit the triplet pattern whereas horses do not. In contrast, all three species show marked asynchrony of the working-side and balancing-side deep masseters, with jaw closing initiated by the working-side muscle and the balancing-side muscle firing much later during closing. However, goats differ from alpacas and horses in the timing of the balancing-side deep masseter relative to the triplet II muscles. This study highlights interspecific differences in the coordination of jaw muscles to influence transverse jaw movements and the production of bite force in herbivorous ungulates.  相似文献   

18.
In a Caucasian male, the maxillary artery (M) bilaterally arose with the facial artery anteromedially from the external carotid artery. On the right side, the M entered the infratemporal fossa between the neck of the mandible and the medial pterygoid muscle, whereas the left M pierced the medial pterygoid muscle, first being covered by the muscle and the angle of the mandible. On both sides, the M ran deep to the inferior head of the lateral pterygoid muscle and the buccal nerve. The right M lay deep to the inferior alveolar, but superficial to the lingual nerve, whereas the left inferior alveolar and lingual nerves had formed two roots, thus encircling the left M. The ascending palatine artery was replaced on both sides by palatine branches of the ascending pharyngeal artery. Since a bilaterial maxillofacial trunk with topographical relations as described herein has not been previously reported in man, the embryology and comparative anatomy of this variation are discussed.  相似文献   

19.
The herbivorous adaptations of the jaw adductor muscles in Neotoma mexicana were clarified by a comparative study with an unspecialized relative, Peromyscus maniculatus. In P. maniculatus, the anterior part of the deep masseter arises entirely from the lateral side of an aponeurosis, i.e., superior zygomatic plate aponeurosis, whereas N. mexicana has an additional aponeurosis for this part of the muscle, and the fibers attach on both sides of the superior zygomatic plate aponeurosis. Although the structure of the temporalis muscle is nearly identical in the two genera, a clear aponeurosis of origin occurs only in N. mexicana. These characteristics allow fibrous tissues to be processed with a large occlusal force. The deep masseter, internal pterygoid, and external pterygoid muscles of N. mexicana incline more anterodorsally than those of P. maniculatus. The transverse force component of these muscles relative to whole muscle force is smaller in N. mexicana than in P. maniculatus, with the exception of the internal pterygoid. The anterior part of the temporalis muscle of N. mexicana is specialized to produce occlusal pressure. These findings suggest that in N. mexicana a large anterior force is required to move the heavy mandible, due to the hypsodont molars, against frictional force from food, and that the posterior pull of the temporalis, which adjusts the forward force by the other jaw adductor muscles to a suitable level, need not be large for the mandibular movement.  相似文献   

20.
Age changes of morphometrical parameters of the masticatory muscles have been analyzed in domestic sheep and pigs of white large breed in the following age groups: 2-, 3-, 4-month-old fetuses, newborns, 4-month-old lambs, 10-month-old pigs, 18-month-old lambs, mature she-sheep and brood-sows. Uneven weight growth of the masticatory muscles in the sheep and pigs during the prenatal ontogenesis should be considered as a consequence of recapitulation of their phylogenesis, and in the postnatal ontogenesis it depends on changes in life conditions, type of nutrition, character of food and type of life. In newborn sheep the digastric, lateral, pterygoid and temporal muscles grow intensively, and in pigs--medial pterygoid and temporal ones. When they pass to roughage, in the former the mass of the musculus masseter major and medial pterygoid muscle increases, and in the latter--that of the musculus masseter major and temporal one. The masticatory muscles of the species studied increase in their mass especially intensively during the middle of the prenatal ontogenesis and during suckling period of their development. This should be taken into consideration in stock-breeding practice. In domestic pigs there is only one muscular belly in the digastric muscle. In sheep there are two bellies, separated one from another by means of a tendinous intersection, owing to crossing of the latter by the stylohyoid muscle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号