首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gäde G  Marco HG 《ZooKeys》2011,(157):81-94
The presented work is a hybrid of an overview and an original research paper on peptides belonging to the adipokinetic hormone (AKH) family that are present in the corpora cardiaca of Chrysomeloidea. First, we introduce the AKH/red pigment-concentrating hormone (RPCH) peptide family. Second, we collate the available primary sequence data on AKH peptides in Cerambycidae and Chrysomelidae, and we present new sequencing data (from previously unstudied species) obtained by liquid-chromatography coupled with ion trap electrospray ionisation mass spectrometry. Our expanded data set encompasses the primary structure of AKHs from seven species of Cerambycidae and three species of Chrysomelidae. All of these species synthesise the octapeptide code-named Peram-CAH-I (pGlu-Val-Asn-Phe-Ser-Pro-Asn-Trp amide). Whereas this is the sole AKH peptide in Cerambycidae, Chrysomelidae demonstrate a probable event of AKH gene duplication, thereby giving rise to an additional AKH. This second AKH peptide may be either Emppe-AKH (pGlu-Val-Asn-Phe-Thr-Pro-Asn-Trp amide) or Peram-CAH-II (pGlu-Leu-Thr-Phe-Thr-Pro-Asn-Trp amide). The peptide distribution and structural data suggest that both families are closely related and that Peram-CAH-I is the ancestral peptide. We hypothesise on the molecular evolution of Emppe-AKH and Peram-CAH-II from the ancestral peptide due to nonsynonymous missense single nucleotide polymorphism in the nucleotide coding sequence of prepro-AKH. Finally, we review the biological significance of the AKH peptides as hyperprolinaemic hormones in Chrysomeloidea, i.e. they cause an increase in the circulating concentration of proline. The mobilisation of proline has been demonstrated during flight in both cerambycid and chrysomelid beetles.  相似文献   

2.
R Ziegler  K Eckart  J H Law 《Peptides》1990,11(5):1037-1040
The peptide hormone which controls activation of fat body glycogen phosphorylase in starving larvae of Manduca sexta was isolated from larval corpora cardiaca and sequenced by FAB tandem mass spectrometry. It was found to be identical with Manduca AKH. This, together with earlier observations, demonstrates that in M. sexta AKH controls glycogen phosphorylase activation in starving larvae while in adults it controls lipid mobilization during flight. Larval corpora cardiaca contain about 10 times less AKH than the corpora cardiaca of adults. The corpora cardiaca of M. sexta appear to contain only one AKH.  相似文献   

3.
Adipokinetic hormone (AKH)-producing cells in the corpus cardiacum of the insect Locusta migratoria represent a neuroendocrine system containing large quantities of stored secretory peptides. In the present study we address the question whether the release of AKHs from these cells induces a concomitant enhancement of their biosynthesis. The effects of hormone release in vivo (by flight activity) and in vitro (using crustacean cardioactive peptide, locustamyoinhibiting peptide, and activation of protein kinase A and C) on the biosynthetic activity for AKHs were measured. The intracellular levels of prepro-AKH mRNAs, the intracellular levels of pro-AKHs, and the rate of synthesis of (pro-)AKHs were used as parameters for biosynthetic activity. The effectiveness of in vitro treatment was assessed from the amounts of AKHs released. Neither flight activity as the natural stimulus for AKH release, nor in vitro treatment with the regulatory peptides or signal transduction activators appeared to affect the biosynthetic activity for AKHs. This points to an absence of coupling between release and biosynthesis of AKHs. The strategy of the AKH-producing cells to cope with variations in secretory stimulation seems to rely on a pool of secretory material that is readily releasable and continuously replenished by a process of steady biosynthesis.  相似文献   

4.
Structure-activity studies were performed for adipokinetic hormone (AKH) in Manduca sexta. Seven naturally occurring and four synthetic peptides of the red pigment concentrating hormone (RPCH)/AKH family were tested in larvae of M. sexta for activation of glycogen phosphorylase in fat body. pGlu at the N-terminal was found to be important for activity of peptides; however, Manduca AcGly1AKH is partially active. The amino acids at all positions appear to be of importance for activity, with the possible exception of the two serine residues in positions six and seven. Generally, the more amino acids are exchanged, the less the peptide will bind to the receptor. In M. sexta a beta-bend appears not to be important for the binding of peptides. Peptides ten amino acids long appear to be more active than shorter ones.  相似文献   

5.
Adipokinetic neuropeptides from the corpora cardiaca of 17 species of Odonata encompassing mainly the families Corduliidae and Libellulidae were isolated and structurally elucidated using liquid chromatography coupled with ion trap electrospray ionization mass spectrometry. It became evident that all species of the family Corduliidae studied express the peptide code-named Libau-AKH (pGlu-Val-Asn-Phe-Thr-Pro-Ser-Trp amide), which is also present in all but one libellulid species, Erythemis simplicicollis which expresses Erysi-AKH (pGlu-Leu-Asn-Phe-Thr-Pro-Ser-Trp amide). This divergence from all other Libellulids is due to a nonsynonymous missense single nucleotide polymorphism (SNP) in the nucleotide coding sequence (CDS) of prepro-AKH CDS and supports the polyphyletic nature of Sympetrinae and other subfamilies of libellulids. Despite this exception, these findings then support the hypothesis that Corduliidae and Libellulidae are closely related as stated in most phylogenies. The presence of Anaim-AKH (pGlu-Val-Asn-Phe-Ser-Pro-Ser-Trp amide) in Macromiidae likely distinguishes species in this family from Corduliidae. Current molecular genetic phylogenies and our AKH findings suggest that Syncordulia gracilis, which expresses Anaim-AKH, does not belong in Corduliidae. Evolution of AKHs in anisopteran Odonata are likely due to nucleotide substitution involving nonsynonymous missense SNPs in the CDS of prepro-AKH.  相似文献   

6.
The adipokinetic hormones (AKHs) from the corpora cardiaca (CC) of representative species from all three subfamilies of the Sphingidae (hawkmoths) were investigated using matrix-assisted laser desorption-ionization time-of-flight (MALDI-TOF) and liquid chromatography electrospray ion trap mass spectrometry (LC-ESI MS), including a re-examination of the AKH complement of the tobacco hawkmoth, Manduca sexta. In addition to larvae and adults of M. sexta (subfamily: Sphinginae), adults from the following subfamilies were examined: Macroglossinae (large elephant hawkmoth, Deilephila elpenor), Smerinthinae (poplar hawkmoth, Laothoe populi and eyed hawkmoth, Smerinthus ocellata), and Sphinginae (death's head hawkmoth, Acherontia atropos). All moths are shown to have the nonapeptide Manse-AKH (pELTFTSSGWamide) in their CC, together with a second AKH, which, on the basis of mass ions ([M+Na](+), [M+K](+)) and partial sequence analysis is identical in all species examined. The structure of this AKH was elucidated from peptides leached out of the CC of adult M. sexta and shown, by ESI-collision-induced dissociation (CID) tandem mass spectrometry (MS/MS), to be a novel decapeptide AKH with a sequence of pELTFSSGWGQamide. The new peptide has been code named Manse-AKH-II. Sequence confirmation was obtained from identical MS studies with synthetic Manse-AKH-II and with the native peptide. Manse-AKH-II has significant lipid-mobilizing activity when injected at low dose (5pmol) into newly emerged adult M. sexta. The potential implications of a second AKH, in M. sexta in particular, are discussed in relation to putative receptor(s).  相似文献   

7.
The occurrence of neuropeptides in the retrocerebral complexes of adult male and females of the tobacco hawkmoth, Manduca sexta, was investigated using matrix-assisted laser desorption time of flight (MALDI-TOF) mass spectrometry (MS), post source decay (PSD) and collision-induced dissociation (CID) MS/MS. From fractions of methanol extracts of corpora cardiaca (CC)/corpora allata (CA), separated by reversed-phase high performance liquid chromatography (RP-HPLC), a total of 11 mass ions were assigned to known peptides from M. sexta. These peptides were adipokinetic hormone (AKH), FLRFamides I, II and III, crustacean cardioactive peptide (CCAP), cardioactive peptide 2b (CAP(2b)), three myoinhibitory peptides, corazonin, and M. sexta allatostatin (Manse-AS). A further six masses were in agreement with Y/FXFGLamide allatostatins identified from other Lepidoptera. The sequence identities of FLRFamide I and AKH were confirmed using post source decay analysis. Fragmentation by collision-induced dissociation MS/MS identified an extended AKH peptide. The apparent differences in the peptides present in male and female retrocerebral complexes are most likely quantitative rather than sex specific.  相似文献   

8.
We have isolated an 8770Da peptide from extracts of corpora cardiaca of adult male and female Locusta migratoria. The N-terminal amino-acid sequence as partially established by Edman degradation is Ala-Leu-Gly-Ala-Pro-Ala-Ala-Gly-Asp. These nine amino acids correspond to the first nine N-terminal amino acids of the adipokinetic hormone precursor-related peptide gamma-chain (APRP-gamma), a peptide that is predicted from the gene encoding the adipokinetic hormone III precursor. The APRP-gamma chain has a monoisotopic mass of 4387Da and contains two cysteine residues. It is known that both AKH I and AKH II precursors occur as dimers. After processing they give rise to the active hormones and three dimeric (two homodimers and one heterodimer) adipokinetic hormone precursor related peptides (APRPs). Based on the mass of 8770Da and the established N-terminal sequence tag, we conclude that the isolated peptide is a homodimer consisting of two APRP-gamma units, covalently linked to each other by two disulphide bounds. In analogy with the previous identified APRPs (APRP-1, APRP-2, and APRP-3), this APRP will be designated as APRP-4.  相似文献   

9.
A novel member of the AKH/RPCH family of peptides has been identified from the corpus cardiacum of an, as yet, unidentified species of the newly discovered insect order Mantophasmatodea from Namibia. The primary sequence of the peptide, which is denoted Manto-CC, was deduced from multiple MS(N) electrospray mass data to be an octapeptide: pGlu-Val-Asn-Phe-Ser-Pro-Gly-Trp amide. Synthetic Manto-CC co-elutes on reversed-phase HPLC with the natural peptide from the gland of the insect. Interestingly, Manto-CC is structurally very closely related (only one point mutation) to the AKH/RPCH peptides previously identified in mostly more basal insect taxa (Odonata, Blattodea, and Ensifera) and in Crustacea, the sister group of insects, whereas larger structural differences occur with peptides from Mantodea and Phasmatodea, which are thought to be close relatives of Mantophasmatodea. Functionally, Manto-CC may be employed to activate glycogen phosphorylase to mobilize carbohydrates.  相似文献   

10.
Precursor structures of various members of the neuropeptide family adipokinetic hormone/red pigment concentrating hormone (AKH/RPCH) of mandibular arthropods and the APGWamide family of mollusks were compared. Amino acid alignments showed a common overall architecture (signal peptide, active peptide, related peptide), with a similar α helix–random coil secondary structure. DNA sequence alignments revealed close similarities between the genes encoding for the peptides of the two families. The APGWamide genes are larger than the AKH/RPCH genes. The sequence environment occupied by introns is similar in AKH/RPCH and APGWamide genes. Such similarities suggest that these peptide families might have been originated by gene rearrangements from a common ancestor having either an AKH/RPCH/APGWamide-like structure or both an AKH/RPCH-like and an APGWamide-like structures. In the former model, DNA fragments could have been gained when the ancestor evolved to mollusks and it could have lost nucleotides when the progression to mandibular arthropods took place. In the second model, AKH/RPCH-like structures could have been fused during evolution toward mandibular arthropods, whereas in mollusks they could have been lost with the possible amplification of the APGWamide-like structure. Loss of domains in exon 1 may have originated the signal peptide and the first codon of the active RPCH. In exon 2, loss of domains possibly determined the junctions of codons 2 to 5 with the loss of a APGWamide copy; exon 3 underwent fewer variations. The similarity of the mollusk APGWamide precursors is closer to that of the RPCH family than the insect AKH family, indicating an earlier evolutionary departure.  相似文献   

11.
The aim of the current study is to identify the adipokinetic hormone(s) (AKHs) of a basal suborder of the species‐rich Coleoptera, the Adephaga, and possibly learn more about the ancestral AKH of beetles. Moreover, we wanted to compare the ancestral AKH with AKHs of more advanced beetles, of which a number are pest insects. This would allow us to assess whether AKH mimetics would be suitable as insecticides, that is, be harmful to the pest species but not to the beneficial species. Nine species of the Adephaga were investigated and all synthesize only one octapeptide in the corpus cardiacum, as revealed by Edman degradation sequencing techniques or by mass spectrometry. The amino acid sequence pGlu‐Leu‐Asn‐Phe‐Ser‐Thr‐Gly‐Trp corresponds to Schgr‐AKH‐II that was first identified in the desert locust. It is assumed that Schgr‐AKH‐II—the peptide of a basal beetle clade—is the ancestral AKH for beetles. Some other beetle families, as well as some Hymenoptera (including honey bees) also contain this peptide, whereas most of the pest beetle species have different AKHs. This argues that those peptides and their receptors should be explored for developing mimetics with insecticidal properties. A scenario where Schgr‐AKH‐II (the only AKH of Adephaga) is used as basic molecular structure to derive almost all other known beetle AKHs via single step mutations is very likely, and supports the interpretation that Schgr‐AKH‐II is the ancestral AKH of Coleoptera.  相似文献   

12.
Small neuropeptides of the adipokinetic/red pigment-concentrating hormone (AKH/RPCH) family regulate energy metabolism in insects. Within lepidopterans, the nonapeptide Manduca sexta AKH (Manse-AKH) represents a widely occurring AKH, whereas the decapeptide Helze-HrTH (at first isolated from Helicoverpa zea) seems to be restricted to moths. Here we report the identification of the Manse-AKH-like Spofr-AKH 1 and the Helze-HrTH-like Spofr-AKH 2 prohormone precursors from the fall armyworm, Spodoptera frugiperda. Moreover, by PCR screening of a random primer cDNA library and by RACE, three 668, 835 and 1008 bp cDNA sequences were obtained, which encode putative translation products of 67-74 amino acids, each containing one copy of a peptide sequence that in its processed form has the sequence of QLTFSSGW-amide (Spofr-AKH 3). Another cDNA sequence of 634 bp encodes a putative translation product of 40 amino acids, potentially leading to one copy of an elongated, non-amidated Helze-HrTH (pQLTFSSGWGNCTS-OH; Spofr-AKH 4). Q-RT-PCR analysis showed that the Spofr-AKH mRNAs are expressed in 2d-old female brain/corpora cardiaca complexes, but also in ovaries, midgut, fat body, accessory glands and muscle tissues. Expression was also found in the ovaries of 4d-old females. Whole-mount in situ RT-PCR analysis with ovaries from 2d-old females showed that the Spofr-AKH 2 and Spofr-AKH 4 were mainly localized in the germarium (phase 3), whereas the Spofr-AKH 1, and the three mRNA isoforms of Spofr-AKH 3 were localized at the end of the vitellarium and in the fully developed oocytes (phase 1 and 2). The results suggest that Spofr-AKH genes play a role in the regulation of oocyte maturation in S. frugiperda.  相似文献   

13.
Dose-response curves were measured with synthetic Manduca adipokinetic hormone (AKH) for glycogen phosphorylase activation in larvae and for lipid mobilization in adults. Both responses are known hormonal functions in Manduca sexta. In ligated larvae, full activation of glycogen phosphorylase was achieved with 0.1 pmol and half-maximal activation with 0.03-0.04 pmol. Maximal lipid mobilization in adults required 10 pmol and half-maximal mobilization 0.15 to 0.2 pmol, respectively. An estimate of AKH content of corpora cardiaca from M. sexta was gained by comparing the dose-response curves for synthetic Manduca AKH with curves from gland extracts. Corpora cardiaca extracts were also quantitated by high performance liquid chromatography. According to both estimates corpora cardiaca of adults contain 10-20 pmol AKH per pair, while a pair of larval corpora cardiaca contains 0.7-2 pmol.  相似文献   

14.
15.
The grasshopper neuropeptides adipokinetic hormone (AKH) I and II were among the first of an extensive family of structurally similar arthropod hormones and neuroregulators to be isolated and sequenced. This paper reports the cloning of cDNAs derived from the unusually small mRNAs (550 bases) which code for the precursors of AKH I and II from Schistocerca nitans. Sequence analysis of the cDNAs indicates that AKH I and II are derived from small precursor proteins (63 and 61 amino acids) which are 55% identical in amino acid sequence. Each contains a 22-amino acid hydrophobic leader sequence followed by the AKH I or II sequence and an additional 28-amino acid carboxyl-terminal peptide of unknown function. Significant homology at the nucleic acid level (64% identity) is confined to the coding region of the mRNA sequences. Preliminary DNA blot analyses suggest that a single gene codes for each, and that the genes for AKH I and II may be linked. Genomic blots from various tissues fail to suggest that the high level of expression of AKH in the corpora cardiaca is due to tissue specific gene amplification.  相似文献   

16.
In the honey bee no allatotropin gene has been found, even though allatotropin stimulates the synthesis of juvenile hormone in this species. We report here that honey bees and other Hymenoptera do have a typical allatotropin gene, although the peptides predicted have a somewhat different structure from that of other insect allatotropins. Polyclonal antisera to honey bee allatotropin reacted with material in the neurohemal organs of the segmental nerves of abdominal ganglia. We were unable to find the allatotropin peptide using mass spectrometry in extracts from these tissues. Thus the expression of this gene in honey bees is less important than in other insect species. We also characterized the leucokinin gene which similarly appears to be very weakly expressed in worker honey bees. Unlike the allatotropin gene, which is conserved within Hymenoptera, the leucokinin gene is much more variable in structure and was not found in ants nor the parasitic wasp Nasonia vitripennis. The absence of significant expression of adipokinetic hormone (AKH) in the honey bee may be due to the existence of a second TATA box in the promotor region of the gene, which explains the production of an mRNA encoding a putative peptide precursor from which no AKH should be released. Such a second TATA box was not found in other Hymenoptera, and may therefore be specific for the two Apis species. It is suggested that functional disintegration of this important metabolic gene became possible in Apis because of the highly evolved social nature of the species.  相似文献   

17.
Kodrík D  Simek P  Lepsa L  Socha R 《Peptides》2002,23(3):585-587
A new member of the AKH/RPCH family was isolated from the corpora cardiaca of the firebug Pyrrhocoris apterus. It is the second adipokinetic peptide identified in this species. The peptide was characterized and its structure was deduced from the multiple MS(N) electrospray mass spectra as that of an octapeptide with the sequence pGlu-Leu-Thr-Phe-Thr-Pro-Asn-Trp-NH(2.) The peptide differs from the original P. apterus AKH (Pya-AKH) by one amino acid in position 3. Topical application and/or injection of the peptide induced lipid mobilization, but was inactive in mobilization of carbohydrates.  相似文献   

18.
Small neuropeptides of the adipokinetic hormone/red pigment-concentrating hormone (AKH/RPCH) family regulate energy metabolism in insects. Within lepidopterans, the nonapeptide Manduca sexta AKH (Manse-AKH) represents a widely occurring AKH, whereas the decapeptide Helze-HrTH (at first isolated from Heliothis zea) seems to be restricted to moths. Here we show that Vanca-AKH, a non-amidated undecapeptide which we recently found in the painted lady butterfly, Vanessa cardui, is also present in the retrocerebral complex of several other butterflies (Danaus plexippus, Precis coenia, Aglais urticae) and a moth (Spodoptera frugiperda). This study also demonstrates the power of modern nano-electrospray-quadrupole TOF tandem mass spectrometry in the sequence confirmation of peptides from minute amounts of small neuropeptides.  相似文献   

19.
Clark L  Zhang JR  Tobe S  Lange AB 《Peptides》2006,27(3):559-566
The corpus cardiacum (CC) and corpus allatum (CA) of the locust, Locusta migratoria, contain intense proctolin-like immunoreactivity (PLI) within processes and varicosities. In contrast, in the cockroach, Diploptera punctata, although a similar staining pattern occurs within the CC, PLI appears absent within the CA. The possible role of proctolin as a releasing factor for adipokinetic hormone (AKH) and juvenile hormone (JH) was investigated in the locust. Proctolin caused a dose-dependent increase in AKH I release (determined by RP-HPLC) from the locust CC over a range of doses with threshold above 10(-8)M and maximal release at about 10(-7)M proctolin. Isolated glandular lobes of the CC released greater amounts of AKH I following treatment with proctolin and in these studies AKH II was also released. Confirmation of AKH I release was obtained by injecting perfusate from incubated CCs into locusts and measuring hemolymph lipid concentration. Perfusate from CC incubated in proctolin contained material with similar biological activity to AKH. Proctolin was also found to significantly increase the synthesis and release of JH from locust CA, with the increase being greatest from CAs that had a relatively low basal rate of JH biosynthesis (<35 pmol h(-1) per CA). In contrast, proctolin did not alter the synthesis and release of JH from the cockroach CA. These results suggest that proctolin may act as a releasing factor for AKHs and JH in the locust but does not act as a releasing factor for JH in the cockroach.  相似文献   

20.
ABSTRACT. An attempt was made to separate glycogen phosphorylase activating hormone (GPAH) and adipokinetic hormone (AKH) from the corpora cardiaca (CC) of the moth Manduca sexta (Lepidoptera: Sphingidae) by separating extracts of CC on various chromotographic media, but it was not possible to conclude whether GPAH and AKH are activities of one or of two different peptides. Both activities elute together from glass beads, from Sephadex G-25 and from Sephadex LH-20 columns. In the separation experiments with glass beads and G-25 the activities eluted as a single peak, but using LH-20 we found two peaks exhibiting both activities. The major peak eluted at 1.25 × Vt, which is very similar to locust AKH, while the smaller second peak eluted at O.74 × V t. Cross injections of CC extracts from M. sexta into Locusta migratoria and CC extracts from L. migratoria into M. sexta suggest that GPAH and the AKH from M. sexta are not identical with the decapeptide AKH from locusts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号